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Bordetella pertussis is the bacterial agent of whooping cough, an infectious disease that is reemerging despite high vaccine
coverage. Newborn children are the most affected, not only because they are too young to be vaccinated but also due to
qualitative and quantitative differences in their immune system, which makes them more susceptible to infection and severe
manifestations, leading to a higher mortality rate comparing to other groups. Until recently, prevention consisted of
vaccinating children in the first year of life and the herd vaccination of people directly in touch with them, but the increase in
cases demands more effective strategies that can overcome the developing immune response in early life and induce protection
while children are most vulnerable.

1. Introduction

Bordetella pertussis is a Gram-negative coccobacillus that
causes whooping cough, also known as pertussis, in humans
[1]. Historical reports mention the disease as far back as the
XIIth century [2], but pathogen isolation only occurred in
the XXth century [3]. Since then, much has been learned
about the pathogenesis and prevention of the disease, but
infection is still a concern in several countries [4].

Respiratory infection is especially aggressive in young
children, who are more likely to experience the classical man-
ifestation of the disease [5], divided into three phases: the first
phase is characterized by unspecific symptoms, such as
coryza, fever, and occasional cough. After two weeks, the
cough is aggravated and becomes constant and uncontrolla-
ble, followed by forced inspiration producing a whooping
sound. Symptoms can decrease progressively into the conva-
lescence phase; however, complications such as pneumonia
are frequent and are responsible for over 90% of the deaths

attributable to the disease in children younger than 3 years
of age [6, 7].

Until 2003, 50 million cases and 300,000 deaths were esti-
mated every year around the world, mostly in children youn-
ger than 5 years of age [8].

Between 2010 and 2014, however, a rise in cases has been
seen worldwide. In the US, the incidence before the 1980s
was 1 case for each 100,000 inhabitants; in 2012, the inci-
dence increased to 9 : 100,000, with more than 42,000 cases
[6]. In the UK, over 9,000 children younger than 3 years
old were infected in 2011 [9], and in Brazil, there were
22.426 confirmed cases, mostly in children younger than 1
year of age; in São Paulo, the largest state in the country,
the incidence increased from 2.20 per 100,000 in 2011 to
5.06 per 100,000 in 2014 [10]. Other countries such as Argen-
tina, Chile, Canada, and Australia also reported an increase
in the number of cases [11, 12].

Treatment with macrolide antibiotics can be effective in
eliminating the pathogen if administered at the beginning
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of the symptoms; but as these antibiotics are unspecific and
the disease is usually diagnosed due to the paroxysmal cough,
treatment is often delayed, and by the time it is prescribed,
the symptoms are already more severe, making prevention
vital, especially for young children [13].

2. Immunopathogenesis of Pertussis

When the bacteria enter the human body, they adhere to
the respiratory epithelium and produce a number of path-
ogenic toxins [4] to break natural barriers, such as cilia
and mucus, to evade the innate immune system [14].
Then, bacteria can reach epithelial cells and replicate intra-
cellularly [1], leading to the recruitment of different arms
of the immune system [15–18].

Briefly, the regular immune response against pertussis
infection recruits both innate and adaptive immune responses.
After recognition of bacterial patterns by Toll-like receptors
(TLRs), resident macrophages and neutrophils phagocytize
and destroy bacteria at the infection site while dendritic cells
(DCs) present and activate T CD4+ lymphocytes, which in
turn mainly differentiate into IFN-γ-producing-T helper
(Th) 1 cells. Natural killer (NK) cells can also be recruited
to produce IFN-γ to help polarize T cells. These molecules
are especially important for activating macrophages through
the production of IFN-γ to destroy bacteria that can survive
phagocytosis and escape into the cell cytoplasm [18].

Pertussis can, however, use toxins to stimulate DCs to
produce IL-10, instead leading to the differentiation of T reg-
ulatory cells and a predominance of an anti-inflammatory
response, which is more favourable to the survival of the bac-
teria in the host [18].

In addition, antibodies, especially IgG and IgA, may have
a role in bacterial clearance, even though there have been no
previously defined correlates of protection [1, 19]. Antibodies
can act by neutralizing bacterial toxins or as opsonins to pre-
vent cell infection [1, 19], and maternal anti-pertussis anti-
bodies are transmitted via the placenta to the foetus,
contributing to newborn protection [18]. Nevertheless, more
studies show that Th1 and Th17 responses are more efficient
in rapidly clearing the bacteria [17, 20–22].

3. Neonatal Immunity

In children, several qualitative and quantitative differences in
the immune response contribute to the severity of disease
[23]. For a long time, neonates were considered most suscep-
tible to disease due to a deficient and immature immune sys-
tem [24]; however, it is currently known that the newborn
immune system is only less responsive than that of the adult
due to the regulatory effects of foetal-maternal tolerance that
are imposed during development in the uterus and that
remain active soon after birth [25].

Healthy newborns express TLRs in a stable way similar
to that expression manner in adults and are capable of
enhancing the expression of TLR on mononuclear cells in
case of bacterial sepsis [26]. However, cells such as neutro-
phils, monocytes, and macrophages have more difficulty in
expressing costimulatory molecules such as CD80 and

CD86, secreting cytokines such as tumor necrosis factor α,
IL-12p70, and IFN-γ and responding to chemokines until
approximately 2 years of age [27–29]. They also have less
capacity for antigen processing and less major histocompati-
bility complex II molecules, which participate in the activa-
tion of naïve T CD4+ cells and the differentiation of these
cells to the Th1 profile, leading to anergy [25, 27–29].

Neutrophils are present in a lower number in the bone
marrow in neonates and are more immature compared
to those in adults, having fewer preformed antimicrobial
peptides and a lower capacity for Gram-negative bacterial
elimination, justifying their higher susceptibility to infection
and sepsis [27, 30]. NK cell counts are elevated in newborns’
peripheral blood, but these cells secrete small amounts of
IFN-γ [29]. Impaired innate immunity can be partly
explained by the immunomodulation by CD71+ erythroid
suppressor cells. These cells are present in high numbers in
neonates and human cord blood and are capable of inhibiting
innate response to B. pertussis infection in neonatal mice by
the expression of arginase II [31]. Similarly, the presence of
erythroid suppressor cells decreases TNF-α production and
B. pertussis phagocytosis by human CD11b+ cells in vitro.

These differences in the innate immune response are
reflected especially in the development and in the profile of
the newborn’s adaptive immune response to B. pertussis
[32]. Alongside not having a fully developed anatomical
microenvironment that is suited to the interaction between
DCs and T and B lymphocytes (there is no defined demar-
cation between different lymphoid zones and T CD4+ zones
in neonates [28]), neonate cells have a lower capacity to
generate memory cells and Th1 effector responses, also
due to the lower IL-12 production by DCs [25]. Thus, there
is lower subsequent production of IL-12 and IFN-γ [33]
and a lower CD40L expression [27], which also lead to a
lower production of IgG, IgA, and IgE [28], making the
bacterial clearance compromised.

However, the production of IL-10, IL-6, IL-23, and IL-1β,
cytokines that contribute to Th17 cell polarization, is higher
in neonates than in adults [25, 26]. Additionally, elevated
IL-10 production in early life was shown to be predominant
in B. pertussis-infection cases [25, 34, 35].

While there is less Th1 polarization, there is higher IL-4
detection in neonate cells, both in unstimulated and in stim-
ulated cells, compared to that in adult cells. The Th2 locus is
hypomethylated in neonates and methylated in adults, while
transcription of the subunit p35 of IL-12p70 in DCs derived
frommonocytes, when stimulated with lipopolysaccharide, is
limited by epigenetic regulation [25, 36]. This makes Th2
cells more predominant in neonates, even after vaccination.
However, it is known that the bacillus Calmette-Guérin vac-
cine can induce Th1 cells [37], so perhaps Th2 predominance
is not a characteristic that is biased towards the newborn
period, but is derived from the difficulty in polarizing cells
to the Th1 profile during this period [25].

Th2, Th17, and regulatory lymphocyte predominance,
allied to the absence of memory, favours the higher suscepti-
bility of newborns to infection and intracellular or capsulated
pathogens [38]. In addition, antibodies produced by new-
borns have a shorter duration, are initially produced later,
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and show lower affinity, reduced heterogeneity, and deficient
response to bacterial polysaccharides [27]. Further limiting
vaccination after birth, plasma cells show low induction
and less migration to the bone marrow, which contributes
to limited humoral response and rapid decline of vaccine
antibodies [28, 29, 39].

4. Vaccination

The introduction of a combined diphtheria/tetanus/whole
cell pertussis vaccine (DTwP) in the 1940s and 1990s has
been effective in the large decrease in pertussis morbidity
and mortality in young children. Between 1999 and 2014,
the World Health Organization (WHO) records suggest that
more than 100,000 infant deaths could have been prevented
mainly by increased coverage of pertussis vaccination [40].

The appearance of adverse reactions such as convulsions
and encephalopathies [41] led the development of an acellu-
lar pertussis vaccine (aP) based on purified B. pertussis anti-
gens, which were less reactogenic than the whole-cell
vaccine [42, 43].

Acellular vaccines are presented in two formulations:
DTaP, for vaccination of children, and Tdap, for vaccination
of adults, with higher or lower concentrations of diphtheria
toxoid and pertussis antigens [44]. For the immunization of
individuals older than 7 months of age, Tdap is recom-
mended rather than DTaP due to adverse reactions increas-
ing with age and number of doses [45]. Many countries
replaced DTwP for acellular vaccines, but countries such as
Brazil and Argentina still use the whole-cell formulation
since acellular formulations have a much higher cost [45].

Despite the differences between adult and children
immune systems, it is known that DTwP in children can
prime their immune system for a Th1 response, while acellu-
lar vaccines induce a mixed Th1/Th2 response, with produc-
tion of both IFN-γ and IL-4 [46, 47]. There are studies
showing that children vaccinated with DTaP in the first year
of life produced more IFN-γ than IL-5 [47, 48]. However, this
relationship shifted after boost doses [47] or natural asymp-
tomatic infections [4].

Regarding antibodies, primary immunization of children
with DTwP showed induction of specific anti-PT, anti-FHA,
and anti-pertactin IgG, since the first dose at 2 months of age
and lasting until 2 years of age [49] or longer [50, 51].
Anti-PT IgG was also positively correlated with protection
of children after aP administration [52].

The WHO recommends the administration of three
doses in the first year of life to decrease the incidence of per-
tussis. Vaccination is recommended at six weeks of age with
the other two doses administered at 4- and 8-week intervals,
respectively, until the child’s sixth month of life [45].

The organization states that both cellular and acellular
vaccines are safe and effective in disease prevention in the
first year of life [45]. However, it recommends that low-
and middle-income countries that use DTwP should not
replace the vaccine since the whole-cell formulation is
low-cost (US$ 0.38 per DTwP dose compared with US$
9.15 per DTaP dose) and highly effective, without directly
related, important adverse events reported [53, 54].

Nevertheless, data from mathematical modelling [55]
and baboon experiments [56] show that even though the
acellular vaccine is capable of preventing serious symptoms,
it does not prevent bacterial colonization. Since DTwP con-
sists of whole bacteria, this vaccine elicits antibodies and
cytokines against a wider range of antigens, which may affect
attachment to the respiratory tract and bacterial opsoniza-
tion [57]. Therefore, despite vaccination, animals and people
could still transmit the bacteria. This could be a possible
explanation for the pathogen permanence in aP-vaccinated
countries, as well as occasional mutations that can lead to
immune response evasion by the bacteria [58].

It is well known that immunity after natural infection is
not permanent, decaying after 4-20 years after infection
[59]. Therefore, immunity after vaccination is also not long
lasting, but immunity after DTwP lasts from 4 to 12 years,
and immunity after aP lasts an even shorter period, even after
booster doses [53, 59–61].

Thus, the WHO alerts to the possibility of pertussis
reemergence, especially in countries using aP vaccines alone.
The WHO suggests the use of booster doses at two years of
age, during pregnancy and in people directly in touch with
young children to avoid serious pertussis cases in at-risk
groups [62], as newborn and infants are the most susceptible
groups to disease [45] and infection in these groups results in
a higher lethality rate [63]. The main contagious sources are
siblings and parents [64–66], and countries such as Australia,
Germany, and the US recommend booster doses in these
groups [67].

The vaccination scheme against pertussis needs to
undergo a reevaluation, especially since there has been a
resurgence of this disease. Recent vaccine candidate studies
explored live-attenuated formulations that cause lower
adverse reactions than DTwP and include possible mutations
of the wild-type bacteria with the goal of also reducing trans-
mission of the pathogen [68–70]. One example is a whole-cell
vaccine produced with lower endotoxin levels developed by
the Butantan Institute, Brazil, aimed at reducing severe reac-
togenicity caused by the bacteria’s lipooligosaccharide [70].

Nevertheless, while new vaccines were in trials, differ-
ent vaccination strategies were implemented, such as neo-
natal immunization (from birth to 1 month of age),
cocooning, postpartum vaccination, and maternal immuni-
zation, to increase protection levels and prevent further
pertussis cases [71, 72].

5. Prevention Strategies

5.1. Vaccination at Birth. The viability of immunizing chil-
dren soon after birth with DTwP has been studied for more
than 40 years but has been discontinued because it results
in immunological tolerance, where the levels of antibodies
to B. pertussis antigens are reduced compared to those in
children who were vaccinated later [73].

However, while aP vaccination in neonate mice induced
low antibody responses [74], recent studies show that acellu-
lar vaccine after birth can elicit specific antibody responses
during the neonate phase [72, 75]. Supporting the results
found in humans, the study conducted by Warfel and
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coworkers [76] using a baboon model showed protection of
newborns against pathogen challenge.

5.2. Cocooning. Cocooning has been recommended since the
early 2000s in the US, France, Australia, and Germany to pre-
vent pertussis in newborns [45, 77, 78]. This strategy consists
of vaccinating all the close relatives when a child is born [79];
this population should receive Tdap at least two weeks before
initiating close contact with the child [80]. Cocooning is
mainly directed to reduce disease-associated morbidity and
transmission to young, unvaccinated children [81]. Recently,
cocooning was recommended in Latin America in Brazil,
Chile, and Costa Rica [45]. In Chile, in 2012-2013, it is esti-
mated that 84% of potential pertussis deaths in infants were
prevented [82], but in other countries around the world, cur-
rent data found a minor or no impact of this approach [83].
Therefore, the efficacy of cocooning is limited because the
child has no specific protection, and the approach demands
the vaccination of several adults, making cocooning both
costly and difficult to implement [79]. Cocooning is, how-
ever, still practiced and studied in several countries (reviewed
by Forsyth et al. [84]).

5.3. Postpartum Vaccination. In countries such as Brazil and
the US, postpartum vaccination or partial cocooning is rec-
ommended as early as possible for women not vaccinated
during pregnancy to prevent the mother from transmitting
pertussis to the newborn [85, 86], but this strategy is not ideal
because it offers protection only to the mother. After vaccina-
tion, it takes two weeks to generate a maximal immune
response to the vaccine antigens, during which time the
mother is vulnerable to contracting and disseminating the
disease to the child [86]. It is possible that the postpartum
immunization of mothers can be administered too late to
protect newborns if the mother is already infected during
childbirth or is exposed to pertussis soon after [87].

5.4. Maternal Immunization. The most recent strategy is
aimed at inducing higher anti-pertussis antibody levels in
pregnant women and higher placental transfer rates to the
foetus [77], since pertussis has no protection conferred by
natural maternal antibodies (MatAbs) [88], and children
are most vulnerable to infection during the first months of
life because they are not fully vaccinated [77].

Countries such as the US, UK, and Australia have rec-
ommended maternal immunization since 2012 for both
the protection of children and mothers [89]. Efficacy and
security studies have been published in these countries,
indicating decreased hospitalization and disease severity
[90–94]. In Brazil, the incidence dropped from 4.2/100,000
to 0.9/100,000 cases/inhabitants after introduction of the
vaccine [95].

Maternal antibodies are transferred especially during the
third trimester of pregnancy, with a half-life in the newborn
of approximately six weeks [13]. Before the 16th gestational
week (GW), fetal IgG serum levels correspond to 8% of the
maternal levels, but the fetal levels increase until they reach
maternal levels at 26 GW, especially for IgG1. Neonates reach
adult levels of self-produced IgG at 3 years of age [96].

Several studies estimated the best period for vaccination,
which was found to be between 27 and 31 weeks of gestation
[97–99] when anti-PT IgG has higher affinity. However,
other studies show that earlier immunization promotes
higher antibody transference to the newborn, most likely
due to a cumulative effect, which can be especially important
regarding preterm neonate protection [100, 101].

In the US, vaccination is still recommended at the 27th
GW and onwards [102]. However, in the UK, women are
vaccinated starting in the 16th GW [103], and in Brazil,
even though the vaccine was initially administered from
the 27th to the 36th GWs, initial administration recently
changed to start at the 20th GW to reach a higher number
of women [104], and this timing has been proven to be
cost-effective [105].

However, since the 1950s, it is known that maternal
antibodies can interfere in the child’s own immune response
to vaccination [106]. There are many studies on this
subject, especially in vaccination models of tetanus and
measles [107–110].

The interval between immunization and birth can deter-
mine the behaviour of antibodies when they contact vaccine
antigens in infancy; this behaviour may depend on the vac-
cine formulation (acellular or whole-cell vaccine) given to
the child [27, 107].

High antibody concentrations can suppress the child’s
immune response by not completely elucidated mechanisms.
The most accepted theories state that maternal antibodies
can form immune complexes with vaccine antigens, either
inhibiting neonatal B lymphocyte activation or eliminating
the antigen via antibody-dependent phagocytosis, and can
mask antigenic epitopes, preventing antigens from bonding
with neonatal B lymphocytes [27, 110]. However, this lack
of B-cell stimulation may be compensated by the noninter-
ference in the induction of the T-cell response in the neonate;
the complexes formed by MatAbs and bacterial peptides are
captured by phagocytes and presented to naïve T cells, allow-
ing them to be activated and to differentiate [33].

Recent humoral studies show lower antibody levels in
children born from vaccinated mothers [111, 112], but pre-
liminary studies show that the T cell remains unchanged
(Argondizo et al., unpublished data); however, larger and
more representative studies must be developed to evaluate
possible interactions.

6. Discussion and Conclusion

Globally, pertussis reemergence is a challenge in developed
and developing countries, with high morbidity and mortality
rates in young children [71]. Several strategies (reviewed in
Table 1) have been recommended to compensate for incom-
plete immunization until the sixth month of age [45], but
during the first year of life, children are exposed to an envi-
ronment full of antigenic stimuli and are highly susceptible
to infections.

Even though children ultimately develop an immune
system that is able to respond to infection, there is a need
to initially balance between hypoinflammation and hyper-
inflammation once the transition from the partially sterile
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placental environment to the external environment is com-
plete [25]. As pathogen recognition is mediated by the same
receptors that recognize commensal organisms that colonize
the neonate from birth, these receptors must be regulated
to avoid harmful inflammation [25]. Therefore, neonates’
immune responses are usually lower and less effective
when compared to those in adults. Regular pertussis vacci-
nation in early life can induce protection, but protection
only starts at 2 months of age [113]. Some studies have
shown that newborn vaccination is well tolerated [73, 114],
but there is no direct evidence currently available, and it
remains controversial whether newborn vaccination can
interfere with future vaccinations.

Vaccinating mothers just after labour and/or close
relatives in the cocooning strategy can prevent disease
spread, but there are difficulties for large-scale implementa-
tion of these approaches because they are costly and require
vaccination of multiple people in addition to leaving the chil-
dren born with no specific protection [79].

Maternal vaccination, on the other hand, provides pro-
tection for both the mother and the newborn, and a study
on the safety and immunogenicity of vaccination in the third
trimester of pregnancy revealed that babies born to vacci-
nated mothers have higher concentrations of antibodies
against pertussis at birth and at two months of age compared
to babies born to postpartum, immunized mothers [115].
Nevertheless, maternal antibodies can have inhibitory effects
on the child’s immune response, and these effects should be
further investigated [110].

Despite all existing strategies, no vaccine prevents the
silent transmission of the pathogen, so new formulations
are needed. Several options are being explored and have
shown promise in preclinical studies in the search for new
and more efficient live-attenuated vaccines against pertussis
[116]. Some of these formulations are based on increasing
knowledge that has been accumulated in recent years about
immunity against B. pertussis, mainly regarding the role of
Th1 and Th17 cells in addition to antibodies [68].

Overall, advances in knowledge regarding neonatal
immunity and pertussis immunopathogenesis support that
vaccination is the best strategy to fight pertussis, and stud-
ies concerning different vaccination periods have supported
the development of more effective vaccines and strategies
to overcome high susceptibility and severity of pertussis
in early life.
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