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A B S T R A C T   

Seed freezing damage is an agricultural disaster. To explore how frostbite affects the growth and development of 
corn seeds, the germination conditions, and the biological indicators including the activities of related enzymes 
(SOD, POD, CAT, and AMS) of different frozen corn seeds (normal, − 10 ◦C,10 h, and − 20 ◦C,10 h) were 
measured. The texture of seed coat and the cell structure of seed embryo were observed by scanning electron 
microscope and transmission electron microscope respectively. The texture and cell structural changes reflect the 
influence of frostbite on corn seeds. To propose a quick, accurate and non-destructive method to identify the 
freezing-damaged corn seeds, near-infrared spectroscopy was used the identify the different frozen corn seeds. 
Different pretreatments, feature extraction methods and modeling methods were applied, result showed that in 
the case of standard normal variation pretreatment combined with principal component analysis feature 
extraction method and K-nearest neighbor model, 99.4 % and 100 % classification results of the training set and 
testing set were obtained respectively.   

1. Introduction 

As one of the three major food crops, corn (Zea mays L.) is widely 
used in the food and feeding field (Ambrose, Kandpal, Kim, Lee, & Cho, 
2016). China, as the world’s second-largest corn producing and 
consuming country, the yield of corn seeds in 2020 is 26.067 billion kg 
(stats.gov.cn, 2021). China’s Hexi Corridor area (including Gansu 
Province and other regions) is the main seed production base for corn, 
which bears more than 70 % of the country’s seed production needs 
(Zhang, Dai, & Cheng, 2019). As we all know, the quality of seeds has a 
great relationship with whether the seeds can grow normally and obtain 
high yields. However, due to the geographical location, the weather in 
these production areas is relatively cold at harvest time (October or 
November), and sometimes frost occurs, causing a great impact on the 
seed growth process. Thus, seed freezing damage is an agricultural 
disaster (Akinyosoye, Adetumbi, Amusa, Olowolafe, & Olasoji, 2014; 
Zhang, et al., 2019; Zhang, Dai, & Cheng, 2021a). 

Regarding the research on corn seed freezing damage, related 
scholars have studied the effects of corn seed maturity, moisture con-
tent, freezing temperature and duration on seed germination (DeVries, 
Goggi, & Moore, 2007; Woltz, Egli, & TeKrony, 2005; Woltz, TeKrony, & 
Egli, 2006). Woltz et al. (2006) reported that when the most immature 

seeds frozen with the seed moisture content (SMC) of 40 %, severe re-
ductions in seed germination and vigor occurred. The effect was reduced 
as seed developed for all hybrids when the SMC is less than 30 % (Woltz, 
et al., 2006). Woltz et al. (2005) studied the freezing point temperature 
harvested at various stages of development of corn seeds (seed, embryo, 
and endosperm tissue). As seeds matured with the SMC less than 40 %, 
the embryo tissue had higher freezing at warmer temperatures (− 4.5 ◦C) 
than the endosperm (− 9.2 ◦C) (Woltz, et al., 2005). 

After the freezing damage occurs, the viability of the seeds will 
reduce. At present, the traditional method of determining seed viability 
still relies on manual testing, and the test is a professional and 
destructive work (Akinyosoye, et al., 2014). Thus, it is necessary to 
propose a quick, accurate and non-destructive method to identify the 
freezing-damaged corn seeds. 

Near infrared spectroscopy (NIRS) technology is a rapid nonde-
structive testing technology, and it has many applications in the detec-
tion of corn seeds (Armstrong, 2007; Da Conceição, et al., 2021; Gustin, 
et al., 2013; Lin, Yu, Li, & Qin, 2018; Qiao, et al., 2022), such as the 
variety classification (Cui, et al., 2018; Yang, Hong, You, & Cheng, 2015; 
Zhang, Dai, & Cheng, 2021b), viability (Qiu, et al., 2018), the internal 
constituents (Egesel, Kahrıman, Ekinci, Kavdır, & Büyükcan, 2016; 
Zhong & Qin, 2016). There are also researches using spectral technology 
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combined with different algorithms to realize the classification of 
different frozen corn seeds. Jia et al. (2016) used NIRS and chemo-
metrics to study the feasibility of analyzing frost-damaged and non- 
viable maize seeds. The model obtained the highest average accuracy 
of 97 % (Jia, et al., 2016). Zhang et al. used hyperspectral imaging 
technology combined with different algorithms to realize the classifi-
cation of different freezing-damaged corn seeds. The conductivity of 
corn seeds in three different conditions was measured. Results showed 
that the established model can obtain the classification accuracy of more 
than 90 % (Zhang, et al., 2019). In 2021, Zhang et al. combined 
hyperspectral imaging technology with deep learning method to identify 
the freezing-damaged corn seeds. Results showed that deep convolu-
tional neural network model has the most satisfactory result for four and 
five category classification (Zhang, et al., 2021a). 

The current studies have explored the influencing factors of seed 
frostbite, realizing the classification of freezing-damaged corn seeds, 
and achieving good classification results. However, it is not clear how 
frostbite affects the growth and development of corn seeds, how frost-
bite affects different parts of the corn seeds, the research on the micro- 
observation of corn seeds after frostbite are worth exploring. When the 
seed suffered from frost, there may be some changes in the surface of the 
seed coat, and the embryo that grows into a seedling will have the 
greatest impact. Therefore, the research objectives of this study were to: 
Explore how frostbite affects the growth and development of corn seeds 
by determining the germination rate, antioxidant enzyme activity and 
other physical and chemical indicators of the seeds under different 
frostbite environments; Observe the changes of seed coat by scanning 
electron microscope (SEM), and observe changes in the cell structure of 
embryos by transmission electron microscope (TEM), to explain the 
micro-mechanism of seed frostbite based on these changes; Collect the 
near-infrared spectroscopy data of the corn seeds, to achieve a 
wonderful classification performance. 

2. Materials and methods 

2.1. Samples 

The fresh corn seeds (Weike702) were collected from the Gansu 
Dunhuang Seed Group Co., ltd. (Jiuquan, Gansu Province, China) with 
the temperature of about 13 ◦C, and an original moisture content of 
about 28 % (wet basis) in October 2020. The seeds were placed in a 
constant temperature refrigerator (Shanghai Lanhao Instrument 
&Equipment CO.,ltd, Shanghai, China) with the freezing temperatures 
of − 10 ◦C and − 20 ◦C for 10 h to obtain different freezing-damaged corn 
seeds (Zhang, et al., 2021a; Zheng, 2010). Then, the seeds were stored at 
room temperature and the seed moisture content was naturally dropped 
to about 13 % (wet basis) for germination tests, enzyme activity test, 
SEM and TEM observation and near infrared spectra data acquisition. 
Thus, there is no effect of drying method on the microstructure. The 
moisture content test was conducted according to the China standard 
GB/T3543.6–1995. 

2.2. Germination test 

The germination test was conducted according to the China standard 
GB/T3543.4–1995. Fifty intact corn seeds of each treatment were 
selected and soaked for 12 h, then the seeds were placed in an artificial 
climate incubator (Ningbo Jiangnan Instrument Factory, Ningbo, China) 
with the temperature of 25 ◦C, and the relative humidity of 75 %. The 
germination rate of the corn seeds in Day 4 and Day 7 were calculated 
according to equation (1):  

GR = 100 % × GN / TN                                                                  (1) 

where GR is the germination rate of the corn seeds; GN is the number of 
germinated seeds; TN is the total of the corn seeds. 

2.3. Biological indicators 

The activities of the indicators including superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT), α-amylase (AMS) were 
determined using commercially available assay kits (A001-1 for SOD, 
A084-3–1 for POD, A007-1 for CAT, C016-1–1 for AMS; Nanjing Jian-
cheng Bioengineering Institute, Jiangsu, China) following the manu-
facturer’s instructions (Lin, et al., 2020). The optical density (OD) values 
of each reaction mixture were measured by Ultraviolet and Visible 
Spectrophotometer (UV-2000, UNICO (Shanghai) Instrument Co., ltd., 
China). 

SOD activity was obtained by measuring the change of absorbance at 
550 nm. One unit of SOD activity was defined as the amount of enzyme 
required to cause 50 % SOD inhibition per mg of protein in 1 ml of the 
reaction solution (Li, et al., 2013). 

POD activity was obtained by measuring the change of absorbance at 
420 nm. One unit of POD activity was defined as the amount of enzyme 
that catalyzes 1 μg of substrate per minute per mg protein (Li, et al., 
2013). 

CAT activity was obtained by measuring the change of absorbance at 
405 nm. One unit of CAT activity was defined as the amount of 
decomposed 1 µmol of H2O2 per second per mg protein (Li, et al., 2013). 

AMS activity was obtained by measuring the change of absorbance at 
660 nm. One unit of AMS activity was defined as: each mg of protein in 
the tissue reacted with the substrate for 30 min, and hydrolyzed 10 mg of 
starch (Rajput, et al., 2013). 

2.4. SEM and TEM observation 

The sample preparation was under the guidance of Bio-ultrastructure 
analysis Laboratory of Analysis center of Agrobiology and environ-
mental sciences, Zhejiang University. The seed coats in the central em-
bryo part of each treatment were selected for SEM observation. The seed 
embryos of each treatment were selected for TEM observation. In order 
to better understand the effect of freezing damage on the seed coat and 
seed embryo cells, a series of pre-observation processing steps were 
conducted on the selected samples to be suitable for observing the 
relevant microscopic changes (Liu, et al., 2022; Lu, et al., 2019). 

Seed coat samples were fixed overnight at 4 ◦C in 0.1 M PBS buffer 
containing 2.5 % glutaraldehyde (v/v) and postfixed in 1 % OsO4 in the 
same buffer for 2 h. The samples were then dehydrated through a graded 
ethanol series [30, 50, 70, 80, 90 and 95 % (v/v in ddH2O); 15 min at 
each concentration] followed by a 100 % ethanol for 20 min. After 
dehydration, the samples were dried and sprayed with gold to enhance 
the conductivity of the sample surface. the micro-morphology of the 
seed coats was observed with an accelerating voltage of 30 kV using the 
scanning electron microscopy (Hitachi SU-8010, Hitachi, Japan). 

Seed embryo samples were firstly soaked in a 4 % paraformaldehyde 
(v/v) for 30 min, and then fixed overnight at 4 ◦C in 0.1 M PBS buffer 
containing 5 % glutaraldehyde, 1 % Triton X-100 (v/v) and post-fixed in 
1 % OsO4 in the same buffer for 2 h. The samples were then dehydrated 
through a graded ethanol series [30, 50, 70 and 80 % (v/v in ddH2O); 15 
min at each concentration] followed by a graded acetone series [90 and 
95 % (v/v in ethanol); 15 min at each concentration], and followed by 
Spurr resin:acetone series (1:1 and 3:1; 1 h and 3 h at each concentra-
tion) and embedded in 100 % Spurr resin. The sections (60–80 nm) of 
the samples were obtained with an ultramicrotome and stained after 
heating at 75. The cell structure of the embryo was observed using the 
transmission electron microscopy (Hitachi H-7650, Hitachi, Japan). 

2.6. Near infrared spectra data acquisition and processing 

2.6.1. Data acquisition 
In this study, N-500 Fourier Transform Near-Infrared Spectrometer 

System (BUCHI Labortechnik AG, Switzerland) was used to collect the 
near-infrared spectroscopy data. The software NIRWare was used to set 
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the collecting parameters. The full wavenumber range of the collected 
spectra was 4000–10000 cm− 1, and the collecting interval was 4 cm− 1, 
the scanning times was set to 16, a total of 1501 points were collected, 
and the averaging times of the spectra was set to 3. 30 corn seeds (about 
10.70 g) of each frozen condition were placed in a cuvette at a time, and 
then, the XL accessory of the solid sample cell was used to collect an 
averaged near-infrared spectral data in the diffuse reflection mode. In 
this process, 90 spectral data of each treatment were collected respec-
tively for classification, and a total of 270 spectral data were obtained. 
The data set was randomly divided according to the ratio of training set 
and testing set 2:1 for modeling and verification. There was no differ-
ence between them. In the end, the number of samples for training set 
was 180, and the number of samples for testing set was 90. 

2.6.2. Data processing 

2.6.2.1. Spectral pretreatment methods. To obtain reliable, accurate and 
stable calibration models, the use of spectral pretreatment methods is 
needed. The pretreatments have many advantages, such as removing the 
scatter effect eliminating spectral errors, improving the signal-to-noise 
ratio. Different pretreatments can bring different effect. In this study, 
no pretreatment (none), standard normal variation (SNV) and five 
points and three times smoothing (5–3 smoothing) pretreatment 
methods were applied (Chen, Song, Tang, Feng, & Lin, 2013; Liu, Sun, & 
Zeng, 2014). The spectra were preprocessed by MATLAB R2019b (The 
MathWorks, Natick, MA, USA). 

2.6.2.2. Feature extraction method. NIR spectroscopy provides complex 
structural information. When using the full wavenumber for analysis, 
problems of data redundancy and long calculation time may arise. In 
order to improve the efficiency, it is necessary to use the feature 
extraction method. In this study, the successive projection algorithm 
(SPA), and principal component analysis (PCA) were applied to obtain 
important wavenumbers (Candolfi, De Maesschalck, Jouan-Rimbaud, 
Hailey, & Massart, 1999; Soares, Gomes, Araujo, Filho, & Galvão, 
2013; Wold, Esbensen, & Geladi, 1987). The feature wavenumbers were 
extracted by MATLAB R2019b (The MathWorks, Natick, MA, USA). 

2.6.2.3. The classification methods. In traditional spectral data analysis, 
some pattern recognition methods such as K-nearest neighbor (KNN), 

support vector machine (SVM) et al. are widely used in data classifica-
tion. In this study, KNN and SVM models were established for classifi-
cation of different freezing-damaged corn seeds (Burges, 1998; 
Mavroforakis & Theodoridis, 2006; Riba Ruiz, Canals, & Cantero 
Gomez, 2012). The data were classified by MATLAB R2019b (The 
MathWorks, Natick, MA, USA). 

2.6.2.3. The evaluation index of the results. To evaluate the classification 
performance of the models, the accuracy is applied to evaluate the 
model performance according to equation (2). It refers to the ratio of the 
number of correctly classified samples to the total number of all samples. 
In addition, the confusion matrix of the optimal results is also generated 
for analysis (de Sousa Fernandes, et al., 2019; Santos, Morais, Nasci-
mento, Araujo, & Lima, 2017). The confusion matrix is a way for ac-
curacy evaluation. After the samples are classified, we can clearly see the 
classification results of each category samples and the number of sam-
ples classified into each category in the form of confusion matrix.  

Accuracy = 100 % × A / T                                                               (2) 

A refers to the number of samples that are correctly classified; T 
refers to the number of samples used for classification. 

2.7. Statistical analysis 

In this paper, variance analysis (ANOVA) and the significance anal-
ysis was applied to analyze the data by Duncan’s multiple range tests. 
Statistical analysis was performed by the software Statistical Package for 
Social Sciences (SPSS for Windows, SPSS Inc., Chicago, IL, USA). Data 
were presented as means ± standard deviation and a probability value 
of P less than 0.05 was considered significant. 

3. Results and discussions 

3.1. Germination 

The germination results of the corn seeds on Day 4 and Day 7 of each 
treatment are shown in Table A.1. It can be seen that the deeper the 
degree of frostbite, the lower the germination rate of corn seeds. After 
four days of germination and cultivation, most of the seeds can germi-
nate under normal conditions. On day 7, the germination of seeds in 

Fig. 1. The growth and development of the seeds on Day 7 under each treatment.  
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each treatment has increased, and the germination rate of normal seeds 
is the highest, reaching 88 %. The germination rate of seeds under 
− 10 ◦C,10 h and − 20 ◦C,10 h frozen conditions are 42 % and 10 % 
respectively. 

Fig. 1 shows the growth and development of the seeds on day 7 under 
three treatments, and three representative seeds were selected from each 
treatment for comparison. It can be seen from the figure that the 
germination condition of the seeds under normal treatment is better 
than the other two conditions. Under normal treatment, most of the corn 
seeds grow leaves, and the length of the main root is the longest, and the 
number of roots is the largest; As for the corn seeds in the case of 
− 10 ◦C,10 h, a few of corn seeds grow leaves, and the length of the main 
root is short, with only 2–4 roots growing. As for the corn seeds in the 
case of − 20 ◦C,10 h, the length of the buds is very short, with no leaves 
growing and the root length is very short. Due to the influence of low 
temperature, it has a serious impact on the embryo of the seed, resulting 
in the corn seeds cannot normally grow into seedlings in the later period. 

3.2. Biological indicators 

Table A.2 and Fig. 2 show the enzyme activity results of SOD, POD, 
CAT and AMS. According to the results, it can be seen that the activity 
results of SOD, CAT and AMS are the lowest under normal conditions, 
with the activity of 981.492 U/g, 19.507 U/g, and 1.310 U/g respec-
tively; The activity changes of SOD, POD and AMS showed a trend of 
first increasing and then decreasing, reaching the maximum at − 10 ◦C, 
10 h, which were 1358.467 U/g, 57.407 U/g, and 2.466 U/g, respec-
tively; The activity of CAT showed a gradually increasing trend, reach-
ing the maximum at − 20℃,10 h, with the activity of 41.474 U/g; 
Although the change of POD activity showed a trend of increasing first 
and then decreasing, a relatively low activity was obtained at − 20 ◦C for 
10 h. It can be seen that the activity of POD under two freezing condi-
tions (− 10 ◦C,10 h and − 20 ◦C,10 h) is not significantly different from 
that under normal conditions (P greater than 0.05). The activities of 

other enzymes showed high significance (P less than 0.05). 
SOD, POD and CAT are major antioxidant enzymes in plants, which 

could remove excess free radicals in plants, effectively inhibit the 
damage of reactive oxygen-free radicals to the matrix, and thus improve 
resistance in plants towards stress resistance. Under low temperature 
stress, the reactive oxygen species scavenging system in maize is 
changed, which destroys the balance between reactive oxygen species 
production and scavenging, which adversely affects the growth and 
development of maize (Nan, 2010). The increase of SOD, POD and CAT 
activity can scavenge active oxygen free radicals to protect seed cells 
from active oxygen damage, and ultimately maintain the stability of the 
membrane system to enhance the ability to resist freezing damage (Nan, 
2010). 

From the results, it can be seen that SOD and POD increased till 
− 10 ◦C, then decreased at − 20 ◦C. As the first line of defense in the 
antioxidant system, the main function of SOD is to convert two O2

– 

radicals into H2O2 and O2 (Sun, Zhou, Sun, & Jin, 2007). POD is the 
main H2O2 scavenging enzyme to remove the reactive oxygen species. 
However, with the deepening of low temperature, especially under the 
frozen condition of 20 ◦C for 10 h, the stress damage continued to 
accumulate, and the metabolism of corn seed may be further deregu-
lated (Nan, 2010). The amount of reactive oxygen species produced is 
less increased, resulting in the activity of SOD and POD may be 
decreased to an extent. The main function of CAT is to reduce the con-
tent of H2O2, which is mainly achieved by decomposing H2O2 into H2O 
and O2 (Gratão, Polle, Lea, & Azevedo, 2005). There are many ways that 
lead to the produce of H2O2, resulting in the activity of CAT increased 
even at − 20 ◦C. Therefore, it is proved that the various enzymes pro-
tecting the enzyme system in the process of plant anti-low temperature 
work in coordination with each other, rather than relying only on the 
activity change of a certain enzyme. The increase in AMS activity can 
regulate cell permeability to resist low temperature stress. But why the 
enzyme activity becomes smaller at − 20 ◦C, this may be related to the 
severely damaged in the cell structure, resulting in the enzyme activity 

Fig. 2. The changing trend of the enzyme activity of (a) SOD, (b) POD, (c) CAT and (d) AMS under each treatment.  
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may also be affected to some extent. 

3.4. SEM observation of seed coat 

The SEM images of the seed coat under each treatment are shown in 
Fig. 3(a-f). From the observation (Fig. 3a&d), we can see that the surface 
texture of the seed coat of the normal corn seeds is neat. As for the seed 
coat with the frozen condition of − 10 ◦C for 10 h (Fig. 3b&e), the surface 
texture appears occasionally disorderly changes. In the SEM image of the 
seed coat, 15–35 % of the two/multiple textures are connected to each 
other, and 10–30 % of the seed coat tissues are uneven. As for the seed 
coat with the frozen condition of − 20 ◦C for 10 h (Fig. 3c&f), extremely 
disordered changes in surface texture of corn seed coat. More than 70 % 
of the texture changes in the seed coat SEM image, not only did more 
than 30 % of the texture overlap and the unevenness of the seed coat 
tissue appeared, but also more than 50 % of the texture was unclear and 
disappeared, and the spacing between two/multiple textures was 
irregular. 

From the results of SEM images, we can know that frostbite has an 
effect on the surface texture of seed coat. With the deepening of the 
degree of freezing injury, the seed coat is uneven, the parallelism among 
the textures is reduced, and the fractures appeared. For the seed coat 
with the frozen condition of − 20 ◦C for 10 h, more than 70 % of texture 
change. 

3.5. TEM observation of embryo 

The TEM images of seed embryo cell under each treatment are shown 
in Fig. 4(a-i). From the observation (Fig. 4a&d), we can see that the 
structure of cell membrane, cell wall and cell nucleus of normal seed 
embryo is intact. As for the seed embryo with the frozen condition of 
− 10 ◦C for 10 h, the cell structure is partially ruptured (Fig. 4b&e&h): 
Part of the cell membrane and cell wall have plasmic wall separation, or 
the definition of the contour between the cell tissue and the cell wall is 
reduced (Fig. 4b), or the phospholipid molecules in the cell are arranged 
more spaced, causing 15–30 % of the number to be missing (Fig. 4h), 
and only 70 %- 85 % of the integrity structure of the nucleus remains 

(Fig. 4e). The changes are mainly reflected in the distortion of the nu-
clear membrane part of the nucleus, and a 10–30 % reduction in the 
content of nucleus. As for the seed embryo with the frozen condition of 
− 20 ◦C for 10 h, most of the cell structure is broken or cracked 
(Fig. 4c&f&i): The cell membrane and the cell wall structure are severely 
separated, the contour between the cell tissue and the cell wall is blurred 
(Fig. 4c), or more than 70 % of the phospholipid molecules in the cell are 
missing (Fig. 4i), and the integrity of the nucleus is less than 30 %, the 
nuclear membrane disappears and more than 70 % of the nucleus is 
cracked (Fig. 4f). 

Through the results of the TEM images, we can know that frostbite 
has a great influence on the cell structure of seed embryos. The lower the 
freezing temperature, the more severe the influence on the integrity of 
the cell structure, the more serious the separation of the cytoplasmic 
wall, the worse the integrity of the cells and the nucleus. For the seed 
embryo with the frozen condition of − 20 ◦C for 10 h, the nuclear 
membrane disappears and more than 70 % of the nucleus is cracked. 
When the frozen seed is planted, the seed embryo cells cannot absorb 
nutrients like normal seed cells, so that the seeds cannot grow normally. 

The SEM and TEM results obtained in this study are similar to the 
study by Zheng (2010), which show that slight freezing damage will not 
cause obvious changes in the appearance of corn seeds. When the water 
content of the seed is above 20 %, lower temperature will lead to the 
separation of the pericarp of the seed embryo. Low temperature freezing 
damage destroyed the normal structure of maize scutellum cells. The 
osmotic regulation function of the cytoplasmic membrane is unbal-
anced, part of the cytosol is filled between the cell membrane and the 
cell wall, and the ridge structure inside the mitochondria is blurred. 
With the lower of the temperature, the cytoplasmic membrane is 
damaged, the osmotic regulation function is lost, and a large amount of 
cytosol is filled between the cell membrane and the cell wall, and some 
organelle remnants penetrate into the intercellular space. From the 
study of DeVries et al. (2007), freezing damage of plants is caused by ice 
crystals formed at low temperature causing damage to cells, and inter-
cellular freezing causes severe dehydration of plant protoplasm, protein 
denaturation or irreversible gelation of protoplasm. If the temperature 
of frozen plants suddenly rises, the ice crystals will melt rapidly, and the 

Fig. 3. The SEM images of the seed coat under each treatment. (a) the seed coat of normal seeds (×30); (b) the seed coat of seeds with − 10 ◦C for 10 h (×30); (c) the 
seed coat of seeds with − 20 ◦C for 10 h (×30); (d) the seed coat of normal seeds (×300); (e) the seed coat of seeds with − 10 ◦C for 10 h (×300); (f) the seed coat of 
seeds with − 20 ◦C for 10 h (×300). 
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protoplasm will be torn and damaged before it can absorb water. The 
intracellular freezing will damage the plasma membrane, organelles and 
the entire cell, causing fatal damage to the plant. The damage caused by 
these physical changes, chemical changes, physiological changes and 
mechanical stress inside seeds is irreversible. This may be one of the 
reasons for the decrease in germination rate of corn seeds after freezing 
damage (DeVries et al., 2007). 

3.6. Results of data processing 

3.6.1. Raw and pretreated spectra 
Fig. B.1 shows the average spectra of the corn seeds in the wave-

number range of 400–10000 cm− 1 under three different conditions with 
none, SNV and 5–3 smoothing pretreatments. From Fig. B.1, it can be 
seen that the corresponding spectral curve of each freezing condition at 

Fig. 4. The TEM images of seed embryo cell under each treatment. (a) the cell structure of normal seeds (×5000); (b) the cell structure of seeds with − 10 ◦C for 10 h 
(×5000); (c) the cell structure of seeds with − 20 ◦C for 10 h (×6000); (d) the cell nuclear structure of normal seeds (×15000); (e) the cell nuclear structure of seeds 
with − 10 ◦C for 10 h (×15000); (f) the cell nuclear structure of seeds with − 20 ◦C for 10 h (×25000); (g) the phospholipid molecules of normal seeds (×70000); (h) 
the phospholipid molecules of seeds with − 10 ◦C for 10 h (×60000); (i) the phospholipid molecules of seeds with − 20 ◦C for 10 h (×70000). 

Fig. B1. The average spectra of the corn seeds in the wavenumber range of 400–10000 cm− 1 under each treatment with (a) none, (b) SNV and (c) 5–3 smoothing 
pretreatments. 
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none and 5–3 smoothing pretreatments are extremely similar, the 
spectral curves of the three freezing conditions under SNV pretreatment 
are almost overlapped, which may be because the principles of data 
preprocessing are different. The spectral value at normal condition 
(category 1) under none and 5–3 smoothing pretreatments in the range 
of 5200–10000 cm− 1 is higher than the values at the other two condi-
tions. The spectral curves at − 10 ◦C, 10 h (category 2) and − 20 ◦C,10 h 
(category 3) conditions are the closest. As the description of Zhang et al 

in 2021, the reason for this may be the frozen environment. From micro- 
observation results, the cell structure of the seed was changed and the 
chemical component of the seed was also changed. The existence of 
these similarities and differences suggested that different freeze- 
damages corn seeds were possible to be classified using near-infrared 
spectral technology. 

3.6.2. Feature wavenumbers 
The feature wavenumbers extracted by SPA and PCA method are 

shown in Table A.3. It can be seen that less than 15 wavenumbers were 
selected by SPA method from 1501 wavenumbers for classification, only 
12, 9 and 13 feature wavenumbers were obtained under none, SNV and 
5–3 smoothing pretreatments respectively. Less than 30 wavenumbers 
were selected by PCA method from 1501 wavenumbers, only 21, 24 and 
26 feature wavenumbers were obtained by PCA method under none, 
SNV and 5–3 smoothing pretreatments respectively. The number of 
feature wavenumbers is drastically reduced. Fig. B.2 is the position of 
the selected wavenumbers by SPA method, and Fig. B.3 is the first 5 
principal components by PCA method. 

3.6.3. Classification results 
After the feature wavenumbers were selected, the next step was the 

classification of spectral data. Table 1 shows the classification accuracy 
results by KNN and SVM models in both the training and test sets. As 
shown in Table 1, the modeling performance of KNN model is better 
than SVM model. The accuracy results obtained by KNN model are all 
higher than 90 %, while the accuracy results obtained by SVM model are 
all lower than 85 %. The accuracy result has a great relationship with the 
modeling principles of the two modeling methods. 

Compared the accuracy results among these pretreatments, it can be 
seen that the accuracy results obtained under SNV pretreatment are 
higher than those after none and 5–3 smoothing pretreatments, and the 
performance among none and 5–3 smoothing pretreatment is similar. 

Fig. B2. The position of the selected wavenumbers by SPA method with (a) none, (b) SNV and (c) 5–3 smoothing pretreatments.  

Fig. B3. The first 5 principal components by PCA method with (a) none, (b) SNV and (c) 5–3 smoothing pretreatments.  

Table 1 
The classification results of KNN and SVM models.  

Pretreatments Feature extraction 
methods 

Models Training 
set 

Testing 
set 

none Full wavenumber KNN  91.7 % 100 % 
SVM  68.3 % 73.3 % 

SPA KNN  92.8 % 100 % 
SVM  66.1 % 71.1 % 

PCA KNN  95.0 % 100 % 
SVM  67.8 % 76.7 % 

SNV Full wavenumber KNN  96.7 % 100 % 
SVM  80.6 % 82.2 % 

SPA KNN  96.7 % 100 % 
SVM  81.7 % 82.2 % 

PCA KNN  99.4 % 100 % 
SVM  80.0 % 81.1 % 

5–3 smoothing Full wavenumber KNN  92.2 % 100 % 
SVM  68.9 % 73.3 % 

SPA KNN  91.7 % 100 % 
SVM  68.9 % 77.8 % 

PCA KNN  91.7 % 100 % 
SVM  71.1 % 76.7 % 

SNV (standard normal variation) and 5–3 smoothing (five points and three times 
smoothing) are pretreatment methods; SPA (successive projection algorithm) 
and PCA (principal component analysis) are feature extraction methods; KNN 
(K-nearest neighbor) and SVM (support vector machine) are modeling method. 
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The accuracy result obtained under the SNV pretreatment is increased 
by at least 4 % compared with the result obtained under none pre-
treatment, and can be increased by at most 15.6 % in SPA feature 
extraction method and SVM model. In the case of none pretreatment, the 
highest accuracy result is obtained in PCA feature extraction method and 
KNN model with the accuracy of 95.0 % and 100 % for training and 
testing set. In the case of SNV pretreatment, the highest accuracy result 
is obtained in PCA feature extraction method and KNN model with the 
accuracy of 99.4 % and 100 % for training and testing set, and for 5–3 
smoothing pretreatment, the highest accuracy result is obtained in full 
wavenumber method and KNN model with the accuracy of 92.2 % and 
100 % for training and testing set. 

In the case of feature extraction methods, the performance of the 
three feature extraction methods is ordered as PCA method > SPA 
method > full wavenumber method. In the case of SNV pretreatment 
and KNN model, PCA feature extraction method obtained 99.4 % and 
100 % accuracy result, while both full number feature extraction 
method and SPA feature extraction method obtained 96.7 % and 100 % 
accuracy result for training and testing set. In the case of none pre-
treatments, the best accuracy results are obtained after the features are 
extracted by PCA method. It shows that the use of the feature extraction 
method not only saves the modeling time, but also obtains better 
modeling results to a certain extent compared with using the full 
wavenumbers. 

The confusion matrix of the optimal result in each pretreatment is 
shown in Table 2. It can be seen that classification errors mainly occur in 
the freezing conditions of − 10 ◦C, 10 h and − 20 ◦C, 10 h. This can be 
confirmed from the spectra curves of the seeds. The spectra under the 
two conditions (− 10 ◦C, 10 h and − 20 ◦C, 10 h) are very close, and the 
degree of coincidence is high. The spectral value of the seed under 
normal conditions is relatively higher than the values under freezing 
conditions, thus there is spectral difference appeared. Of course, there 
are also misclassifications between normal and − 10 ◦C, 10 h. It also can 

be seen that the data of the testing set under different freezing conditions 
were not misclassified during classification, indicating that the methods 
have the advantage of obtaining wonderful classification results. 

Other studies focused on the research of frozen corn seeds were 
compared. Although the studies of Woltz et al. have explored the 
influencing factors (corn seed maturity, moisture content, freezing 
temperature and duration) of seed frostbite, how frostbite affects the 
growth and development of corn seeds was not explored (Woltz, Egli & 
TeKrony, 2005; Woltz, TeKrony & Egli, 2006). In addition, no detection 
technology was introduced. 

In the study of Jia et al (2016), the authors classified corn seeds into 
two categories, and a highest 97 % average accuracy was obtained. 
Through comparison and analysis, the seeds used in the study had large 
vigor difference. One category seeds were normal seeds without freezing 
damage, and another category seeds with low vigor under severe frozen 
condition (the original moisture content is 30 %, and the frostbite 
temperature is − 19.2 ◦C), thus it’s easy to classify the seeds (Jia, et al., 
2016). In addition, the influence of frostbite on the main parts of seeds 
was not explored. Compared with above study, we first explored the 
germination condition and biological indicators changes of freezing 
damaged corn seeds, and then explored the influence of frostbite on the 
main parts of seeds from the microscopic level, and finally a good 
classification of three categories of freezing-damaged seeds was ach-
ieved by using near-infrared technology. 

4. Conclusions 

Different freezing-damaged corn seeds were prepared after placed in 
different frozen conditions. The germination and growth of corn seeds, 
the activities of related enzymes (SOD, POD, CAT, AMS) under different 
freezing conditions reflect the effect of frostbite on corn seeds. With the 
deeper the degree of frostbite, the lower the germination rate of corn 
seeds. On day 7, the germination of seeds in each treatment has 

Table 2 
The confusion matrix of the optimal result in each pretreatment.  

SNV (standard normal variation) and 5–3 smoothing (five points and three times smoothing) are pretreatment methods; SPA (successive projection algorithm) and PCA 
(principal component analysis) are feature extraction methods; KNN (K-nearest neighbor) and SVM (support vector machine) are modeling method. 
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increased, and the germination rate of seeds under the frozen condition 
of normal, − 10 ◦C for10h and − 20 ◦C for 10 h are 88 %, 42 % and 10 % 
respectively. From the SEM and TEM observations, the texture of the 
seed coat and the cell structure of the seed embryo were affected to 
varying degrees with the degree of frostbite. For the seed coat and seed 
embryo with the frozen condition of − 20 ◦C for 10 h, more than 70 % of 
texture change and most of the cell structure is broken or cracked, the 
nuclear membrane disappears and more than 70 % of the nucleus is 
cracked. The micro-observation result confirmed that frostbite had an 
adverse effect on corn seeds, which providing theoretical support for the 
subsequent use of near-infrared spectroscopy to realize the classification 
of corn seeds. Finally, in the case of SNV pretreatment–PCA feature 
extraction method-KNN model, 99.4 % and 100 % classification results 
of the training set and testing set were obtained respectively. 
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Appendix  

Table A1 
The germination results of the corn seeds on Day 4 and Day 7 of each treatment.  

Treatment Germination rate on Day 4 (%) Germination rate on Day 7 (%) 

Normal 70 88 
− 10 ◦C,10 h 28 42 
− 20 ◦C,10 h 6 10  

Table A2 
The enzyme activity results of SOD, POD, CAT and AMS under each treatment.  

Treatment SOD activity (U/g) POD activity (U/g) CAT activity (U/g) AMS activity (U/g) 

Normal 981.492 ± 4.727c 50.370 ± 4.207 ab 19.507 ± 2.383c 1.310 ± 0.108c 
− 10 ◦C,10 h 1358.467 ± 27.747 a 57.407 ± 2.313 a 29.849 ± 6.531b 2.466 ± 0.175 a 
− 20 ◦C,10 h 1222.839 ± 100.919b 41.852 ± 7.229b 41.474 ± 1.076 a 1.936 ± 0.057b 

Results are expressed as mean ± SD (standard deviation) of three determinations. The different letters within the same indicator indicate a significant difference 
between the freezing conditions (p less than 0.05). 

Table A3 
The selected wavenumbers by feature extraction methods in different pretreatments.  

Pretreatments Feature extraction 
method 

Number of 
wavenumbers 

Wavenumbers /cm− 1 

None full wavenumber 1501 10000–4000 
SPA 12 4008 4256 4852 5152 5344 5792 6252 6896 7128 7344 7636 8236 
PCA 21 4328 4428 4500 4748 4968 5136 5172 5208 5308 5400 5636 5792 6000 6884 7084 7168 7344 7504 8232 

8340 9116 
SNV full wavenumber 1501 10000–4000 

SPA 9 4500 4984 6896 7456 7612 7980 8048 8444 8496 
PCA 24 4184 4364 4452 4492 4772 4912 4948 5012 5124 5208 5260 5340 5792 6924 7076 7344 7524 7580 7684 

8096 8344 8452 8520 8720 
5–3 

smoothing 
full wavenumber 1501 10000–4000 
SPA 13 4028 4256 5120 5808 6268 6972 7124 7632 8100 8400 9880 9932 10,000 
PCA 26 4332 4444 4484 4504 4756 4952 4996 5140 5168 5316 5392 5636 5800 5996 6024 6848 6900 7160 7424 

7504 8256 8312 8668 8868 9108 9132 

SNV (standard normal variation) and 5–3 smoothing (five points and three times smoothing) are pretreatment methods; SPA (successive projection algorithm) and PCA 
(principal component analysis) are feature extraction methods; KNN (K-nearest neighbor) and SVM (support vector machine) are modeling method. 
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