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Abstract

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD). The molecular
pathological mechanism of NASH is poorly understood. Recently, high throughput data such as microarray data together
with bioinformatics methods have become a powerful way to identify biomarkers and to investigate pathogenesis of
diseases. Taking advantage of well characterized microarray datasets of NASH livers, we performed a systematic analysis of
potential biomarkers and possible pathological mechanism of NASH from a bioinformatics perspective. CodeLink Human
Whole Genome Bioarrays were analyzed to find differentially expressed genes (DEGs) between controls and NASH patients.
Four methods were used to identify DEGs and the intersection of DEGs identified by these methods was subsequently used
for both biomarker prediction and molecular pathological mechanism analysis. For biomarker prediction, rank aggregation
was used to rank DEGs identified by all these methods according to their significance of different expression. Alcohol
dehydrogenase 4 (ADH4) exhibited the highest rank suggesting the most significant differential expression between normal
and disease condition. Together with the previous report demonstrating the association between ADH4 and the
pathogenesis of NASH, our data suggest that ADH4 could be a potential biomarker for NASH. For molecular pathological
mechanism analysis, two clusters of highly correlated annotation terms and genes in these terms were identified based on
the intersection of DEGs. Then, pathways enriched with these genes were identified to construct the network. Using this
network, both for the first time, amino acid catabolism is implicated to play a pivotal role and urea cycle is implicated to be
involved in the development of NASH. The results of our study identified potential biomarkers and suggested possible
molecular pathological mechanism of NASH. These findings provide a comprehensive and systematic understanding of the
pathogenesis of NASH and may facilitate the diagnosis, prevention and treatment of NASH.
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Introduction

Non-alcoholic fatty liver disease consists of a spectrum of disease

ranging from simple steatosis (SS) which generally follows a benign

non-progressive clinical course, to NASH which may progress to

cirrhosis and hepatocellular carcinoma [1,2,3]. The term NASH

was first introduced by Ludwig et al. in 1980 [4]. It described

subjects who did not consume alcohol but had progressive liver

disease similar to those with alcoholic hepatitis. In addition, there

is a correlation between NASH and obesity, type 2 diabetes,

hyperlipidemia and other lifestyle-related diseases [5]. In accor-

dance with the dramatic rise of population levels of obesity and

diabetes, NASH now becomes one of the most common causes of

liver disease in the Western world [6,7,8].

In recent years, a growing body of evidence has suggested that

‘‘two-hits’’ are the prerequisites of the development of NASH

[7,9,10]. The first hit corresponds to the fat accumulation in liver

and the second hit consists of an oxidative stress leading to liver

injury and inflammation. What is more, a number of studies

showed that apoptosis [11,12], mitochondrial dysfunction

[13,14,15,16,17], insulin resistance [18,19,20,21], immune re-

sponse [21,22], alcohol metabolism [23], lipid peroxidation [5,24],

lipid metabolism [25], and many other factors like endoplasmic

reticulum’s response to stress [9] are all involved in or related to

the development of NASH. However, the complex interplay

among these observations and the molecular pathological mech-

anism of NASH remains unknown [26].

The diagnosis of NASH relies on a number of clinical and

laboratory tests. NASH, with few exceptions, occurs in the context

of obesity [24]. Because hepatic steatosis is a hallmark of NASH

[21], tests that show fat within the liver strongly support the

diagnosis of NASH. For instance, ultrasound can show hyper-
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echoic pattern consistent with fat within the liver, but processes

other than fatty infiltration can produce a similar picture. Liver

biopsy is considered the best way of identifying fat within the liver,

although it is invasive and can miss inhomogeneous fat distribution

which may lead to sampling errors [5,27]. Liver biopsy can

demonstrate liver inflammation and fibrosis, two other character-

istic findings in NASH [8]. Because hepatitis is another hallmark

of NASH, elevated transaminases support NASH as a diagnosis.

Because no single parameter can establish the diagnosis of NASH

and because the tests used for NASH are invasive, inaccurate and/

or expensive, a biomarker would facilitate establishing a diagnosis.

A great deal of effort, unsuccessful to date, has been expended

to identify the pathogenesis of NASH and to find biomarkers for

NASH. Although some studies [25] have investigated more than

one pathway at a time, there is no systematic study of the

pathogenesis of NASH. In order to study the molecular

pathological mechanism and to find possible biomarker(s) of

NASH from a more systematic perspective, two sets of whole

genome microarrays were used and analysis from a bioinformatics

perspective was performed. First, four representative methods

(Significance Analysis of Microarrays, Weighted Average Differ-

ence method, t-test and Wilcoxon rank sum test) were used to find

DEGs in the two sets of microarrays. Among these methods,

Significance Analysis of Microarrays and t-test are parametric tests

based on t statistic. Weighted Average Difference method is a

parametric test based on fold change. Wilcoxon rank sum test is a

non-parametric test. Since these methods are based on different

theories, the intersection of DEGs identified by these different

methods can ensure that the different expression of these genes

were ‘‘true’’ different expression instead of errors. However, the

same gene in the intersection may have different ranks in the

original DEG lists generated by different methods, so to rank genes

in the intersection based on their ranks in the original DEG lists,

rank aggregation was performed. The iterative procedure of rank

aggregation can guarantee a better aggregation performance than

simply using the average of ranks of a gene to rank that gene. After

rank aggregation, the result was used to find the gene with the

most significant difference of expression. Together with previous

studies and knowledge of biochemistry and molecular biology, the

biomarker can be predicted with more confidence. Parallel to the

rank aggregation, functional analysis was carried out based on the

intersection of DEGs to illustrate the underlying pathological

mechanism and elucidate the complex interplay between different

pathways. Among the intersection of DEGs, genes enriched in

highly correlated annotation terms were identified. After this,

different from network construction in previous studies, these

genes were not used directly to construct the network. Instead,

pathways in which these genes were enriched were used for the

network construction. The pathways in the network not only cross-

validated each other but also agreed with results from previous

studies. As a result, the final interaction network gives us a

systematic view of not only the possible molecular pathological

mechanism of NASH, but also the interplay among different

pathways involved in NASH livers. Taken together,these results

provide a possible biomarker and add to our understanding of the

pathogenesis of NASH.

Materials and Methods

Workflow

1. Use four representative methods to find DEGs in the two sets of

microarrays respectively.

2. Use DEGs reported in [23,25,28] as a reference to filter out

methods with poor performance.

3. For methods which are not filtered out in step 2, choose more

stringent cutoffs to focus on more significantly changed genes

and use the intersection of DEGs to do functional analysis and

rank aggregation.

4. The first step of functional analysis, functional annotation

clustering in DAVID, is carried out to find highly correlated

annotation terms which were also significantly enriched with

the DEGs identified by methods not filtered out in step 2.

Results of the two microarrays are analyzed respectively in

DAVID. In the second step, information in KEGG pathway is

used to find pathways in which genes in the annotation terms

are involved. After this, enrichment scores are calculated for all

these pathways. Only pathways which are significantly

enriched with genes in the annotation terms are used to

construct the final interaction network which ensures that all

the pathways in the network are highly correlated with NASH.

The enriched pathways identified in both the two microarrays

are combined together in this process.

5. Parallel to functional analysis, rank aggregation is used to rank

DEGs identified by all methods not filtered out in step 2 to find

the gene with the most significant different expression. This is

done in the two microarrays respectively.

6. Finally, the ranking results in the two microarrays are used to

predict potential biomarkers of NASH and the interaction

network is used to analyze the molecular pathological

mechanism of NASH. Figure 1 summarizes the workflow.

Dataset
Microarray one. The first microarray was downloaded from

Gene Expression Omnibus (GEO) website: http://www.ncbi.nlm.

nih.gov/geo/ [29]. This dataset includes 11 individual microarray

experiments. The accession numbers for 7 NASH liver datasets

are GSM435821 to GSM435827 which corresponds to 7 NASH

patients (P53, P55, P59, P35, P37, P40, P41). For 4 normal control

datasets, the accession numbers are GSM435828, GSM435833 to

GSM435835. The corresponding samples are A486, A643, A138

and A249. Microarray one was used in the study of lipid and

alcohol metabolism. The age range of the patients and controls is 2

months to 19 years old.

Microarray two. The second microarray was also down-

loaded from GEO. This dataset includes 17 experiments: 12

NASH and 5 normal controls. 7 of these NASH patients and 2

controls (A486 and A643) are the same patients from microarray

one. The additional 5 NASH patients are P34, P51, P62, P64 and

P66. The additional 3 controls are A99, A107 and A154. The

GEO accession number for this dataset is GSE24807. It was used

in the study of hemoglobin. Infants were excluded from this

experiment. The age range of the patients and controls is 5 to 19

years old.

Four methods for the identification of DEGs
Significance Analysis of Microarrays. Significance Analy-

sis of Microarrays (SAM) [30] is a widely used statistical method

for identifying DEGs between experimental groups [31]. It

identifies DEGs by assimilating a set of gene-specific t-test. SAM

will calculate the ‘‘relative difference’’ d(i) for each gene based on

the change in gene expression relative to the standard deviation of

repeated measurements. The ‘‘relative difference’’ d(i) is:

d(i)~
�xxI (i){�xxU (i)

s(i)zs0
ð1Þ

Study on Biomarkers and Pathogenesis of NASH
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where �xxI (i) and �xxU (i) are defined as the average levels of

expression for gene (i) in states I and U, respectively. The ‘‘gene-

specific scatter’’ s(i) is the standard deviation of repeated

expression measurements:

s(i)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af
X

m
½xm(i){�xxI (i)�2z

X
n
½xn(i){�xxU (i)�2g

q
ð2Þ

where
P

m and
P

n are summations of the expression measure-

ments in states I and U, respectively.

a~(1=n1z1=n2)=(n1zn2{2), and n1andn2 are the numbers of

measurements in states I and U.

Genes that have relative differences greater than the threshold

are thought to be potentially significant and permutations will be

used for the repeated measurements to estimate the false discovery

rate (FDR) [30]. SAM modifies the t-test by adding a small positive

constant s0 to the denominator of the t statistic [32] to ensure that

the distribution of d(i) is independent of the gene expression level

so that we can compare values of d(i) across all genes.

In order to increase the statistical confidence, a large number of

controls are generated by computing relative differences from

permutations of the hybridizations for state I and state U.

Weighted Average Difference method. The weighted

average difference method (WAD) [32] is a fold-change based

method for ranking DEGs. The basic assumption of WAD is that

‘‘strong signals are better signals’’ which is in accordance with the

observation that known or potential marker genes or proteins tend

to have high expression levels. The WAD performs the best in the

comparison with other statistical methods for ranking DEGs

conducted by [33] and [32] on different microarray platforms and

under different preprocessing algorithms.

Figure 1. Workflow. The workflow of this article.
doi:10.1371/journal.pone.0051131.g001
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The weighted average difference statistic for the ith gene,

WAD(i), is calculated as:

WAD(i)~ADi|wi ð3Þ

where ADi is the average difference for the ith gene and wi is a

relative average log signal intensity to weight the average

difference in xi so that genes exhibiting lower expression levels

will not have a high rank [30].

ADi can be calculated as:

ADi~�xxB
i {�xxA

i ð4Þ

where �xxB
i is the average log signal for all class B replicates and �xxA

i

is the average log signal for all class A replicates. This is an obvious

indicator for estimating the differential expression of the ith gene,

xi~(x1
i ,:::,xn

i ).

wi can be calculated as:

wi~
�xxi{min

max{min
ð5Þ

where�xxi is calculated as (�xxA
i z�xxB

i )/2, and the max (or min)

indicates the maximum (or minimum) value in an average

expression vector (�xx1,:::,�xxp) on a log scale.

In our study, we calculated the absolute value of the average

difference for each gene. The cutoff was set to 1.5 in method

filtration. Genes with absolute average difference higher than the

cutoff were considered significant. Since the cutoff is fairly

stringent, we kept the cutoff unchanged when doing rank

aggregation and functional analysis.

t-test. Since t-test has a good performance in our previous

studies [23,25,28], it is incorporated in this article. t-test is a

classical statistical hypothesis test in which the test statistic follows

a Student’s t distribution under null hypothesis. Two sample t-test

is used in our study to find genes with different expression between

control and NASH samples.

In method filtration, genes with p-value less than 0.05 were

considered significant which was in accordance with the criterion

used in the three reference papers [23,25,28]. But when using the

result for rank aggregation and functional analysis, we lowered the

p-value cutoff to 0.01 to reduce the amount of data and focus on a

more significant part of the result.

Wilcoxon rank sum test. The Wilcoxon rank sum test is a

nonparametric alternative to the two sample t-test which is based

on the order in which the observations from the two samples fall.

Because it operates on rank-transformed data, it is a robust choice

for microarray data, which are often non-normal and contain

outliers [34]. What is more, previous studies suggest that using

rank-transformed data in microarray analysis is advantageous

[35,36]. It is also a conservative algorithm which is good when the

computationally identified genes need to be tested biologically

[34].

Assuming we have two groups of data, X1,:::,Xn1
in group A

and Y1,:::,Yn2
in group B.

The whole procedure is as following:

1. Combine the two samples into one sample and order the data

in the combined sample.

2. Assign rank i to the ith smallest observation. If there are some

observations tied with the same value, we assign the average

rank to each observation.

3. Calculate the sum of ranks attached to observation Robs
1 in

sample A

4. Calculate

k1~Robs
1 {

n1(n1z1)

2
ð6Þ

5. Calculate

Uobs
s ~max(K1,n1n2{K1) ð7Þ

Find the distribution of Us under H0(probability distributions

for 2 sampled populations are identical). Reject if

P(Us§Uobs
s )ƒa ð8Þ

In method filtration, genes with p-value less than 0.05 were

considered to be significantly differentially expressed which was

the same with the criterion in the three reference papers. Similarly

for the t-test, we lowered the p-value cutoff to 0.01 when doing

rank aggregation and functional analysis.

Rank aggregation
Rank aggregation is a method for combining several ordered

lists in a proper and efficient manner. Rank-based aggregation can

combine lists regardless of the sources or platforms from which

they are generated. The ultimate goal of it is to find a ‘‘super list’’

which is as ‘‘close’’ as possible to all individual ordered lists

simultaneously [37]. To measure the ‘‘closeness’’, an object

function is defined:

W(d)~
Xm

i~1

wid(d,Li) ð9Þ

where d is an ordered list of length k~DLi D, wi is the importance

weight associated with list Li, d is a distance function which we

will discuss later, and Li is the ith ordered list. The idea of rank

aggregation is to find d� which can minimize the total distance

between d�and Lis:

d�~arg min W(d) ð10Þ

There are two different philosophies on rank aggregation. The

first one is based on the majoritarian principles which put more

weight on the majority of individual preferences than on

infrequent ones so that the final rank is usually based on the

number of pairwise wins between items within individual lists. For

example, if item ‘‘A’’ more often has a higher rank than item ‘‘B’’,

then item ‘‘A’’ should have a higher rank than item ‘‘B’’ in the

final list. The other philosophy attempts to seek the consensus

among individual lists and is usually based on some form of rank

averaging [37].

Under the two philosophies, there are many rank aggregation

methods like Cross-Entropy Monte Carlo algorithm (CE) and

Genetic algorithm (GA). Also, there are many ways to calculate

the distances between different ordered lists. The most popular

distance functions are Spearman footrule distance, Kendall’s tau

Study on Biomarkers and Pathogenesis of NASH
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distance and the weighted version of these two methods. Since the

weighted Spearman footrule distance is quite simple and can

incorporate quantitative information, and CE has a good

performance in many studies [37,38,39], we used CE together

with weighted Spearman footrule distance to do the rank

aggregation.

Before introducing weighted Spearman footrule distance, there

are some necessary notations. Mi(1)::::::Mi(k) are scores associ-

ated with the ordered list Li. For example, Mi(1) is the best score.

rLi (A) is the rank of A in the list Li if A is within the top k, and be

equal to kz1, otherwise; rd(A) is defined the same way. Weighted

Spearman’s footrule distance between Li and any ordered list d
can be defined as

WS(d,Li)~
X

t[Li|d

DM(rd(t)){M(rLi (t))D|Drd(t){rLi (t)D ð11Þ

As to CE, it is a 2-step ‘‘simulate-update’’ iterative procedure:

1. Generate a random sample from the probability mass function

of a random matrix.

2. Update parameters based on the drawn sample to produce a

‘‘better’’ sample.

It includes four main steps. Details can be seen in [39]. Below is

a brief description of the four main steps:

1. Initialization: generate the uniform multinomial cell prob-

abilities.

2. Sampling: during each round, with the current cell

probabilities generated in the first step, generate a random

sample via multinomial sampling.

3. Updating: update the multinomial cell probabilities based on

the current sample and the value of the objective function so

that the objective function in the next round will be smaller.

4. Convergence: when the smallest values of the objective

function do not change during a number of iterations, stop the

search.

In our study, the intersection of DEG lists generated by DEG

identifying methods not filtered out in method filtration was used

as the input of rank aggregation. This was done in the two sets of

microarrays respectively. The weighted Spearman footrule

distance and the iterative procedure of CE used in rank

aggregation can make good use of the statistics (p-value and

weighted average difference) of each gene and ensure a better

aggregation result compared with simply using the average of

ranks to rank a gene.

Functional analysis
DAVID is an integrated biological knowledge-base and analytic

tool which can be used to extract biological information from gene

lists [40,41]. In our study, we used the functional annotation

clustering module to help us find out which cluster contains

annotation terms not only significantly enriched with DEGs

identified by DEG identifying methods not filtered out in method

filtration, but also highly correlated with each other. This was

done in the two sets of microarrays respectively. After identifying

the significantly enriched and highly correlated annotation terms

together with genes in these terms, information in KEGG

[42,43,44] was used to find the pathways in which these genes

were involved. Compared with using all genes in the intersection

of DEGs to identify pathways, using genes in the annotation terms

is powerful because it can detect the most significantly changed

and highly correlated pathways between normal controls and

NASH patients. Among these pathways, we used fisher’s exact test

to identify pathways in which genes in the annotation terms were

enriched. P-value was calculated for each pathway. The smaller

the p-value, the less likely an observed proportion of genes

mapping to a pathway is a result of chance. Finally, enriched

pathways identified in both the two microarrays were combined

together to construct the network.

Of note, to make the network more informative and accurate,

we modified the network from three perspectives. First, informa-

tion in KEGG only gave a brief summary of pathways and this can

be further divided into more specific pathways. For example, the

term ‘‘peroxisome’’ was found by KEGG. However, the exact

pathways in ‘‘peroxisome’’ are fatty acid oxidation (including

alpha and beta oxidation), amino acid metabolism and hydrogen

peroxide metabolism. This division was done manually for all the

enriched pathways before using them to construct the network.

Second, some pathways are isolated with other pathways.

Incorporating them into the final network requires too much

additional information unrelated to the result found in our study.

These isolated pathways were excluded in the network construc-

tion. Third, some pathways enriched with no genes in the two

clusters were incorporated into the final network since the result of

our study infers a strong association between them and pathways

enriched with genes in the two clusters. This process makes the

network more informative and comprehensive and these pathways

can be used to guide further analysis.

Results

Method filtration
Initially four methods were employed to identify DEGs. These

methods were then evaluated and compared, using DEGs

validated in our previous studies [23,25,28] as the criterion.

These DEGs are the only reported NASH related experimental

data used in the statistical analyses performed in this study. The

cutoff for t-test and Wilcoxon rank sum test was set to 0.05 which

was the same cutoff in three reference papers. However, WAD

and SAM do not use p-value as the cutoff so that we cannot define

a cutoff equivalent to 0.05. In addition, a method covering only a

small portion of the DEGs reported in the three reference papers

may cover more DEGs reported in other papers or even DEGs

unreported. Therefore, we did not use the number of DEGs each

method covers to compare these methods. Instead, we used the

difference of the three pathways between the two microarrays as

the standard. For microarray one which was used to study alcohol

and lipid metabolism, NASH patients exhibiting insulin resistance

were selected. But in the second microarray which was used to

study hemoglobin, the selection method was changed. Since

infants have significant expression of hemoglobin during early

development, liver biopsies from older children and a more

stringent standard for age-matching were used. Consequently,

since the expression of hemoglobin is associated with age but the

included age range has no influence on alcohol and lipid

metabolism, the expression profile of genes related to hemoglobin

should be different between the two sets of microarrays and the

expression profile of genes related to lipid and alcohol metabolism

respectively are expected to be similar. This difference is used as

the criterion to filter DEG identifying methods. In this way, the

cutoff will have no influence on the filtration result. However, we

still choose 0.05 as the cutoff for t-test and Wilcoxon rank sum test

since this cutoff was applied in our previous study of lipid

metabolism, alcohol metabolism and hemoglobin.

Study on Biomarkers and Pathogenesis of NASH
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Table 1 and Table 2 show that when considering DEGs

related to alcohol metabolism (15 major genes involved in alcohol

metabolism in total) and lipid metabolism (19 major genes

involved in lipid metabolisms in total), all four methods performed

similarly between the two microarrays. Table 3 show that when

considering DEGs related to hemoglobin (2 major genes in total),

the expression profile calculated by WAD, Wilcoxon rank sum test

and t-test are different between the two microarrays. However,

SAM failed to show this difference. These results indicate that

SAM cannot detect the difference between microarray one and

microarray two, and therefore was not used in the downstream

analyses. The DEGs identified by other three methods were used

to perform the functional analysis. The DEG lists of four DEG

identifying methods are presented in Tables S1, S2, S3, S4, S5,
S6, S7, S8, S9, and S10. The detailed information of DEGs

related to lipid metabolism, alcohol metabolism and hemoglobin

found by these four methods is presented in Tables S11, S12,
S13, S14, S15, S16, S17, and S18.

Functional analysis
After the method filtration, DEGs identified by WAD,

Wilcoxon rank sum test and t-test were used for the functional

analysis. To reduce the amount of genes and focus on a more

significant part of the result, we lowered the cutoff for Wilcoxon

rank sum test and t-test from 0.05 to 0.01. The cutoff for WAD

was unchanged as it was already stringent. DEG lists of Wilcoxon

rank sum test and t-test under the new cutoff are presented in

Tables S19, S20, S21, and S22. To ensure that all the DEGs

are not identified by accident, the intersection of DEGs identified

by all three methods were used as the input for the functional

analysis [34,45]. The intersection of DEGs was uploaded onto

DAVID and the functional annotation clustering module was used

to find clusters of significantly enriched and highly correlated

annotation terms given the uploaded gene list. Since the

intersection of DEGs of microarray one and two were uploaded

and analyzed respectively, we obtained two lists of clusters

containing significantly enriched and highly correlated annotation

terms. The clusters in the two lists were ranked in descending

order according to the degree of enrichment and correlation of

annotation terms. Table 4 shows information of the cluster

(cluster 1) ranked the 1st in microarray one and Table 5 shows

information of the cluster (cluster 2) ranked the 2nd in microarray

two. Detailed information about genes involved in cluster 1 and

cluster 2 are listed in Table 6 and Table 7. Since the annotation

terms in cluster 1 and cluster 2 were almost identical indicating

that these terms were significantly enriched and highly correlated

in both of the two microarrays, we chose proteins encoded by

these two clusters of genes and pathways enriched with these

proteins to construct the network using information in KEGG

pathway database. The cluster ranked the 1st in microarray two

was not used in functional analysis since the terms it contained

cannot be found in the clustering result of microarray one.

Because the expression of genes in cluster 1 and cluster 2 were all

elevated in NASH patients, pathways containing these genes were

considered up-regulated. The complete results of functional

annotation clustering analysis are presented in Tables S23 and
S24. Besides, DEGs lists of three methods not filtered out in

method filtration in both microarrays were also uploaded onto

DAVID for the functional annotation clustering analysis. Results

of these DEG lists are presented in Tables S25, S26, S27, S28,
S29, and S30. Since the DEG list of Wilcoxon rank sum test of

microarray two contained too many genes to do functional

annotation clustering analysis, we used the functional annotation

chart module to analyze it instead.

Figure 2 is the interaction network of pathways together with

reactions involved in these pathways. Each reaction equation is

represented by a number. The detailed information of each

reaction equation is provided in Table S31. The original network

with reactions on it is presented in Figure S1. The interaction

network of genes in the two clusters and proteins encoded by these

Table 1. Number of DEGs related to alcohol metabolism found by four methods.

method Number of DEGs related to alcohol metabolism

Microarray one Microarray two

WAD 6 4

Wilcoxon rank sum test 13 14

t-test 13 12

SAM 3 2

doi:10.1371/journal.pone.0051131.t001

Table 2. Number of DEGs related to lipid metabolism found
by four methods.

method Number of DEGs related to lipid metabolism

Microarray one Microarray two

WAD 5 3

Wilcoxon rank sum
test

15 15

t-test 13 13

SAM 0 0

doi:10.1371/journal.pone.0051131.t002

Table 3. Number of DEGs related to hemoglobin found by
four methods.

method Number of DEGs related to hemoglobin

Microarray one Microarray two

WAD 1 2

Wilcoxon rank sum
test

0 2

t-test 0 2

SAM 0 0

doi:10.1371/journal.pone.0051131.t003
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genes before being classified into pathways is presented in Figure
S2, in which the interplay of genes and proteins instead of

pathways was shown.

Potential biomarker
A biomarker is defined as a characteristic that is objectively

measured and evaluated as an indicator of normal biologic

processes, pathogenic processes or pharmacologic responses to a

therapeutic intervention. It can be specific cells, molecules, or

genes, gene products, enzymes or hormones. Since microarrays

were used as the main approach to find biomarkers in our study,

we identified a biomarker at mRNA level.

A biomarker must easily detect differential expression between

normal and abnormal conditions. This means that the greater the

difference of expression values between two conditions, the more

likely the measure qualifies as a biomarker. To meet this demand,

rank aggregation was performed to rank genes identified as

differentially expressed by Wilcoxon rank sum test, WAD and t-

test. This was done separately in microarray one and microarray

two. The weighted Spearman footrule distance and the iterative

procedure of CE used in rank aggregation guarantees a reliable

result. The ranking results are presented in Tables S32 and S33.

The gene with the highest rank is considered as the gene with the

greatest expression difference. Table 8 shows the top 5 genes in

microarray one and microarray two respectively. In both

microarray one and microarray two, ADH4 which encodes alcohol

dehydrogenase 4 (class II), pi polypeptide showed very high rank

indicating that ADH4 is the most significantly differentially

expressed gene. More specifically, the expression of ADH4 was

significantly up-regulated in NASH patients compared with

normal controls.

Apart from being highly differentially expressed, a biomarker

should also be able to detect the presence of the disease [26]. In

other words, the change of the biomarker should be highly

correlated with the pathogenesis of the disease. We previously

demonstrated that alcohol metabolism plays a major role in the

pathogenesis of NASH [23]. Additionally, ADH4 is the major

hepatic alcohol dehydrogenase. All these facts indicate a high

correlation between ADH4 and NASH. Along with the highly

differential expression between normal and disease conditions, we

hypothesize that ADH4 is a potential biomarker for NASH.

Top five ESTs after rank aggregation
Since the microarrays used in our study are whole genome

microarrays, expressed sequence tags (ESTs) are included. We did

not exclude ESTs when doing the rank aggregation since further

study of these ESTs may provide us more useful information.

UniGene database and BLAST in NCBI were used to analyze

these ESTs. UniGene database is a gene-oriented view of sequence

entries developed at NCBI. Information on protein similarities,

gene expression and genomic location is included within each

entry. Most importantly, information of uncharacterized ESTs is

also included in this database. These uncharacterized ESTs are

clustered based on Megablast. Apart from UniGene, BLAST was

also used to find sequences with known functions similar to

uncharacterized ESTs. The information provided by UniGene

and BLAST can facilitate the study of functions of these ESTs and

may also provide new clues for the pathogenesis of NASH.

Table 4. The information of cluster 1.

Annotation Cluster 1 Enrichment Score: 5.3158

Category Term P-value Genes1

UP_SEQ_FEATURE short sequence motif:Microbody
targeting signal

9.62E-07 NM_153756,NM_001917,NM_006117,
NM_016518,NM_018441,NM_001966

SP_PIR_KEYWORDS peroxisome 2.69E-06 NM_153756,NM_001917,NM_006117,
NM_016518,NM_018441,NM_001752, NM_001966

GOTERM_CC_FAT GO:0005777,peroxisome 1.45E-05 NM_153756,NM_001917,NM_006117,
NM_016518,NM_018441,NM_001752, NM_001966

GOTERM_CC_FAT GO:0042579,microbody 1.45E-05 NM_153756,NM_001917,NM_006117,
NM_016518,NM_018441,NM_001752, NM_001966

1:All the accession numbers in this article are from GenBank database.
doi:10.1371/journal.pone.0051131.t004

Table 5. The information of cluster 2.

Annotation Cluster 2 Enrichment Score: 4.3758

Category Term P-value Genes

SP_PIR_KEYWORDS peroxisome 3.64E-06 NM_006821,NM_153756,NM_001917,
NM_006117,NM_018663,NM_016518, NM_018441,NM_006214

UP_SEQ_FEATURE short sequence motif:Microbody
targeting signal

1.07E-05 NM_006821,NM_153756,NM_001917, NM_006117,NM_016518,
NM_018441

GOTERM_CC_FAT GO:0042579,microbody 2.84E-04 NM_153756,NM_001917,NM_006117,
NM_018663,NM_016518,NM_018441, NM_006214

GOTERM_CC_FAT GO:0005777,peroxisome 2.84E-04 NM_153756,NM_001917,NM_006117,
NM_018663,NM_016518,NM_018441, NM_006214

doi:10.1371/journal.pone.0051131.t005
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However, since function prediction of ESTs is beyond the scope of

this article, we present information on the top five ESTs in the two

microarrays respectively in Tables S34 and S35.

Discussion

The difference between microarray one and microarray
two

Chuaqui et al. [46] raised two important questions concerning

microarray data analysis. The first question is whether the result is

valid or accurate. In our study, we chose four representative

methods and filtered out one due to unsatisfactory performance in

the identification of DEGs and we used the intersection of DEGs

generated by the other three methods to lend more credibility to

the conclusion that these genes are differentially expressed

regardless of the method used. Moreover, the whole genome

microarrays used in our study can guarantee that there is no bias

underlying the data. However, there is another fundamental

question: can the data reflect the disease accurately? In our study,

this question is equivalent to the question that although different

procedures were used to produce the two sets of microarrays, can

this difference influence the final result at the mRNA level? It is

possible that noise or even contaminations could have been

introduced into the data between the time the biopsy samples were

taken to produce microarrays and the final result we obtained

from analyzing microarrays. As a consequence, it is possible that

different procedures may lead to the same result and if this

happens, it will undermine the results we obtained from different

microarrays. However, from Table 1, 2 and 3 we can see that

the expression profiles of DEGs related to alcohol metabolism,

lipid metabolism and hemoglobin between the two microarrays

can reflect the different patient selection methods used to produce

these microarrays. In microarray two, to mainly focus on

hemoglobin, the age of patients was strictly controlled. On the

contrary, age was not controlled in microarray one. Due to this

difference, expression profile of genes related to age like

hemoglobin genes (hemoglobin alpha and hemoglobin beta) will be

influenced but expression profile of genes which are not associated

with age like genes involved in alcohol and lipid metabolism will

be unchanged between the two microarrays. The results in

Table 1, 2 and 3 reflect this difference. The expression profiles of

major genes in alcohol and lipid metabolism between two

microarrays were nearly identical but the expression profiles of

hemoglobin alpha and hemoglobin beta were different. In conclusion, the

two microarrays used in our study can describe different aspects of

NASH accurately and using these two microarrays to investigate

the pathogenesis of NASH can give us a more comprehensive

understanding of the disease.

Alcohol dehydrogenase 4 is a potential biomarker for
NASH

Although NASH is a condition of hepatitis irrelevant to alcohol

consumption, it shares many histological features with alcoholic

liver disease (ALD) such as pericellular fibrosis and macrovesicular

and microvesicular fat in hepatocytes [21]. The histology cannot

distinguish non-alcoholic patients from alcoholic patients. This

sheds light on the assumption that a shared condition may be

responsible for both alcoholic and non-alcoholic liver disease

(NALD) [47]. Previous studies have confirmed this assumption by

proving that alcohol produced by intestinal bacteria [48,49,50]

Table 6. Detailed information of genes in cluster 1.

Accession number Gene name Rank in rank aggregation Gene symbol Gene ID

NM_153756 fibronectin type III domain containing 5 3 FNDC5 252995

NM_001917 D-amino-acid oxidase 53 DAO 1610

NM_006117 peroxisomal D3,D2-enoyl-CoA isomerase 77 ECI2 10455

NM_016518 pipecolic acid oxidase 125 PIPOX 51268

NM_018441 peroxisomal trans-2-enoyl-CoA reductase 117 PECR 55825

NM_001752 catalase 88 CAT 847

NM_001966 enoyl-Coenzyme A, hydratase/3-hydroxyacyl
Coenzyme A dehydrogenase

99 EHHADH 1962

doi:10.1371/journal.pone.0051131.t006

Table 7. Detailed information of genes in cluster 2.

Accession number Gene name Rank in rank aggregation Gene symbol Gene ID

NM_006821 acyl-CoA thioesterase 2 182 ACOT2 10965

NM_153756 fibronectin type III domain containing 5 10 FNDC5 252995

NM_001917 D-amino-acid oxidase 116 DAO 1610

NM_006117 peroxisomal D3,D2-enoyl-CoA isomerase 171 ECI2 10455

NM_018663 hypothetical LOC100129532; peroxisomal
membrane protein 2, 22 kDa

102 PXMP2 5827

NM_016518 pipecolic acid oxidase 176 PIPOX 51268

NM_018441 peroxisomal trans-2-enoyl-CoA reductase 172 PECR 55825

NM_006214 phytanoyl-CoA 2-hydroxylase 21 PHYH 5264

doi:10.1371/journal.pone.0051131.t007
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and alcohol from diet [51] are involved in NALD like NASH so

that alcohol metabolism is not only involved in ALD but also

related to NALD. The role of alcohol metabolism in NASH has

been investigated in our previous study [23] and genes responsible

for alcohol metabolism, especially genes encoding enzymes in

alcohol dehydrogenase (ADH) family, showed a high expression in

NASH patients. The significant up-regulation of genes related to

alcohol metabolism found in this study (see Tables S11, S12,
S13, and S14) is consistent with the results in these previous

studies [23,48,49,50,51] which validates the significant up-

regulation of alcohol metabolism and indicates its importance in

the pathogenesis of NASH.

In alcohol metabolism, ADH plays an important role. ADH is a

group of alcohol dehydrogenase enzymes that catalyze the

oxidation of primary and secondary alcohols to aldehydes and

ketones, respectively [52], and reduce nicotinamide adenine

dinucleotide (NAD) to NADH. One of the evolutionary purposes

of ADH is to breakdown alcohols contained in food and produced

Figure 2. Interaction network of pathways. After functional annotation clustering analysis in DAVID, genes in the two clusters of annotation
terms along with KEGG pathway information of these genes were used to construct the interaction network. Genes together with proteins encoded
by these genes were classified into several main pathways before constructing this network. Reactions in which these genes were involved were also
incorporated in the network. Square frames represent pathways which contain proteins encoded by genes in the two clusters. These proteins
involved in a particular pathway are written in the square frame of that pathway. The number corresponding to each protein represents a reaction in
which that protein is involved. The reaction equation can be referred to in Table S31 by the number of that reaction. These proteins serve as catalysts.
Ovals represent other genes, proteins or molecules involved in this network. The rectangle represents a pathway with no genes or proteins in the two
clusters in it. Yellow hexagons represent proteins encoded by genes in the two clusters which cannot be classified into a particular pathway. Solid
lines indicate direct connections and dashed lines indicate indirect connections.
doi:10.1371/journal.pone.0051131.g002

Table 8. Top 5 genes after rank aggregation in microarray one and two.

Microarray one Microarray two

Accession number Gene name Accession number Gene name

NM_003122 serine peptidase inhibitor, Kazal type 1 NM_000670 alcohol dehydrogenase 4 (class II), pi
polypeptide

NM_000670 alcohol dehydrogenase 4 (class II), pi
polypeptide

AK023341 Nicotinamide phosphoribosyltransferase

NM_153756 fibronectin type III domain containing 5 NM_000394 crystallin, alpha A

NM_003986 butyrobetaine (gamma), 2-oxoglutarate
dioxygenase (gamma-butyrobetaine
hydroxylase) 1

NM_004887 chemokine (C-X-C motif) ligand 14

NM_003251 thyroid hormone responsive NM_016246 hydroxysteroid (17-beta) dehydrogenase 14

doi:10.1371/journal.pone.0051131.t008
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by intestinal bacteria [53]. There are four major classes of ADH.

Most members of ADH family are present in liver; ADH4 is the

major hepatic ADH. ADH4 has the same function as other alcohol

dehydrogenases: to oxidize ethanol to aldehydes and ketones and

to reduce NAD to NADH. It has been reported that the increased

level of NADH promotes fatty acid synthesis and acts against lipid

catabolism, contributing to fat accumulation in liver [54,55].

Alcohol may also injure the liver by blocking the normal

metabolism of protein, fats, and carbohydrates. Figure 3
summarizes the main reaction of ADH4 and shows the influence

on other pathways. Most importantly, besides the association with

several pathways related to the pathogenesis of NASH, the

elevated transcription activity of ADH4 has been validated not only

in our study, but also by quantitative real-time polymerase chain

reaction (qRT-PCR) at mRNA level and Western blot at protein

level in our previous study of investigating the expression profile of

alcohol metabolism related genes [23] although ADH4 was not

suggested to be a biomarker in that study. In conclusion, the

validated up-regulation of ADH4 in NASH patients compared

with normal controls and the correlation with the pathogenesis of

NASH indicate that ADH4 is a potential biomarker for NASH.

However, since alcohol metabolism is also involved in ALD and

some studies have shown that ADH is associated with ALD

[56,57], ADH4 alone may not be capable of distinguishing ALD

from NALD. As a consequence, ADH4 can be used as a major

indicator of NASH, but other features should be used to help

distinguish NASH from ALD. For example, alcohol dependence

(AD) which almost all patients with ALD have is a key difference

between ALD and NALD [58,59]. In the diagnosis of NASH, the

history of alcohol consumption can be used to determine whether

the patient has ALD or not. Moreover, nutritional status is another

prominent difference. Body Mass Index (BMI) and serum levels of

total cholesterol and cholinesterase are all higher in NASH than

ALD patients suggesting nutritional status contributes to the

assessment [60]. In summary, along with other features used to

help distinguish NASH from ALD, ADH4 is a suitable indicator

and biomarker for NASH.

Besides ADH4, gene encoding fibronectin type III domain

containing 5 (FNDC5) protein also had very high rank (3rd in

microarray one and 10th in microarray two) after rank aggrega-

tion. Moreover, FNDC5 was listed in both clusters of genes and

had the highest rank compared with other genes in the two

clusters. Therefore, the role of FNDC5 in NASH is worth further

study.

The FNDC5 gene encodes a type I membrane protein. Bostrom

et al. [61] reported that FNDC5 contributed to the improvement of

obesity and glucose homeostasis through irisin, a cleaved and

secreted fragment of FNDC5. Irisin is responsible for the induction

of the browning of subcutaneous fat. The brown fat is then burned

as heat. The increased formation of brown fat has been shown to

have anti-obesity and anti-diabetic effects. It was also proved that

only moderate increase of circulating levels of irisin can potently

increase energy expenditure; reduce body weight and diet-induced

insulin resistance. Since NASH is strongly associated with obesity

and insulin resistance, increasing the amount of circulating irisin

may be a good strategy for NASH patients to lose weight and

reduce insulin resistance.

Genes and proteins responsible for amino acid
catabolism and downstream metabolisms

In functional analysis, half of the genes in the two clusters were

found enriched in pathways related to amino acid catabolism

indicating the importance of amino acid catabolism in NASH.

Other NASH-associated pathways were also found related to

amino acid catabolism, which will be discussed later. This result is

the first evidence suggesting that amino acid catabolism plays an

important role in the pathogenesis of NASH. Besides, the

downstream metabolism of amino acid catabolism, the urea cycle,

was also found for the first time to be associated with NASH.

Protein degradation pathways provide substrates for amino acid

catabolism. Protein degradation is a very important process in our

body. First, protein degradation can wipe out the abnormal

proteins to protect cells from being harmed. Second, degradation

of excessive enzymes and regulatory proteins can help keep the

coordination of metabolism in cells. In eukaryotes, the degradation

of proteins requires two mechanisms: the lysosomal mechanism

and the ATP-dependent ubiquitin-mediated mechanism.

Besides being the basic unit of proteins, amino acids have many

other functions. For example, they are involved in the energy

production process and are precursors of important nitrogen-

containing compounds. Moreover, excessive amino acids can be

transformed into many intermediates like pyruvic acid, oxaloacetic

acid and alpha-keto acid. Therefore, the catabolism of amino acids

has a wide ranging influence on many pathways.

Figure 3. Main reaction of ADH4 and the influence on other pathways. ADH4 is a member of alcohol dehydrogenase enzymes which
catalyzes the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, and reduces NAD to NADH. NADH is the product of
this reaction and excess NADH will promote fatty acid synthesis and act against lipid catabolism. Alcohol can injure the liver by blocking the normal
metabolism of protein, fats, and carbohydrates. Arrows with a vertical line at the end indicate inhibition. Fat, protein and carbohydrate stand for fat
metabolism, protein metabolism and carbohydrate metabolism respectively. Squares in blue represent pathways and ovals represent compounds
involved in the reaction catalyzed by ADH4. ADH4 is highlighted in a green hexagon.
doi:10.1371/journal.pone.0051131.g003
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The first step of amino acid catabolism is deamination and this

can be achieved by transamination, oxidative deamination,

transdeamination and other deamination reactions. Transdeami-

nation is an important way since transamination alone cannot

guarantee a thorough deamination. There are two reactions called

transdeamination. In one of them, aspartate is produced by the

reaction between glutamate and oxaloacetate under the catalysis of

aspartate aminotransferase (AST). Although AST is not in the two

clusters of DEGs, its expression was significantly up-regulated,

which indicated the up-regulation of transdeamination. Apart

from transdeamination, there are other deamination reactions.

DAO is involved in non selective deamination. It is a non specific

amino acid oxidase which is a flavoprotein and uses flavin adenine

dinucleotide (FAD) as its prosthetic group. It catalyzes the

transformation of amino acid into alpha-keto acid. The up-

regulation of DAO in our study indicates that the DAO-induced

non selective deamination was also up-regulated.

Interestingly, catabolism of several particular amino acids was

up-regulated. PECR is involved in tyrosine metabolism. PIPOX

and DAO are involved in glycine, serine, threonine metabolism.

PIPOX and EHHADH play a major role in lysine degradation.

EHHADH is also involved in valine, leucine, isoleucine degrada-

tion and beta-alanine metabolism. In tryptophan metabolism,

CAT and EHHADH are involved. The products of amino acid

catabolism are free ammonia and carbon skeletons of these amino

acids. The carbon skeletons can be transformed into other

metabolites like acetyl-CoA and pyruvic acid which will influence

other metabolisms like fatty acid metabolism and carbohydrate

metabolism. Free ammonia is harmful to our body especially the

brain. Just 1% ammonia in our blood can lead to the intoxication

of the central nervous system. As a result, the secretion of

ammonia is important. In most cases, free ammonia enters the

urea cycle and is removed from the body as urea. CAT is involved

in this process. Under the catalysis of CAT, glutamic acid interacts

with N2-acetyl-L-ornithine and generates ornithine and N-aceyl-

L-glutamate.

In conclusion, the genes in the two clusters are highly enriched

in amino acid catabolism. These genes are all up-regulated,

indicating the up-regulation of amino acid catabolism in NASH

livers. In addition, the products of amino acid catabolism such like

acetyl-CoA and pyruvic acid are precursors of many other NASH

related pathways. The connection between amino acid catabolism

and oxidative stress found in our study provides direct corrobo-

ration of previous studies [62,63]. The relationship between amino

acid catabolism and lipid metabolism is validated by [64,65], and

the interplay between amino acid catabolism and gluconeogenesis

have already been reported [65,66,67,68]. All these facts lend

credibility to the conclusion that the elevated amino acid

catabolism plays a pivotal role in the pathogenesis of NASH.

Genes and proteins responsible for lipid metabolism
According to the ‘‘two-hits’’ theory, the accumulation of fat in

liver is the prerequisite for NASH. The result of this study is

consistent with our previous work [25] which examined the

molecular etiology of the liver fat accumulation in NASH.

Moreover, the current study supports the previous result from

another perspective by showing the up-regulation of PECR,

EHHADH, ECI2 and PHYH. PECR and EHHADH are involved

in fatty acid elongation in mitochondria and the production of

acetyl-CoA from amino acid catabolism, which provides precur-

sors for fatty acid synthesis. Additionally, fatty acid synthase

(FASN) and CD36 which are two very important proteins in de

novo synthesis and fatty acid uptake are regulated by EHHADH.

The elevated expression of EHHADH and PECR indicated that the

lipogenesis in hepatocyte was up-regulated. However, EHHADH

is also one of the four enzymes of the peroxisomal beta-oxidation

pathway. And our study shows that both beta-oxidation and

alpha-oxidation were up-regulated. ECI2 is a key mitochondrial

enzyme involved in beta-oxidation of unsaturated fatty acids. It

catalyzes the transformation of 3-cis and 3-trans-enoyl-CoA esters

arising during the stepwise degradation of cis-, mono-, and

polyunsaturated fatty acids to the 2-trans-enoyl-CoA intermedi-

ates. PHYH encodes a peroxisomal protein that is involved in the

alpha-oxidation of 3-methyl branched fatty acids. Specifically, this

protein converts phytanoyl-CoA to 2-hydroxyphytanoyl-CoA.

Therefore, the oxidation of fatty acid was increased instead of

being decreased.

Genes and proteins responsible for other metabolisms
Gluconeogenesis. Gluconeogenesis is a major part of car-

bohydrate metabolism that maintains a constant supply of glucose

for the brain, kidney, testes and red blood cells. We found that

gluconeogenesis is associated with NASH. As shown in Figure 2,
metabolism of glycine, serine, threonine and beta-alanine gener-

ating pyruvic acid, a non sugar precursor for gluconeogenesis, are

up-regulated. Consequently, it is likely that the up-regulated

amino acid catabolism we describe above influences gluconeo-

genesis by providing more precursors so gluconeogenesis is up-

regulated in NASH patients. In addition, Sunny et al. [69] found

that people with excessive fat accumulation exhibit mitochondrial

anaplerosis which provides substrates for gluconeogenesis and the

induction of lipid oxidation is required for gluconeogenesis. Since

we have shown that lipid oxidation is up-regulated, it is very likely

that gluconeogenesis is also up-regulated and associated with fat

accumulation in NASH patients.

Together with the fact that acetyl-CoA generated by oxygeno-

lysis of carbohydrate also leads to lipogenesis, our data suggested

that abnormal carbohydrate metabolism, especially gluconeogen-

esis, is strongly associated with NASH.

Oxidative stress response. Oxidative stress is thought to be

important for the progression from steatosis alone to NASH and

finally to cirrhosis [19,24,70,71]. It is caused by an imbalance

between the production of reactive oxygen and the detoxification

of reactive intermediates. Reactive intermediates such as peroxides

and free radicals can be harmful to many parts of cells such as

proteins, lipids and DNA. Severe oxidative stress can lead to

apoptosis and necrosis. The result of our study is in accordance

with the relationship between oxidative stress and NASH.

When reactive oxygen species are produced, the oxidative stress

response is triggered. The proteins encoded by genes in the two

clusters and involved in oxidative stress response are CAT and

PXMP2. PXMP2 is a peroxisomal membrane protein. Peroxi-

somes play a pivotal role in detoxification, fatty acid oxidation and

regulation of oxygen. For CAT, it is a key antioxidant enzyme in

the body’s defense against oxidative stress. CAT is a heme enzyme

that is present in peroxisomes. CAT converts the reactive oxygen

species hydrogen peroxide to water and oxygen and thereby

mitigates the toxic effects of hydrogen peroxide so that it helps

reduce the oxidative stress. CAT is also involved in NRF2-

mediated oxidative stress response. The elevated expression of

genes encoding PXMP2 and CAT indicate the mounting need to

deal with reactive oxygen species like hydrogen peroxide.

Although DAO is not involved in the oxidative stress response,

it is responsible for the production of reactive intermediates. DAO

catalyzes nonspecific deamination, arginine and proline metabo-

lism. During these reactions, hydrogen peroxide is generated.

Since the gene encoding DAO is up-regulated, the production of

hydrogen peroxide is increased in NASH patients. This over-
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production of hydrogen peroxide along with the up-regulation of

genes responsible for oxidative stress response are consistent with

previous studies and support the important role of oxidative stress

in the pathogenesis of NASH.

The molecular pathological mechanism and the interplay
between different pathways

The network in Figure 2 summarizes the main pathways in the

pathogenesis of NASH that this approach identifies. In this

network, proteins are degraded into amino acids through a

lysosomal mechanism and an ATP-dependent mechanism. The

amino acids are then decomposed through different amino acid

catabolic pathways. The elevated activity of amino acid catabolism

is an important difference between normal controls and NASH

patients. It also connects many other important pathways related

to the pathogenesis of NASH. The main products of amino acid

catabolism are pyruvic acid, free ammonia, hydrogen peroxide

and acetyl-CoA. The over production of these key metabolites

caused by the elevated activity of amino acid catabolism influences

downstream pathways and this is consistent with the up-regulation

of these downstream pathways found independently in our study.

First, amino acid catabolism influences fatty acid synthesis

through acetyl-CoA. Since acetyl-CoA is the precursor for fatty

acid synthesis, its production accelerates this process. In addition,

ACOT2 is regulated by EHHADH in fatty acid beta-oxidation

and it can then regulate acetyl-CoA which in turn, influences the

fatty acid synthesis. The interaction among ACOT2, EHHADH

and acetyl-CoA forms a cycle connecting fatty acid synthesis and

oxidation. Together with our previous work, we found that the up-

regulation of fatty acid synthesis overcomes the elevated fatty acid

oxidation and very low-density lipoprotein (VLDL) secretion and

contributes to the accumulation of fat in liver and the development

of NASH.

Second, excessive hydrogen peroxides produced through amino

acid catabolism stimulates the oxidative stress response. The up-

regulated oxidative stress response found in our study shows that the

liver failed to effectively reduce increased amounts of reactive oxygen

species like hydrogen peroxides. This leads to oxidative stress and then

triggers the progression from steatosis alone to NASH.

Third, excessive free ammonia produced through amino acid

catabolism enters the urea cycle where urea is produced for

excretion. The elevated activity of the urea cycle found in our

study proved this link and in turn, validated the up-regulation of

amino acid catabolism.

Fourth, the increased amount of pyruvic acid provides

precursors for gluconeogenesis. Although no direct evidence

showing the up-regulation of gluconeogenesis was found in our

study, the increased amount of pyruvic acid may be a hint that this

process is accelerated. In addition, the possible relationship

between elevated gluconeogenesis and fat accumulation indicated

in a previous study [69] lends credibility to the conclusion that the

up-regulation of gluconeogenesis is very likely to be involved in the

pathogenesis of NASH. However, the exact role of gluconeogen-

esis in the development of NASH requires further study.

All pathways in the network not only agree with each other but

also agree with previous studies,which lend credibility to the

validity of the molecular pathological mechanism of NASH.

Conclusion

Our study analyzed the whole genome expression profile

between NASH patients and normal controls and constructed

the network of NASH related pathways. Results reported in

[23,25,28] which were used in the filtration of four DEG

identifying methods were the only reported NASH related

experimental data used during the statistical analyses of our study.

Results reported in other previous studies were used as cross

validation after we obtained the results based on statistical

analyses. Our findings not only agree with previous studies but

also provide a new possible mechanism to the pathogenesis of

NASH. While these new findings in the molecular pathology of

NASH warrants further experimental validation, the information

we obtained from this study can help us understand the interplay

between different pathways and the molecular pathological

mechanism of NASH from a more systematic perspective. Our

data suggested that ADH4 is a potential biomarker for NASH.

Functional analysis performed with the intersection of DEGs

provided the first evidence suggesting that elevated amino acid

catabolism plays a central role in the pathogenesis of NASH.

Gluconeogenesis, urea cycle, lipid metabolism and oxidative stress

response were also found associated with NASH. Our study

provides a more comprehensive understanding of the biomarker

and molecular pathological mechanisms underlying the develop-

ment of NASH and this may facilitate the diagnosis, prevention

and treatment of NASH.
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