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ABSTRACT

Understanding gene expression patterns across dif-
ferent human cell types is crucial for investigat-
ing mechanisms of cell type differentiation, disease
occurrence and progression. The recent develop-
ment of single-cell RNA-seq (scRNA-seq) technolo-
gies significantly boosted the characterization of
cell type heterogeneities in different human tissues.
However, the huge number of datasets in the pub-
lic domain also posed challenges in data integration
and reuse. We present Human Universal Single Cell
Hub (HUSCH, http://husch.comp-genomics.org), an
atlas-scale curated database that integrates single-
cell transcriptomic profiles of nearly 3 million cells
from 185 high-quality human scRNA-seq datasets
from 45 different tissues. All the data in HUSCH
were uniformly processed and annotated with a
standard workflow. In the single dataset module,
HUSCH provides interactive gene expression visu-
alization, differentially expressed genes, functional
analyses, transcription regulators and cell–cell in-
teraction analyses for each cell type cluster. Be-
sides, HUSCH integrated different datasets in the
single tissue module and performs data integration,
batch correction, and cell type harmonization. This
allows a comprehensive visualization and analysis of

gene expression within each tissue based on single-
cell datasets from multiple sources and platforms.
HUSCH is a flexible and comprehensive data portal
that enables searching, visualizing, analyzing, and
downloading single-cell gene expression for the hu-
man tissue atlas.

INTRODUCTION

The human body is composed of various tissues and cells.
Characterizing the expression patterns of different cells is
crucial for probing cellular functions and molecular events
in development and disease (1,2). Single-cell RNA-seq has
proven to be a powerful technology to investigate the het-
erogeneity of human cell types in various tissues (3–5). Sev-
eral human single-cell atlas projects, such as JingleBells
(6), SCPortalen (7), PanglaoDB (8), scHCL (9) and Tab-
ula Sapiens (10) have been developed in the past years and
greatly promote our understanding of cellular heterogene-
ity in human tissues. However, there are still many lim-
itations of the current human scRNA-seq atlas project.
First, most of the above projects or databases only col-
lect the scRNA-seq dataset or markers without processing
them, and a lack of uniform data processing and harmo-
nization will greatly affect data reuse (11,12). Second, sev-
eral recent projects, such as the scHCL and Tabula Sapi-
ens, provide uniformly processed datasets and online visu-
alization functions. They highly rely on single technology
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platforms (Microwell-seq for the scHCL, 10X-Genomics
and Smart-seq2 for Tabula Sapiens), which might have
limited coverage on different cell types due to the bias
in cell type capturing efficiency of different technologies
(13). Finally, none of these projects or databases provided
advanced analysis functions such as functional analyses,
cell–cell interactions (CCI), and transcriptional regulator
analyses, which are important to understanding the func-
tion of novel cell types and their association with normal
and disease phenotypes (12,14). Therefore, a comprehensive
database for human cell tissue expression atlas is urgently
required.

Here, we present the Human Universal Single Cell Hub
(HUSCH), a scRNA-seq database for visualizing and an-
alyzing human gene expression across different tissues.
The HUSCH database contains 185 datasets from 45 hu-
man tissues covering 7 different platforms. All the datasets
were uniformly processed and annotated. For each dataset,
HUSCH provides detailed cell type annotation, expression
visualization, marker gene identification, functional analy-
ses, transcription factor and cell–cell interaction analyses.
HUSCH also integrates different datasets within the same
tissue to enable cross datasets analyses. Finally, HUSCH
provided an automatic online cell type annotation function
with the curated reference.

MATERIALS AND METHODS

Data collection and curation

We collected human tissue scRNA-seq datasets from sev-
eral public databases, including GEO (15), the single-cell
portal from the broad institute, ArrayExpress from EMBL-
EBI (16), the human cell atlas data portal (17), and the 10X
Genomics website. For GEO and ArrayExpress datasets, we
have built a text-mining-based workflow to automatically
crawl and download scRNA-seq datasets. The keywords
used for searching data include ‘single-cell RNA sequenc-
ing’, ‘scRNAseq’, ‘single cell’ or related technology terms
such as ‘CellRanger’, ‘Seurat’ and ‘10X Genomics’. The col-
lected records were then manually cleaned and only those
relevant to scRNA-seq were kept. Since HUSCH is aimed
at normal scRNA-seq datasets from human tissues, datasets
from in vitro cultures and other species were removed and
for the disease datasets, only the normal cells were included
in the HUSCH database. We also collected the original
cell annotations, if provided by paper, and corresponding
cell type-specific gene markers for better annotating the
datasets from different sources. Meta-information such as
tissue type, genome assembly version, sequencing platform,
sequencing type, cell number, sample resource, related pub-
lications, and donor information are also parsed. After fil-
tering low-quality datasets and datasets with cell numbers
<1000, the HUSCH database contains 185 high-quality
single-cell datasets across 45 different tissues (Supplemen-
tary Table S1). All the downstream analyses were based on
the expression matrix of the raw count (if available), TPM,
or FPKM for each dataset. The source codes for collect-
ing and processing scRNA-seq datasets are deposited in
the GitHub repository (https://github.com/wanglabtongji/
HUSCH).

Data pre-processing

The data pre-processing steps of HUSCH could be sepa-
rated into two major parts, single dataset pre-processing
and multiple datasets integration within the same tissue.
For single-cell datasets processing, the scRNA-seq datasets
were first cleaned to an expression matrix with columns as
cells and rows as genes, other meta-information was cleaned
as a meta table with rows as cells and columns as meta-
information. Then the expression matrix and meta ma-
trix were processed automatically using an analyses work-
flow based on MAESTRO v1.1.0 (18). The workflow will
perform quality control, dimension reduction, unsuper-
vised clustering, batch effect removal, differential expres-
sion (DE), initial cell type annotation based on DE genes,
gene set enrichment analyses (GSEA)(19), transcriptional
regulators and cell–cell interaction analyses (Supplemen-
tary Figure S1). For multiple datasets processing within the
same tissue, all the processed datasets from that tissue will
be integrated using R package harmony v1.0 (20). To con-
firm the integration results and harmonize inconsistent an-
notations between different datasets, we first classified the
cell types into four major lineage levels including immune,
stromal, endothelial, and tissue-specific cells, a similar defi-
nition used in the Tabula Sapiens data portal (10). If a single
dataset showed inconsistent cell type annotations at the ma-
jor lineage level with other datasets for the same cluster, the
cell type annotations will be curated by voting. The integra-
tion steps will be repeated until all four major lineages were
consistent (Supplementary Figure S2). After harmoniza-
tion, if there are still a few cell types from a single dataset
that might be mixed with the wrong lineage, these cell types
will be removed from the tissue-integrated results but are
still kept on the individual dataset page.

Quality control

Datasets containing <1000 cells were not included in the
HUSCH database. Two metrics were used to assess the
quality of cells: the number of detected genes per cell and
the number of total counts (UMI) per cell (library size). The
low-quality cells with a library size of <1000 or detected
gene numbers of <500 were removed from the downstream
analyses.

Clustering and differential gene analyses

For each dataset, the HUSCH preprocessing workflow
identified the top 2000 variable features and perform PCA
for dimension reduction, KNN and Louvain algorithm for
unsupervised clustering (21,22). The number of PCs and the
resolution for graph-based clustering were adjusted accord-
ing to the number of cells per dataset. The uniform manifold
approximation and projection (UMAP) were used to visu-
alize the gene expression, and the Wilcoxon rank-sum test
was used to identify the DE genes between different clusters
based on the logFC > 0.25 and FDR < 1E–5.

Batch effect removal

Datasets from various donors or samples are usually im-
pacted by batch effects in the majority of datasets. To sys-
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tematically assess the batch effects, each dataset was quan-
tified using a metric based on information entropy and the
Euclidean distance between cell coordinates in the UMAP
graph. A system’s complexity can be reflected in its informa-
tion entropy, and a greater entropy number indicates that
different batches of cells are mixed more uniformly. The en-
tropy was calculated using

Entropy = −
N∑

1

pnlog2 pn

where N is the number of batches and Pn denotes the per-
centage of the 30 cells in the neighborhood that belong to
a certain batch. We regard the result of the maximum over
the median of all entropy values as a criterion for whether
or not we need to remove the batch effect. If Max(Entropy)

Median(Entropy) is
too large, it indicates that the majority of the entropy values
are scattered on the smaller side, which means the surround-
ing cells are not evenly distributed among different batches
for the majority of the cells. After testing, we set 4 as the
threshold and remove batch effects using conventional cor-
relation analysis (CCA) in Seurat v4.0.4 for datasets above
the threshold (23).

Cell type annotation

The cell types in HUSCH datasets are defined as major-
lineage level and minor-lineage level. As described in the
data pre-processing section, the major-lineage level includes
immune, stromal (including fibroblast, pericyte, myofibrob-
last, and muscle cell), endothelial, and tissue-specific cells
(including epithelial and other tissue-specific cell types).
The minor-lineage level was the original cell type annota-
tion level. Datasets with original cell type annotation will
be annotated directly using the original label. For datasets
without original cell type annotation provided by the origi-
nal study, HUSCH will automatically annotate each cluster
using cell type-specific marker genes (Supplementary Table
S2). Briefly, cell type marker genes were collected from the
original studies or the public resources and curated man-
ually. Then HUSCH will apply automatic cell type anno-
tation using the cell type scoring function in MAESTRO
based on the DE genes for each cluster. After the automatic
annotation, we manually corrected all of the annotated cell
types by checking cell type marker genes’ expression levels.
The cluster will be assigned as the cell types that showed the
highest score using its corresponding markers. However, the
two different annotation strategies will lead to inconsistent
cell type names. Then HUSCH will unify the cell type names
based on the standard cell type names from Cell Ontology
(24) (Supplementary Table S3).

Functional enrichment analysis

To better understand the function of different cell types
and clusters, we performed gene set enrichment analyses
(GSEA) using the top 200 DE genes of each cluster. The
genes were ranked based on the fold change from the dif-
ferential expression analyses. We collected 236 gene sets for
GSEA in total, including 186 Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways, and 50 hallmark path-
ways from the Molecular Signatures Database (MSigDB
v7.1; 34). Significant up-regulated, and down-regulated
pathways (FDR ≤ 0.05) in each cluster were identified and
visualized to enable the functional enrichment analyses be-
tween different clusters. The GSEA analyses were achieved
using GSEA v4.0.3 for Linux and the heatmaps were gen-
erated using the ComplexHeatmap R package v1.99.5 (25).

Transcription regulator prediction

The transcriptional regulators (TR) of each cell type cluster
were inferred using LISA v2.2.2 (26). For each cluster, the
top 500 positive differentially expressed genes are used as
input as a query gene list, and 8000 random sample back-
ground genes were used to control the bias. Other parame-
ters are set as default for the TR analyses. After getting the
TR enrichment from different cell types, we normalized the
TR enrichment P-values from LISA using log z-score trans-
formation and generated the TR enrichment heatmaps to
better visualize the cell type-specific TRs.

Cell-cell interaction analysis

The cell–cell interaction (CCI) analyses were performed
using CellChat v. 1.4.0 (27) with the CellChatDB.human
database. The aggregated CCI network was calculated by
counting the number of links or summarizing the communi-
cation probability between different cell types, which is visu-
alized using a circle plot with the netVisual circle function.
For each cell type, the significant in and out CCIs were also
visualized in HUSCH using the netVisual bubble function.
All the CCIs with a P-value < 0.01 were visualized for a
certain cell type.

Online automatic cell type annotation

With the comprehensive human cell type atlas, HUSCH
also provides an online cell type annotation function using
a deep learning-based framework SELINA (28). Briefly, the
annotated datasets from HUSCH were trained as a refer-
ence. The SELINA algorithm includes three major steps,
cell type balancing for rare cell types using SMOTE(29)
techniques, a multi-adversarial domain adaptation network
for correcting batch effect between different platforms, and
an autoencoder for removing batch effect between query
and reference datasets. The users could either upload the
single-cell expression matrix or cluster averaged expression
matrix, HUSCH will run SELINA in the background and
return the cell type annotation by email. For jobs with
single-cell level annotation, HUSCH requires the users to
input the gene symbol types, PC number, and clustering res-
olutions for pre-processing the scRNA-seq dataset online.
No data processing parameters are required for cluster-level
annotation.

Web portal for the database

We developed the HUSCH web portal to show the analy-
sis results in a user-friendly manner based on the uniformly
processed scRNA-seq datasets. From the web portal, all
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Figure 1. Statistics of HUSCH datasets. HUSCH includes 185 high-quality single-cell datasets, covering nearly 3 million cells across 45 different human
tissues. The left figure shows the total number of cells for each tissue, and the right figure shows the total number of datasets for each tissue.

of the processed and annotated datasets can be searched,
viewed, and downloaded. The interfaces of HUSCH were
designed with Vue.js, and all the interactive functions of
HUSCH, such as online expression visualization and cell
type prediction were implemented with python. HUSCH
is deployed with the Apache2 HTTP server and is publicly
accessible at http://husch.comp-genomics.org without any
registration or login requirements.

RESULTS

Dataset summary

The HUSCH database includes the single-cell transcrip-
tome atlas of 2 865 305 cells from 185 high-quality hu-
man datasets, covering 45 different tissue types and 7 plat-
forms (Figure 1). The majority of the HUSCH datasets were
generated using 10X-Genomics and Microwell-seq plat-
forms, which are the two most widely used commercialized
scRNA-seq platforms. On average, each dataset contains
∼15 000 cells and ∼18 000 genes. Among the 45 tissues,
blood is the tissue with the most abundant dataset, with >20
datasets and nearly 500K cells. The lung, prostate, eye and
adipose tissues have >150K cells, and the large-Intestine,
bone marrow, lung, and skin tissues have >10 datasets, in-
dicating these tissues are more investigated or are easier
to perform scRNA-seq experiments. Most of the tissues in
HUSCH include more than two datasets, except for some

small tissues such as the fallopian tube and the common
bile duct, which only have one dataset for each tissue.

Single dataset exploration in HUSCH

The dataset module of HUSCH includes sample infor-
mation, clustering results, cell type annotations, cell type
statistics, and marker genes, downstream functional anal-
yses for 185 datasets (Figure 2). There are mainly three
major functions of the dataset module, single dataset
exploration, single tissue exploration, and data down-
load. We first used datasets HU 0322 Blood GSE159929
and HU 0104 Airway GSE102580 as examples to illustrate
how to explore a single dataset in the dataset module.

Cell type composition and gene expression visualization. If
the users select a certain tissue, all the datasets of that tis-
sue will be listed as a table, which shows the basic informa-
tion of each dataset including publication date and PMID,
data source, sample stage, sequencing platforms, sequenc-
ing technology, and cell numbers (Figure 3A, Supplemen-
tary Figure S3A). For a certain dataset at the Overview tab,
HUSCH will display the cell clustering UMAP, cell type
annotation UMAP, cell type statistics, and top DE genes
of that cell type (Figure 3B, Supplementary Figure S3B).
HUSCH also allows users to select different cell types and
rank the DE genes by P-value or log2FC. In the Gene tab,
HUSCH provides an online gene expression visualization

http://husch.comp-genomics.org
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Figure 2. Overview of the HUSCH workflow and functions. The datasets in the HUSCH database were automatically parsed from multiple different
public databases. All datasets were then processed using a uniform workflow based on MAESTRO, including quality control, batch effect removal, cell
clustering, differential expression analysis, cell type and tissue level integration. For each dataset, HUSCH displayed relevant study information, including
tissue type, assembly, platform, the number of patients and cells, and related study information. In the Dataset Exploration module, HUSCH provides
three main functions: single-dataset exploration, single-tissue exploration, and data download. HUSCH also allows online cell type annotation using the
curated expression atlas as a reference.

Figure 3. Expression visualization of a single dataset in HUSCH. (A) Datasets table of the blood tissue. Users could click on a certain dataset and enter
the single dataset exploration page. (B) The overview tab of the HU 0322 Blood GSE159929 dataset. Two UMAP plots with cells colored by cluster ID
(left) and cell type (right) are displayed at the top of the tab. The bottom table below shows DE genes in each cell type cluster. (C) The gene tab of the
single dataset exploration page. The expression of genes of interest can be visualized at single-cell and cell type resolution. The upper figures showed the
expression visualization in single-cell resolution by UMAP, and the bottom violin plot visualizes the expression at the cell type level.
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Figure 4. Advanced analyses of a single dataset in HUSCH. (A) GSEA results of a single dataset. The enriched up- or down-regulated hallmark pathways
in each cluster are visualized in heatmaps. (B) CCI results of a single dataset. The left top heatmap displays the number of interactions between different cell
types, the right top circle plot displays the number of interactions between a certain cell type and other cell types. The bottom dot plot displays significant
CCIs (P-value < 0.01) of selected cell types. Left, the selected cell type as receiver cells, right, the selected cell type as sender cells. (C) The left one is heatmap
of significant enriched transcriptional regulators predicted by LISA for each cell type cluster, the right one is dotplot of the rank for regulators predicted
in cluster CD4T C0.

function for multiple genes using UMAP. Besides, HUSCH
also allows visualizing the gene expression using a violin
plot at cell type or cluster level (Figure 3C, Supplementary
Figure S3C). For the blood dataset, we visualized the ex-
pression of CD14, CD8A, and CD19 using a violin plot,
and the results demonstrate the clear cell type-specific ex-
pression of these genes with CD14 highly enriched in mono-
cytes, CD8A enriched in CD8 T-cells, and CD19 enriched in
B-cells as well as plasmacytoid dendritic cells (Figure 3C).

Advanced analysis. HUSCH also provides several ad-
vanced analysis results for each dataset including GSEA,
transcription regulator identification, and cell–cell interac-
tion analyses.

In the GSEA tab, the pre-calculated GSEA results are
available for the users to investigate the potential func-
tion of different cell types. We gathered 236 gene sets from
MSigDB, including KEGG and hallmark to annotate the

function of each cell type. The differentially expressed genes
in each cluster will be used to identify the enriched up or
down-regulated pathways, which will be displayed using
heatmaps (Figure 4A, Supplementary Figure S3D). For ex-
ample, the B-cell receptor signaling pathway and intestinal
immune network for IgA production are highly enriched in
the B-cells of the blood dataset. Besides, the two B-cell clus-
ters also showed slight differences in functions, indicating
they might be different sub-types of B-cells (Figure 4A).

All the cell–cell interactions in HUSCH were generated
by CellChat. In the cell–cell interaction tab, HUSCH sum-
marizes the number of significant CCIs between different
cell type clusters using a heatmap. Besides, for a single-cell
cluster, HUSCH will also display the number of interactions
of this cluster with all other clusters using a circle plot (Fig-
ure 4B, Supplementary Figure S3E). Finally, HUSCH will
display the significant ligand–receptor pairs for each cell
type cluster using a dot plot, whether this cell type work as
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Figure 5. Tissue level expression visualization in HUSCH. (A) The cell type annotation of integrated blood tissue. (B) Heatmap showing the expression of
CD14 across different blood datasets in HUSCH. The color indicates the expression level of the gene. (C) The cell type annotation of integrated bladder
tissue, the UMAP was plotted for four major lineages, including tissue-specific, immune, endothelial and stromal. (D) Heatmap summarizing the number
of significant CCIs between different cell type clusters. (E) Heatmap of significant enriched transcriptional regulators predicted by LISA for each cell type
cluster.

sender cells or receiver cells. In the blood example dataset,
we can see that the CD8T C3 cluster interacts with other
antigen presentation cells like B and pDCs using MHC-
II and CD8A/B interactions. Also, the CD8T C3 cluster
could work as a sender cell to modulate the functions of
Monocyte C5 through CD99 and ANXA1-dependent in-
teractions (Figure 4B).

Finally, in the TF tab, HUSCH provides transcription
regulator (TR) predictions for each cell type cluster (Fig-
ure 4C, Supplementary Figure S3F). The TRs predicted us-
ing the LISA algorithm could reflect the lineage and dif-
ferentiation status of a certain cell type. For example, both
BCL6 and FOXO1 are well-known functional regulators in
B-cells (30), SPI1 is important for characterizing monocyte
identity, and GATA3, as well as T, is important in T-cell
functions (Figure 4C) (31). These analyses suggest that the

predicted TRs using scRNA-seq could accurately reflect its
cell type lineages and may be used to discover other novel
regulators for uncharacterized cell types.

Single tissue exploration in HUSCH

The integration of different datasets within one tissue will
not only include a wider range of covered cell types but
also amend potential cell type annotation errors from a sin-
gle dataset. We then integrated datasets from different pa-
tients, sources, and platforms within the same tissue using
harmony, and generated the integrated datasets for each tis-
sue for visualizing gene expression across different datasets
(Figure 5, Supplementary Figure S4). We take blood and
nose as examples of the tissue integration result. Integrat-
ing 21 blood datasets significantly enlarged the covered
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cell types (Figure 5A). In addition, when we visualized
the gene expression using heatmaps, all of the included
datasets show high expression of CD14 in monocytes, indi-
cating the high consistency between different blood datasets
(Figure 5B).

For complexed tissues like the bladder, we first sepa-
rated different cell types into four major lineages, includ-
ing immune, stromal (fibroblast, fibsmo, and smooth mus-
cle cell), endothelial, and tissue-specific (epithelia and other
unclassified cell types). This major lineage separation en-
ables HUSCH to curate the cell type consistency in complex
tissues (Figure 5C).

Advanced analysis. For each integrated tissue, HUSCH
also provides various exploration results, such as GSEA,
transcription regulator identification, and evaluations of
cell–cell interactions, using the same methods with sin-
gle dataset analyses. We use the integrated blood dataset
as an example. In the cell–cell interaction tab, myeloid
clusters show apparently more interactions with other cell
types (Figure 5D). In the TF tab, SPI1, which is a well-
known functional regulator in monocyte, was predicted to
be highly enriched in mono/macrophage (Figure 5E). These
analyses show the reliability and wide utility of the inte-
grated HUSCH datasets.

Online automatic cell type annotations

Although HUSCH provides a comprehensive expression
atlas of human scRNA-seq data. Considering the rapid
accumulation of scRNA-seq data in the public domain,
HUSCH also offers functions for users to annotate their
own scRNA-seq data using HUSCH data as a reference
(Supplementary Figure S5). Users could choose from up-
loading scRNA-seq data either at the single-cell or clus-
ter resolution, and HUSCH will process and annotate the
scRNA-seq data using the cell type labels transferred from
the reference data in the database, and send the annotated
result to users by email (Methods).

DISCUSSION

Single-cell RNA-seq has the ability to identify rare cell types
in tissues with unprecedented accuracy and speed, mak-
ing it an indispensable tool for investigating cellular hetero-
geneities across different species. To understand the compli-
cated cell type compositions and expression heterogeneity
in the human body, many scRNA-seq datasets have been
produced. However, there is still a lack of a well-curated,
consistently processed, and annotated data gateway for
large-scale data reuse. Here, we present HUSCH, a com-
prehensive database providing a user-friendly web resource
for interactive gene expression visualization of cellular dif-
ferences across various human tissues at the single-cell level.
HUSCH has a number of benefits over the available single-
cell resources. Firstly, HUSCH includes the single-cell tran-
scriptome atlas of around 3 million cells from 185 high-
quality human normal tissue datasets, covering 45 tissue
types, 270 cell types and 7 platforms, different scRNA-seq
datasets were uniformly processed, annotated, and batched
corrected, which removes the barriers for data re-use. Sec-
ondly, for biologists who want to fully comprehend and

research human biology at a cellular level, the integrated
datasets in HUSCH will be a tremendous resource for vi-
sualizing gene expression conveniently without processing
data by themselves. Finally, HUSCH offers a wealth of
functions for users to dig into the data, understanding the
CCIs and crucial TFs that may drive cell type differentiation
and functions. We will continue to incorporate new datasets
as well as novel functions to enhance the HUSCH database
in the future.

DATA AVAILABILITY

The codes used for data processing in the HUSCH database
are deposited in the GitHub repository at https://github.
com/wanglabtongji/HUSCH.

The expression matrix, sample meta-information, differ-
ential expression gene list, transcription factors, and cell–
cell interactions displayed in the HUSCH database could
be directly downloaded from http://husch.comp-genomics.
org/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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