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t metabolomics enables
metabolite biomarkers and metabolic mechanism
discovery of fish in response to alkalinity stress†

Yan-chun Sun, *a Song Wu,a Ning-ning Du,a Yi Songb and Wei Xua

High throughput mass spectrometry (MS)-based metabolomics is a popular platform for small molecule

metabolites analyses that are widely used for detecting biomarkers in the research field of environmental

assessment. Crucian carp (Carassius carassius, CC) is an economically and ecologically important fish in

Asia. It can adapt to extremely high alkalinity, providing us with valuable material to understand the

adaptation mechanism for extreme environmental stress. However, the information on the metabolite

biomarkers and metabolic mechanisms of CC exposed to alkaline stress is not entirely clear. We applied

high-throughput UPLC-Q-TOF/MS combined with chemometrics to identify changes in the

metabolome of CC exposed to different concentrations of alkalinity for long term effects. Metabolic

differences among alkalinity-treated groups were identified by multivariate statistical analysis. Further, 7

differential metabolites were found after exposure to alkaline conditions. In total, 23 metabolic pathways

of these differential metabolites were significantly affected. Alkalinity exposure resulted in widespread

change in metabolic profiles in the plasma with disruptions in the phenylalanine metabolism, glycine,

serine and threonine metabolism, pyruvate metabolism, tyrosine metabolism, etc. The integrated

pathway analysis of the associated metabolites showed that tRNA charging, L-cysteine degradation II,

superpathway of methionine degradation, L-serine degradation, tyrosine biosynthesis IV, etc. appear to

be the most significantly represented functional categories. Overall, this study demonstrated that

metabolic changes in CC played a role in adaptation to the highly alkaline environmental stress.
Introduction

Crucian carp (also abbreviated CC) belongs to the genus of
Carassius within the family of Cyprinidae.1 It has been part of
the main freshwater species for aquaculture and has been
widely used as a raw material for food production.2,3 Scientists
are paying more attention to CC as it is gaining increasing
signicance economically and ecologically.4 CC has been
recently developed as a potential aquaculture species in the
widely distributed alkaline water. Although CC inhabits fresh
water in streams, rivers, and lakes, it also has great tolerance to
high alkalinity.5 In spite of its economic and ecological impor-
tance, the metabolic mechanism of its extreme tolerance to
alkaline conditions is still a puzzle. A better understanding of
the metabolic basis of the tolerance adaptation and resistance
to high alkaline environment is desired.
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Metabolomics, which involves the unbiased identication of
small molecules in biological uids, can be used as an approach
to understand the biochemical state of an organism and aiding
in the biomarker discovery.6 Recently, metabolomics has iden-
tied a wide diversity of small molecules in the plasma, which
can provide information for identifying potential
biomarkers.7–10 The high-throughput MS metabolomics plat-
form was performed and analyzed, providing the metabolic
basis for further investigation of the mechanism of the high
alkaline tolerance.11,12 An integrated analytical approach based
on high resolution ultra performance liquid chromatography-
mass spectrometry (UPLC-MS) combined with pattern recogni-
tion approach can simultaneously investigate any associated
disruption of the metabolism.13 Recently, we have demon-
strated that the detection of differentially expressed metabolites
in samples can be enhanced by using high-throughput UPLC-Q-
TOF/MS combined with chemometrics.14–17

To better understand the physiological changes and the
mechanism of elevated alkaline tolerance and adaptation,
comparative analysis between the sh living in alkaline water
and fresh water is an efficient method. The purpose of this study
was to identify differentially expressed metabolites that played
a role in adaptation to the complicated and highly alkaline
environment and analyzed using UPLC-MS metabolomics
RSC Adv., 2018, 8, 14983–14990 | 14983
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approach, followed by chemometric analysis to gain insights
into the environmental adaptation mechanism. In the current
study, the differentially expressed metabolites were identied
and functional annotation and pathway analyses were per-
formed, which provides a valuable resource for unveiling the
metabolic mechanism of alkaline tolerance.

Experimental
Reagents and materials

Acetonitrile (ACN) and methanol were purchased from Honey-
well (Muskegon, MI, USA). Distilled water (18.2 MU) was puri-
ed using a Milli-Q system (Millipore, Billerica, USA). Leucine
enkephalin was acquired from Sigma-Aldrich (St. Louis, MO,
USA). Formic acid (HPLC grade) was purchased from J&K
Chemical Ltd (Beijing, China). All other chemicals were
acquired from Sigma-Aldrich (St Louis, MO, USA) unless
otherwise specied.

Ethics statements

In this study, all animal procedures were performed in accor-
dance with the Guidelines for Care and Use of Laboratory
Animals of Heilongjiang River Fisheries Research Institute of
Chinese Academy of Fishery Sciences and approved by the
Animal Ethics Committee of Heilongjiang River Fisheries
Research Institute of Chinese Academy of Fishery Sciences.

Animals

CC were obtained from a local supplier and acclimatized to lab
conditions in 66 L-ow-through tanks (10–16 �C, clear water).
During holding, sh were held on a 12 : 12 light : dark photo-
period and fed commercial sh food (TetraMin®, Melle, Ger-
many) every day. The sh were transferred to experimental
tanks one week prior to the start of the experiment.

Alkalinity exposures and sampling

CC (age 2, length of 15.5 � 1.6 cm and weight 50.2 � 6.2 g) were
distributed among the tanks such that there were 8 sh (four
males, four females) per tank during the exposure. The ow rate
was 10 L min�1 and the tanks were continually aerated with an
average temperature of 20 �C � 1 and a light/dark cycle of 12
h : 12 h. Fish were exposed to either a nal treated carbonate
alkalinity (CA) or clean water (control) for 60 days. In this
experiment, three separate tanks containing carbonate alka-
linity (CA) of 20 mmol L�1 (CA20), 40 mmol L�1 (CA40) and
60 mmol L�1 (CA60) were set. Wastewater effluent samples were
collected every week of the exposure period and the sh were fed
once a day with commercial sh food (TetraMin®, Melle, Ger-
many). All sh appeared healthy during the exposure. Each sh
was caught individually in a net and removed slowly in an
attempt to minimize capture-induced stress in the caught sh
and other sh in the aquarium. Blood was collected from the
caudal vein using heparinized tuberculin syringes and placed in
centrifuge tubes. Blood samples were centrifuged (10 min, 6000
rpm) and the plasma supernatant was collected. All the plasma
samples were stored at �80 �C until analysis.
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UPLC-QTOF/MS analysis

Plasma samples were analyzed by the UPLC-QTOF/MS analyzer
equipped with an electrospray ionization (ESI) source. UPLC-
QTOF/MS analyses were performed on a UPLC™ BEH C18
column (2.1 � 100 mm, 1.7 mm, Waters, Milford, USA). The
column temperature was maintained at 40 �C. The ow rate was
0.4 mL min�1 and the sample injection volume was 2 mL for
each run. Mobile phases consisted of acetonitrile/water (95 : 5 v/
v) containing 0.1% formic acid (solvent A) and water containing
0.1% formic acid (solvent B). Gradient elution was performed
with the following solvent system: (A) 0.1% formic acid–water
and (B) acetonitrile. The gradient elution was performed as
follows: 1–10% A at 0 to 2.0 min, 10–25% A at 2.0 to 6.0 min, 25–
55% A at 6.0 to 10.0 min, 55–95% A at 10.0 to 12.0 min, and 95%
A at 12.0 to 14.0 min.

Mass spectrometry data acquisition was performed using the
quadruple time-of-ight mass spectrometer (Waters, Milford,
USA). Each sample was run separately in positive and negative
electrospray modes. The TOF mass range was set at m/z 50–
1000 Da in the full scan mode. TOF-MS system was operated
with the following settings: source temperature, 110 �C; capil-
lary temperature, 250 �C; desolvation gas temperature, 400 �C;
desolvation gas, 500 L h�1; cone gas, 50 L h�1; cone voltage,
20 V; capillary voltage, 2.5 kV; extraction cone voltage, 5.5 V.
Data processing and chemometrics analysis

Mass spectra were collected in full scanmode (50–1000m/z) and
spectral peaks were deconvoluted and aligned using Masslynx
4.1 (Waters, Manchester, UK). The preprocessing results
generated a data matrix that consisted of the retention time,
mass-to-charge ratio values, and peak intensity. Aer peak-
picking and integration, retention time correction, peak align-
ment and deconvolution, a two-dimensional data matrix
including Rt variables of the observation samples was gener-
ated. These data were fed to the EZinfo 2.0 soware for che-
mometrics analysis, which included unsupervised principal
component analysis (PCA) and supervised recognition pattern
orthogonal projection to latent structures analysis (OPLS-DA).
With an aim to discover the potential variables contributing
to the differentiation, we generated an “Important variables on
the projection (VIP)” plot for the OPLS-DA model; the VIP plot is
used to dene metabolites signicantly contributing to the
separation of groups. MassFragment™ manager (Waters corp.,
Milford, USA) was used to facilitate the MS/MS fragment ion
analysis process. The putative identities of metabolites were
determined from screening the m/z of molecular ions using the
online databases of the Human Metabolome Database (http://
www.hmdb.ca/), METLIN (http://metlin.scripps.edu/), and Lip-
idMaps (http://www.lipidmaps.org/). Compound annotation
was done by comparing the MS/MS spectra and retention time
of commercially available standard compounds.
Metabolic pathway analyses

Metabolic pathway analysis derived the consequences from the
pathway enrichment and the topology analysis. The biological
This journal is © The Royal Society of Chemistry 2018
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function and pathway analysis for the identied metabolites
were sought via enrichment analysis using online Metab-
oAnalyst 2.0 (http://www.metaboanalyst.ca). In the context of
pathway analysis, the statistical p values were further corrected
for multiple testing.
Molecular network analysis

Differentially expressed metabolites were further analyzed
using the Ingenuity Pathway Analysis soware (IPA; https://
analysis.ingenuity.com) in order to identify the affected
biochemical pathways. The molecular pathway was identied
using the IPA according to specic Knowledge Database. The
IPA soware can identify global canonical pathways, dynamical
biological networks and the functions from a given list of
metabolites. The metabolites (HMDB numbers) were imported
into IPA and then, “core analysis” was performed, including
both the direct and the indirect relationship between our
dataset and the reference annotations, in order to interpret data
in the context of biological pathways, molecular functions and
the networks.
Statistical analysis

Chemometric analysis was utilized to understand the global
metabolic changes with treatment (control or exposed) as
factors, and the corresponding VIP values were calculated in the
OPLS-DA model. Student's t-test analysis was performed using
Fig. 1 Representative chromatogram of plasma samples obtained as a r

This journal is © The Royal Society of Chemistry 2018
SPSS (Statistical Package for the Social Sciences) 19.0 soware
(SPSS Inc., U.S.A.), with p < 0.05 considered as signicant.

Results
Typical total ions chromatograms

In this study, representative chromatograms of plasma samples
were analyzed by UPLC-MS. The typical total ion current chro-
matograms of plasma samples for control or exposed groups in
ESI+ and ESI� mode are shown in Fig. 1, indicating the stability
of the UPLC-MS performance and the reliability of the metab-
olomics data.

Metabolic proles analyses

All data on retention time, exact mass, and peak intensity were
recorded for multiple statistical analyses, including PCA and
OPLS-DA. These analytical methods were chosen because of
their ability to deal with multivariate, noisy, collinear, and
possibly incomplete data. UPLC-MS results were displayed as
“score plots” by PCA, which represent the distribution of the
samples in multivariate space. PCA score plots were obtained
from the UPLC-MS data for the three exposed groups, and
showed that the three groups exhibited different tendencies,
indicating their diverse metabolic proles (Fig. 2). PCA of the
data sets revealed clear separation between samples from the
control and CA60-exposed groups in the rst component of
score plots (+ESI mode) and the second component of the
scores plots (�ESI mode). Aer ltering the noise of the OPLS-
esult of employing the UPLC/MS tool.

RSC Adv., 2018, 8, 14983–14990 | 14985



Fig. 2 Principal component analysis scores plot of the CC metabolic
profiles in positive electrospray mode (up) and negative electrospray
modes (down). The black, green, blue and red spots indicate control
and carbonate alkalinity of 20 mmol L�1, 40 mmol L�1, and 60 mmol
L�1, respectively.
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DA model, the CA60-exposed and control groups were still
signicantly separated by the primary component axis (Fig. 3A
and B). A loading plot (Fig. 3C and D) was constructed based on
the OPLS-DA, which showed the contribution of the variables to
the differences between the two groups.
Discovery and identication of differentially expressed
metabolites

Comparative analysis among the CA60 and control sh was
performed to investigate the different metabolomes. We
employed an additional multivariate statistical approach
termed VIP-plot to select metabolites that contributed to this
14986 | RSC Adv., 2018, 8, 14983–14990
group behavior observed by OPLS-DA. Higher values of VIP
indicate metabolites that are more important to the classica-
tion. Metabolites with VIP scores (Fig. 4) greater than 9 were
considered signicant. Filtered by the VIP cut-off and p value,
we obtained 7 differential metabolites. Elemental composition
was calculated using the MassFragment™manager inMasslynx
4.1(Waters corp., Milford, USA). Finally, the obtained elemental
composition was conrmed by comparison with that of a stan-
dard sample, which was tentatively assigned, based on struc-
tural analogs or by matching their accurate mass formula with
online databases including METLIN, HMDB and Lipid Map.
Eventually, 7 metabolites were tentatively identied as potential
biomarkers, namely, L-cysteine, L-tyrosine, phenylpyruvic acid,
acetoacetic acid, pyruvic acid, L-phenylalanine, and L-serine and
are listed in Table S1.†
Metabolic pathways and functional analysis

Through MetaboAnalyst 2.0 analysis, the signicant impact
pathways were determined with the impact value close to 0.1.
MetPA was used to interpret and visualize the metabolome
expression proling data. It allowed us to analyze key pathways
of differentially expressed metabolites related to alkalinity
stress and identify enriched pathways from the differential
expression metabolite data. Pathway analysis was performed on
7 signicantly altered plasma metabolites between the control
and CA60 exposed CC. The results from the integration of
enrichment and pathway topology analyses were utilized to map
the identied metabolites into specic metabolic pathways. On
this basis, 23 pathways were thought to be potentially affected
during the alkalinity stress (Fig. 5, ESI Table S2†). The phenyl-
alanine metabolism was the most signicantly affected pathway
based on p-values and pathway impact scores. Other impacted
pathways included glycine, serine and threonine metabolism,
pyruvate metabolism, tyrosine metabolism, cysteine and
methionine metabolism, aminoacyl-tRNA biosynthesis, pyru-
vate metabolism, and butanoate metabolism. Most of the key
intermediate metabolites involved in these metabolisms were
signicantly altered during the alkalinity stress. Collectively,
pathways identied herein may cause integral disturbance on
CC under alkaline stress.
Integrated pathway analyses

To investigate and visualize the biological connectivity of the
differentially expressed metabolites related to alkaline stress,
the network-generating algorithm of IPA was used to maximize
the interconnectivity of molecules based on all known connec-
tivity in the online database. The result of the IPA biological
function analysis (ESI Table S3†) is represented as a bar chart in
Fig. 6. These molecular network representations clearly illus-
trate that the tRNA charging, L-cysteine degradation II, super-
pathway of methionine degradation, L-serine degradation,
tyrosine biosynthesis IV, cysteine biosynthesis/homocysteine
degradation, L-cysteine degradation III, L-cysteine degradation
I, phenylalanine degradation I, and tyrosine degradation I
appear to be the most signicantly represented functional
This journal is © The Royal Society of Chemistry 2018



Fig. 3 Chemometrics analysis. OPLS-DA score plot of the UPLC/MS data from the CC metabolic profiles in positive electrospray mode (A) and
negative electrospray modes (B). Loading plot of the UPLC/MS data in positive electrospray mode (C) and negative electrospray modes (D).
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categories according to the differentially expressed metabolites
dataset.

Discussion

Fish are oen exposed to environmental stress.18,19 The effects
of excess alkalinity in CC sh are poorly understood. This
information is urgently needed for further understanding the
metabolic characteristics of alkaline stress tolerance. The high-
throughput metabolomics can provide the tool for further
investigation of the metabolic mechanism.20–31 Therefore, we
examined the long-term effects of alkalinity stress on the CC.
The metabolic proles are studied by top-down thermometric
analysis. Metabolic analyses conducted in the present study
enhance the understanding on the impact of alkaline stress
effects. The aim was to investigate the effects of exposure to
This journal is © The Royal Society of Chemistry 2018
a nal treated alkalinity on the plasmametabolites of CC. Three
groups of sh were susceptible to the alkaline concentration
and the duration of exposure was 60 days. Plasma samples from
alkalinity-exposed and control groups were proled using our
newly developed high-throughput UPLC-Q-TOF/MS combined
with chemometrics in order to discover and enable the detec-
tion of differentially expressed metabolites. Our study revealed,
for the rst time, widespread disruption of differential metab-
olites in plasma of alkalinity-exposed sh, which could play
a role in adaptation to the highly alkaline environment.

The results of this exploratory investigation show that the
change in metabolism accurately reects the alkaline condi-
tions. Few metabolites and the variation in their levels with the
alkalinity conditions were quantied; these metabolites dis-
played signicant changes according to the UPLC-MS system
results. Concurrently, 7 differential metabolites through UPLC/
RSC Adv., 2018, 8, 14983–14990 | 14987



Fig. 4 OPLS-DA VIP-plot for screening of differentially expressed
metabolites in positive electrospray mode (up) and negative electro-
spray modes (down).

Fig. 5 Summary of metabolic pathways of significantly changed
metabolites with MetPA. Circles represent metabolism (ESI Table S2†).
All matched pathways are plotted depending on p-value from pathway
enrichment analysis and pathway impact score from pathway
topology analysis. Colour gradient and circle size indicate the signifi-
cance of the pathway ranked by p-value (yellow: higher p-values and
red: lower p-values) and pathway impact score (the larger the circle

RSC Advances Paper
MS-based metabolomics were determined. In total, 23 related
pathways could be potentially affected from alkalinity stress.
Among the above pathways, 7 played important roles, namely,
phenylalanine metabolism, glycine, serine and threonine
metabolism, pyruvate metabolism, tyrosine metabolism,
cysteine and methionine metabolism, aminoacyl-tRNA biosyn-
thesis, and butanoate metabolism; these pathways may thus
have key roles in regulating adversity development. Moreover,
we highlighted the need for further understanding of the
function of the numerous metabolites that were detected in CC
plasma. The integrated pathway analysis was used to investigate
and visualize biological connectivity of the differentially
expressed metabolites related to alkalinity stress. The biological
14988 | RSC Adv., 2018, 8, 14983–14990
function analysis showed that the tRNA charging, L-cysteine
degradation II, superpathway of methionine degradation, L-
serine degradation, tyrosine biosynthesis IV, cysteine
biosynthesis/homocysteine degradation, L-cysteine degradation
III, L-cysteine degradation I, phenylalanine degradation I, and
tyrosine degradation I appear to be the most signicantly rep-
resented functional categories according to the differentially
expressed metabolites dataset. These results shed new light on
our understanding of the mechanisms responsible for ecolog-
ical adaptation in CC sh.

Alkalinity exposure signicantly affects metabolic proles in
the long-term alkalinity stress experiment. In our study, the use
of high-throughput UPLC-Q-TOF/MS methods combined with
chemometrics resulted in detection of differentially expressed
metabolites in alkalinity-exposed sh that were associated with
the phenylalanine metabolism, glycine, serine and threonine
metabolism, pyruvate metabolism, tyrosine metabolism,
cysteine and methionine metabolism, aminoacyl-tRNA biosyn-
thesis, and butanoate metabolism pathways. In total, 7 metab-
olite structures were identied as signicant markers of
alkalinity exposure. This conrmed that our assays were
appropriate for measuring physiological stress responses in CC.
These metabolites are essential mediators regulating a diverse
array of physiological systems and the disrupting of their
metabolism warrants additional investigation on their effects.
This study provides us useful information to explain the meta-
bolic mechanism of alkaline stress tolerance.
the higher the influence score), respectively.

This journal is © The Royal Society of Chemistry 2018



Fig. 6 Ingenuity pathway analysis was performed on the significantly changed metabolites data.

Paper RSC Advances
Conclusions

In summary, we utilized metabolic methods to identify the key
signaling pathways and metabolic expression proles associ-
ated with alkaline stress. We found 23 signaling pathways that
could be potentially affected from alkalinity stress. Additionally,
7 key pathways related to the alkaline stress had been signi-
cantly enriched, indicating that these pathways are key for the
adaptation to the highly alkaline environment. The generated
information can be used to provide new insights into the
alkalinity-mediated stress mechanisms of CC. In conclusion,
our ndings suggest that high-throughput UPLC-Q-TOF/MS
methods combined with chemometrics are suitable for
seeking the differentially expressed metabolites associated with
environmental change and understanding the adaptation
mechanism against extreme environmental stress. This study
demonstrated that metabolomics could provide an insightful
view of the small-molecule differential metabolites of CC under
alkaline stress. It assists us in understanding adaptation under
extreme environmental stress and will ultimately benet future
breeding programs for alkaline-tolerant sh.
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