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Chromium removal from tannery 
wastewaters with a strong cation 
exchange resin and species analysis 
of chromium by MINEQL+ 
Sevgi Kocaoba*, Gulten Cetin & Goksel Akcin

Chromium (III) salts are highly applied for tanning purpose in tannery industries. The purpose of this 
study was removal and recovery of chromium(III) from tannery wastewater with a strong cation 
exchange resin. For this purpose, Amberlite 252 ZU was chosen as a strong cation exchange resin. In 
the first part of this study, The MINEQL+ computer program was applied depending on the optimum 
concentration and pH for determining Cr species in aqueous solutions. The second part of the work 
consists of measuring the exchange equilibrium of H+ ions and Cr(III) ions. Therefore, solutions 
containing fixed amounts of chromium were brought into contact with different amounts of resins. 
The evaluation of the obtained equilibrium parameters was done by surface complexing theory. 
Retention and regeneration steps were successfully performed in the column without any significant 
change up to 10 cycles. Efficiency was between 90 and 98% in removal studies, and between 81 and 
92% in recovery studies. The results showed that a strong cation exchange resin Amberlite 252 ZU can 
be successfully used for chromium removal and recovery.

Environmental pollution and reducing its damages has been a subject that has been studied for a long time. 
Removal problems of pollutants from wastewater are growing with rapid industrialization. Heavy metals, oils, 
suspended solids, organic substances and other similar pollutants that have toxic effects for many organisms 
spread to the environment from the wastes of industries such as leather, textile, paint and printing, electroplat-
ing applications, food industry, wood preservative and miscellaneous etc1–7. Untreated wastewater from such 
industries causes an increase in chromium content in the environment and groundwater8–15. Chromium toxicity 
limits are 28–80 mg/L for fish and 0.05 mg/L for drinking water. The level of chromium that people can get from 
daily food is 0.05–0.2 mg/day. In addition, chromium has toxic and carcinogenic effects, as well as a tendency to 
accumulate in living organisms. It is predicted that excess chromium in the body can damage the kidneys and 
increase the risk of lung and stomach cancer.

Chromium is generally found in two species in different environmental samples. Cr(III) and Cr(VI), which 
are predominantly two oxidation states, show significant differences in their biological and toxicological behavior. 
Cr(III) and (VI) are inorganic chromium species in water. While Cr(VI) is known to be more toxic and carcino-
genic, Cr(III) specie is necessary for maintaining glucose tolerance in humans. Due to these harmful properties 
and high solubility of Cr(VI), environmental protection studies have focused on this type of chromium. On the 
contrary, the toxicity of Cr(III) compounds is lower than Cr(VI) and can be easily precipitated in neutral or 
basic conditions. Therefore, the traditional treatment method of chromium-containing wastewater is to reduce 
Cr(VI) to Cr(III) and precipitate as Cr2O3⋅xH2O at high pH values16–21.

Leather tanning is one of the most polluting agro-industrial sources and industrial activity holds an impor-
tant place in Turkey. Large amounts of tannery wastewater containing chrome salts and other pollutants are 
poured into open areas, agricultural lands and various water sources, causing great pollution of the soil, water 
and ecosystem. Due to their toxicity, the maximum permitted metal levels in wastewater, even at low concen-
trations, are regulated by separate legislation in each country. All tanneries containing 1500 mg/L or more of 
Cr(III) ions must take effective measures to treat waste chrome tanning solutions. However, the high economic 
and environmental costs associated with greater land disposal make it difficult for many tanneries to effectively 
treat their wastewater. There is a need for an effective and more economical method of removing chromium 
from the leather industry wastewater, including the recovery and reuse of chromium. This is important both in 
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terms of protecting the environment and reducing raw material costs. Various conventional precipitation and 
ion exchange processes have been developed for the removal and recovery of chromium and other heavy met-
als from wastewater. New methods are being explored to effectively improve existing technology for chromium 
removal and recovery. However, more traditional and old methods for wastewater treatment are still being used, 
which can also release more waste to the environment22–31.

The precipitation method is generally preferred for removal of chromium from wastewaters. According to 
this method, Cr(VI) is reduced to Cr(III) and precipitated in the form of hydroxide. For reduction, the pH range 
should be brought to the 2–3 range. After this step, Cr(VI) is reduced to Cr(III) with a reducing agent (SO2, 
NaHSO3, Na2S2O3, Na2SO3). Neutralization in the second step and precipitation with OH− is provided32–36. Other 
removal methods are electrochemical precipitation, adsorption, ion exchange, solvent extraction, membrane and 
foam separation, reverse osmosis, biosorption etc37–46.

Ion exchange method is a very effective, inexpensive and highly preferred method for removing and recov-
ering heavy metals from liquid wastes. As we have seen in our and other previous studies that strong cation 
exchange resins are very effective for removal and recovery of chromium. Therefore, Amberlite 252, as a strong 
cation exchange resin, was used in this study. The principle of the study involves the removal of Cr(III) ions from 
tannery waste water with the help of a strong acidic ion exchange resin in hydrogen form. It is well known from 
previous studies that chromium species are easily removed in this way. The removed chromium(III) values were 
changed between 80 and 98% 22,47–52.

The regeneration method used to recover chromium species from resins is extremely important because 
concentrated acids or salt solutions traditionally used in the recovery of other metals cannot be made very satis-
factorily due to the strong binding of trivalent chromium ions. Therefore, as recommended in the literature37,47, it 
has been found that the application of H2O2 in alkaline medium during the regeneration process is very useful to 
solve this problem. In this way, Cr(III) species are converted into chromate ions. The resin is loaded with sodium 
ions in alkaline medium. In the last step, it is re-converted to H+ form by means of sulfuric acid.

With the method used in this study, not only chromium removal is performed, but also the amount of waste 
is reduced and the consumption of raw materials is minimized by recovering the consumed chromium. The 
investigations have occurred with batch studies. In batch studies, equilibrium experiments were done for deter-
mination of exchange equilibria (exchange Cr3+ for H+). The evaluation of the obtained equilibrium parameters 
was done by surface complexing theory. In addition, The MINEQL+ computer program was applied depending 
on the optimum concentration and pH for determining chromium species in aqueous solutions. As a result, it 
has been found that chromium can be effectively removed from tannery wastewater with Amberlite 252 ZU, a 
strong cation exchange resin. In addition, it has been observed that chromium, a precious metal, can be recovered 
with the applied regeneration process. Therefore, chromium removal and recovery was achieved successfully 
with the chosen method. With the MINTEQ program applied, the species formed were determined in order to 
find the most suitable optimum conditions in the pH and concentration ranges studied.

Materials and methods
Materials.  In this study, Amberlite 252 ZU (strong acidic cation exchange resin) was used for the determina-
tion of the exchange equilibria of Cr(III) for H+ by using chromium chloride solutions in acidic pH. The proper-
ties of Amberlite 252 ZU are given in Table 1. Analytical grade chemicals, CrCl3.6 H2O HCl, HNO3, NaCl, NaOH 
(Merck, Germany) were used in the preparation and application of the resins to the studies. Analytical grade 
chemicals, H2O2, NaOH, H2SO4 (Merck, Germany) were used for regeneration of the resin. All solutions used 
for the resin preparation, ion exchange and resin regeneration were prepared freshly from double distilled water.

Preparation of the resin.  Amberlite 252 ZU ion exchange resin was pretreated in a column by three treat-
ment cycles with 1 M HCl and a mixture of 1 M NaOH and 1 M NaCl to remove impurities that trapped in its 
matrix during manufacture. The ion exchange resin was then converted to H+ form with 1 M HCl. The resins 
to be used for equilibrium experiments were centrifuged before weighing to remove water attached to the outer 
surface of the particles.

Determination of total capacity of the resin.  It was determined in the batch system. 1 g of resin was 
weighed into erlenmeyer flasks and agitated by a constant volume of solution (100  mL, 0.1  M NaOH solu-
tion) for 1 day at room temperature (20 ± 10 °C) with shaking until equilibrium was achieved. The initial and 
final amounts of sodium were measured by atomic absorption spectrophotometry (AAS) to determine the total 

Table 1.   Properties of the resin.

Data Ion exchange resin (Amberlite 252 ZU)

Matrix Styrol-DVB

Functional group Sulphonic acid

Particle size 0.6–0.8 mm

Max. temp 100 °C

pH range 0–14

Total capacity  ≥ 1.8 eq/L
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capacity of the resin. At the same time, capacity studies were carried out ten times by repeating the retention and 
regeneration steps to determine the effectiveness of the column. The exchange capacities of resin were calculated 
with the following equation;

Cinitial is the initial concentration of sodium, Cfinal is the final concentration of sodium (meq/L), V is the solution 
volume (L) and m: resin amount (g).

The results are given in Table 2.

Speciation of chromium.  Chromium species were investigated with respect to pH for Cr-H2O systems 
with MINEQL+ version 3.01 speciation working program. Information about the MINEQL+ computer program 
is given in the literature53. According to the parameters effective in adsorption such as concentration and pH, 
% concentrations of the chromium species were found in the pHs examined using the MINEQL+ program. The 
speciation diagram has given in Fig. 1.

Equilibrium experiments.  Determination of exchange equilibria [exchange Cr3+ for H+].  To investigate 
the exchange equilibria of hydrogen ions with Cr(III) ions, 0.5, 1, 1.5, 2, 3, 5 g resin samples were weighed into 
flasks with lids. In a shaker, it was contacted with 200 mL volume of chromium solutions at concentrations of 
5.173 meq/L, 13.259 meq/L and 25.975 meq/L at room temperature (20 ± 10 °C) for 5 days. Since pH is an impor-
tant parameter in equilibrium studies, pH values were changed in each experiment series. The initial and final 
equilibrium pH values were measured with an electrode and a pH meter. The surface complexation theory was 
applied for evaluation of experimental results and prediction of equilibria. According to this theory, the surfaces 
of ion exchange resins are considered to be a planar surface on which functional groups (ions) are evenly dis-
tributed. Surface loads are produced by separating or protonating surface groups. As a result, it can be thought 
that the protons are held directly on the surface. Most of other ions are found in Stern layers parallel to the sur-
face and at different distances from the surface. The remaining opposite and same charged ions are distributed 
throughout the normally negligible scattered layer. In the evaluation of equilibrium parameters, generalized 
separation factors are determined from equilibrium concentrations and resin charges, and the sum of resin load-
ings (algebraic) is plotted against dimensionless resin loadings. The isotherms are given Figs. 2, 3 and 4.

Preparation of samples for analysis.  Samples taken from the liquid phase were filtered through 0.45 µm 
Millipore filters and samples with high chromium concentrations were diluted to appropriate determination 
concentrations. All samples were acidified 1% with absolute nitric acid solution before determination. Chro-
mium concentrations were measured by atomic absorption spectrophotometry.

Application of surface complexation theory to data.  The retention of ions on charged surfaces can 
also be explained by the surface complexing model. The surface charges of a strongly acidic ion exchange resin 
are created by dissociation of surface groups. Negative surface potentials are formed during the dissociation of 
sulfonic groups in the structure of a strongly acidic cation exchange resin. Therefore, while the same charged 
ions are repelled, the counter-charged ions generate attractive forces. As a result of retaining counter-charged 

(1)Q = (Cinitial− Cfinal) V /m

Table 2.   Exchange capacities of Amberlite 252 ZU.

Cycle Capacity (meq/g)

Beginning 2.82 meq/g

5th cycle 2.56 meq/g

10th cycle 2.15 meq/g
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Figure 1.   Species % for chromium depends on pH.
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ions in functional groups, a fractional reduction in surface potential occurs. According to this theory, each 
counter-charged ion is assumed to be at a certain distance from the surface. This causes the formation of regular 
double or Stern layers. Ion pairs formed between surface groups and counter-charged ions in the regular layer 
are defined as surface complexes. Excessive charges on the surface are balanced with counter-charged ions in 
dispersed layer containing co-charged ions. As a result, the surface potential is continuously reduced by the 
distance from the surface until it is zero in the liquid phase. In fact, prototype reactions dominate the balance 
between solid and liquid phases, making protons effective in determining surface potential54–61.
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Figure 2.   Isotherm of the uptake of Cr3+ by the resin Amberlite 252 ZU (Initial conc. and pH: 5.173 meq/L, 
3.18).
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Figure 3.   Isotherm of the uptake of Cr3+ by the resin Amberlite 252 ZU (Initial conc. and pH: 13.259 meq/L, 
3.15).
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In systems with CrCl3 and pH less than 3, the exchange of Cr(III) ions with H+ ions in the resin structure 
takes place as follows;

When we applied surface complexation model to experimental data, it is based on the assumption of a specific 
series of Stern layers of counterions and on the introduction of the respective “Generalized Separation Factor”. 
Considering their local equilibria, it can be said that hydrogen ions are adsorbed on a Stern layer closer to the 
surface than chromium ions, and the following expression is simplified as given in the literature 54,56 for the 
calculation of the generalized separation factor;

y(Cr) is the dimensionless loading of chromium in resin phase, y(H) is the dimensionless loading of hydrogen 
in resin phase, log QH

Cr is the logarithm of the generalized separation factor, C(Cr) is the liquid phase chromium 
ions concentration (meq/L), C(H) is the liquid phase hydrogen ions concentration (meq/L).

The respective numerical values of the generalized separation factor were determined from experimental 
data. The equilibrium parameters result from the linear relationship

From this plot the two equilibrium parameters KH
Cr and m(H,Cr) can be obtained. The slope m(H,Cr) con-

tains the electric capacitance of the capacitor formed by the layers of H and Cr ions. y(Cr) being obtained from:

and y(H) was obtained from the measured pH values. Therefore, for local equilibria, logarithmic equilibrium 
parameters (generalized separation factors) can be obtained by measuring the pH values and equilibrium con-
centrations. As has been shown theoretically the parameter m, being the slope of the linear relationship (Eq. 3) 
has to be ≥ 0. Therefore, if evaluation leads to negative values the assumed sequence of Stern layers was incorrect 
and has to reversed. For the reverse sequence the separation factor is log QCr

H and has to be calculated from an 
expression with the inverse quotient appearing in the logarithm. Furthermore, the equilibrium constants are 
log KCr

H and m(Cr, H).
For evaluation of equilibrium parameters the generalized separation factors determined from each of the 

samples have to be plotted vs. the respective dimensionless resin loading with the counterion which is located 
farther away from the surface.

The results are given in Figs. 5, 6 and 7. Equilibrium parameters of the exchange for protons are given in 
Table 3.

Results and discussion
Speciation of chromium.  Speciation was done in studying pH with MINEQL+ computer program. The 
% concentrations and pH values of the chromium species found in the medium were found with this computer 
program. The speciation diagram has given in Fig. 1 shows the dispersion of the chromium species at different 
pH values in aqueous solutions. Simulations based on the MINEQL+ program largely depend on the composi-
tion of the liquid phase and the pH of the solution.

The determined study pH’s and concentration values (20 mg/L) were chosen to compare experimental and 
computerized results.

According to the chromium speciation diagram for pH, the predominant species below 3 is Cr3+ , between 4–5, 
Cr(OH)2+ and after pH 6, the predominant species is Cr(OH)3, because of precipitation Cr(III) as Cr(OH)3. It 
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3.18).
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was not preferred to work after pH 6 in batch studies due to the precipitation of chromium. At pH 4, the Cr3+ and 
Cr(OH)2+ species are present in approximate distribution of around 30 and 65%. At pH 5, the Cr(OH)2+ species 
dominates, accounting for nearly 84% of the chromium present with other major form as Cr(OH)+2 accounting 
for around 4%. These results are similar to the speciation diagram of reference for chromium complexes present 
in aqueous solution47. Looking at the distribution of the species between pH 3 and 4, it clearly shows that the 
Cr (OH)2+ complex with Cr3+ is selectively adsorbed into the resin, but between pH values of 4 and 6, Cr(III) is 
retained principally as Cr(OH)2, although the Cr(OH)+2 complex is also retained. In addition, Cr3+, Cr(OH)2+, 
Cr(OH)+2, Cr(OH)3 species were found with a maximum retention at pH 5. At this pH, the Cr(OH)2+ specie 
predominates approximately 84%. Maximum retention of chromium is shown at pH 5, but since we prefer to 
work in Cr3+ form and the dominant species is Cr3+ at pH: 3, all studies have been done at pH: 3.

Exchange isotherms.  Isotherms of the exchange of Cr3+ for H+ are plotted in Figs. 2, 3 and 4 for three 
different initial concentrations of Cr3+. Figure 2 shows that the resin loading increases strongly in a narrow con-
centration range region. At higher initial concentrations the typical isotherms for a strongly preferred species 
develop with a sharp increase at small concentrations and a more or less flat further development. The maximum 
loadings obtained are in the range of 2 to 3.5 meq/g.
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Figure 6.   Generalized separation factor for the exchange of H+ for Cr3+ (Initial conc.and pH: 13,259 meq/L, 
3.15).
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Table 3.   Equilibrium parameters of the exchange for protons (Amberlite 252 ZU).

Co (mg/L) logQHCr m (H,Cr)

100 1.5035 0.3029

250 6.9058 1.3417

500 4.1914 0.5256
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Equilibrium parameters.  Equilibrium parameters were determined by calculating the generalized separa-
tion factor as explained before. When the data were evaluated, it showed that a positive slope generalized separa-
tion factor can only be found assuming that chromium ions are in the inner layer and hydrogen ions are closer to 
the surface than chromium ions. This situation is similar to the previous equilibrium studies with strong cation 
exchange resins 48,54,62–66.

It has been shown that more counter ions in Stern layers are fixed with increasing log K values, and at stronger 
dissociation values, the counter ions are increasingly found in scattered layers. The straight line from the graphs 
shows that the metal ions are slightly farther away from the surface of the Stern layer, while the protons have a 
positive slope indicating that they are exposed to certain interactions with functional regions and are directly in 
the plane of the surface. Similar comments have been made in some studies where the surface complex theory 
was previously applied 56,63,64,67–70. The results are given in Figs. 5, 6 and 7 for two set of experiments. The two 
equilibrium parameters required for the evaluation of the ion exchange equilibrium, logQH

Cr and m(H,Cr) were 
found from the graphs and are given in Table 3. The preference for chromium leads to positive values of logQH

Cr. 
The slope m(H,Cr) contains the electrical capacitance of the capacitor, which consists of layers of H and Cr ions. 
Both of these parameters must be constant to hold a metal ion by a particular sorbent and can be used for estima-
tion of multicomponent equilibrium. The lower logQH

Me value, the more preferable is the metal species (Me) by 
the sorbent. The greater value of m(H,Me), the greater distance of Stern layers of metal ion from the surface of 
the sorbent. It is one of the advantages of the surface complexation theory that the parameters are independent 
of the total concentration. The surface complexation model provides a perfect definition and prediction of the 
counter equilibria by any type of ion exchange resins. It also facilitates accurate estimation of ion dispersions in 
resin and liquid phases26,65,71–75. Linear correlations were obtained in some cases with Amberlite 252 ZU resin. 
This may be due to the neglect of counterions in the diffused layer. This region is relatively larger than other resin 
types for strong acidic exchange resins. Thus, it can be concluded that the dispersion of counterions in the diffuse 
layer is minimum. This has shown that strong coordination complexes between divalent and trivalent ions and 
ion exchange regions are well formed, as can be seen from previous studies48,56,63–65,76–80.

The removal of chromium with the strong acidic exchange resin (Amberlite 252 ZU) used in this study was 
found to be very successful.

Conclusions
The MINEQL+ computer program was applied depending on the optimum concentration and pH for determin-
ing chromium species in aqueous solutions. According to the chromium speciation diagram for pH, the pre-
dominant species below 3 is Cr3+ , between 4–5, Cr(OH)2+ and after pH 6, the predominant species is Cr(OH)3, 
because of precipitation Cr(III) as Cr(OH)3. In addition, Cr3+ , Cr(OH)2+ , Cr(OH)+2, Cr(OH)3 species were 
found with a maximum retention at pH 5. At this pH, the Cr(OH)2+ specie predominates approximately 84%. 
Maximum retention of chromium is shown at pH 5, but in order to preserve the trivalent chromium form studied 
in tanneries, we preferred to work at pH 3, where Cr3+ is dominant.

Equilibrium parameters for Amberlite 252 ZU were obtained from a series of binary experiments. In these 
sets, all experimental conditions were the same and were used to find the equilibrium from a theoretical basis. 
In most cases, a good agreement has been found between predicted and experimental data. The surface com-
plexation model provided a perfect definition and prediction of counterion equilibria with Amberlite 252 ZU 
and facilitated accurate prediction of dispersion in resin and liquid phases. It was also found that chromium 
had a higher adsorption efficiency with the selected resin. Retention and regeneration steps were successfully 
performed in the column without any significant change up to 10 cycles. Efficiency was between 90 and 98% in 
removal studies, and between 81 and 92% in recovery studies.

The results showed that Amberlite 252 ZU, a strong cation exchange resin, can be successfully applied for 
removal and recovery of chromium.

Data availability
All data generated or analysed during this study are included in this published article.
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