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Vasopressin (VP) and VP-like neuropeptides are evolutionarily stable peptides found in 
all vertebrate species. In non-mammalian vertebrates, vasotocin (VT) plays a role similar 
to mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian 
oxytocin (OT). Here, we review the involvement of VP in brain circuits, synaptic plas-
ticity, evolution, and function, highlighting the role of VP in social behavior. In all studied 
species, VP is encoded on chromosome 20p13, and in mammals, VP is produced in 
specific hypothalamic nuclei and released by the posterior pituitary. The role of VP is 
mediated by the stimulation of the V1a, V1b, and V2 receptors as well as the oxytocinergic 
and purinergic receptors. VT and VP functions are usually related to osmotic and cardio-
vascular homeostasis when acting peripherally. However, these neuropeptides are also 
critically involved in the central modulation of social behavior displays, such as pairing 
recognition, pair-bonding, social memory, sexual behavior, parental care, and maternal 
and aggressive behavior. Evidence suggests that these effects are primarily mediated by 
V1a receptor in specific brain circuits that provide important information for the onset and 
control of social behaviors in normal and pathological conditions.

Keywords: evolutionary lineage vP, vasopressin-like, v1a receptor, v1b receptor, social behaviors

General Aspects

Vasopressin-like (VP-like) and oxytocin-like (OT-like) peptides have been isolated from inver-
tebrates and vertebrates in more than 100 species (1). Approximately 700 million years ago, the 
ancestral gene encoding the precursor protein diverged between the invertebrate and vertebrate 
families (2). Generally, all vertebrate species express a VP-like and OT-like peptide.

The lineage of VP-like peptides is evolutionarily stable. In fishes, amphibians, reptiles, and birds, 
vasotocin (VT) shares similar roles with mammalian arginine vasopressin (VP), whereas mesotocin 
and teleost isotocin are functionally similar to mammalian oxytocin (OT) (3).

The gene expression and regulation of these peptides is conserved among vertebrates (3). The 
chemical structure of VP and OT differs by only two of nine amino acid residues (4, 5). The VP/OT 
superfamily can be traced back to different types of invertebrates, such as annelids and mollusks (6). 
There is a homology of 80% between VP and OT, but these neuropeptides have distinct physiological 
activities. The receptors for VP-like and OT-like peptides have been described in invertebrates (6) 
and vertebrates (7).
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Both VP and OT are produced in the hypothalamus, released 
in the neurohypophysis, and distributed throughout the brain (8, 
9). In 1895, the vasopressor effect of the neurohypophyseal extract 
was attributed to the neurohypophysis gland (10). However, two 
decades later, the antidiuretic effect of the pituitary extract was 
demonstrated (11). The isolation of VP in the fifties confirmed 
that the same neuropeptide is synthesized in the neurohypophy-
sis gland and possesses antidiuretic and vasopressor effects (12).

This review focuses on the involvement of VP in brain circuits, 
synaptic plasticity, evolution, and function, highlighting the role 
of VP in parental and sexual behaviors.

vasopressin and vasopressin-Like 
Peptides

Gene Structure
Nucleotide sequences encoding the VP and OT hormones are 
highly homologous. In all species, VP and OT are located on 
the same chromosome, 20p13, but encoded by different genes 
separated by a segment of DNA only 12 kb long (13). The similar-
ity in the intron–exon structures of the two genes and opposite 
orientation suggest recent gene duplication (14).

Synthesis and Release
Vasopressin is a nonapeptide with a disulfide bridge between two 
cysteine amino acids and is synthesized in a smaller amount by 
parvocellular neurons, primarily by magnocellular neurons of the 
hypothalamus in paraventricular nucleus (PVN) and supraoptic 
nucleus (SON) (15). These nuclei send axons to the neuro pitui-
tary along the supraoptic–hypophyseal tract. In a prohormone 
state, VP migrates along the supraoptic–hypophyseal tract to the 
neurohypophysis gland, where it is released into circulation (16).

The PVN and SON receive afferent nerve impulses from 
receptors in the left atrium, aortic arch, and carotid sinuses via the 
vagus nerve. PVN and SON receive osmotic input from the lamina 
terminalis, which is excluded from the blood–brain barrier and is 
thus affected by systemic osmolality. Furthermore, Holmes et al. 
(16) suggested that in the rat brain, extrahypothalamic struc-
tures, such as the bed nucleus of the stria terminalis (BNST), the 
medial amygdala, nucleus of the locus coeruleus, hippocampus, 
and choroid plexus, in addition to the hypothalamus, are able to 
synthesize VP.

The anterior pituitary gland also releases VP but in smaller 
quantities. VP can activate the hypothalamic–pituitary–adrenal 
axis by stimulating the V1b receptor (V1bR) and controlling 
the liberation of adrenocorticotropic hormone (ACTH) (17), 
whereas the V1a receptor (V1aR) controls the synthesis and release 
of cortisol in the adrenal cortex (18).

vasopressin Receptors
The functions of VP are modulated by stimulation of G-protein-
coupled receptors (GPRCs) from each independent tissue. They 
are classified as V1aR, V1bR (also known as V3R), V2R, oxyto-
cinergic (OTR), and P2 purinergic (P2R) receptors (19, 20). In 
mammals, the VPRs are widely distributed in the brain (21, 22).

Vasopressin can bind to all of these receptors but not with the 
same affinity. The receptors, which use G-proteins as transducer 

signals across the cell membranes, have seven hydrophobic 
transmembrane domains, four extracellular domains, and four 
intracellular domains (23). Neurotransmitters, hormones, and 
chemokines indicate the courses of VP action, whereas local 
mediators signal to the four main G-protein families to regulate 
metabolic enzymes, ion channels, and transcriptional regula-
tors. The different types of VPR extracellular signals refer to 
specific G-proteins. Several important hormones interact with 
the Gi pathway, which is characterized by inhibition of adenylyl 
cyclase (24).

Agonist of VPR is a substance that initiates a physiological 
response through specific interactions with G-protein-coupled 
receptor kinases and protein kinase C present in the carboxyl ter-
mini of the receptors (25). The VP signal is transmitted through 
guanine nucleotide-binding proteins (G-proteins) (26), such as 
Gs and Gq/11 subtypes (24).

V1aR Receptor
V1aR is primarily found on vascular smooth muscle and causes 
vasoconstriction by an increase in intracellular calcium via 
the phosphatidyl-inositol-bisphosphonate cascade. Studies 
in rats have shown that V1aR is also located in the brain, 
myocardium, gonads, cervical ganglion, liver, blood vessels, 
kidney, spleen, renal medulla, and platelets (20–22, 27–29); 
however, the physiologic roles of VP remain unknown in 
many tissues.

V1bR Receptor
V1bR is localized in pituitary gland, olfactory bulb, septum, 
hippocampus, pancreatic beta cells, and adrenal medulla and 
induces the release of hormones (20, 30–32). The phylogenetic 
analysis showed that V1bR diverged early from the V1aR sequences 
and presented the closest relationship with the OTR (31). V1bR is 
highly expressed in the anterior pituitary where it is thought to 
play a role in costimulating the neuroendocrine response to stress 
(33). The VP causes secretion of ACTH, which is important for 
the induction and phenotype maintenance of ACTH-secreting 
tumors mediated through Gs, Gi, and Gq/11 (34). Studies have 
shown that V1bR gene expression may thus be a marker of the 
corticotroph phenotype and can be used to help shed light on 
the pathophysiological mechanism of ectopic ACTH syndrome 
(30, 35).

V2 Receptor
V2R is located on vascular smooth muscle cells, vascular endothe-
lium, and the collecting ducts of the renal medulla (20). The 
hydro-osmotic or antidiuretic effect of VP occurs via activation 
of V2R (36, 37). VP adjusts water homeostasis regulation of the 
fast shuttling of aquaporin 2 to the cell surface and stimulates the 
synthesis of mRNA encoding this protein (38, 39).

Phillips et  al. (28) evaluated V1Rs and V2R binding sites 
in vitro using selective radioligands and demonstrated that there 
was no vasoconstrictor activity of V2R in the endothelium, liver, 
brain, spinal cord, sympathetic ganglia, heart, or vascular smooth 
muscle. In this study, specific binding was only identified in the 
kidney, which is consistent with the known distribution of anti-
diuretic V2Rs on renal collecting tubules (28).
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Other Receptors
Both VP and OT can bind with OTR but not with the same 
affinity. OTRs are coupled to Gq/11 class binding proteins, which 
stimulate phospholipase C activity (34).

P2 purinergic receptors also belong to the seven-transmem-
brane domain GPCR superfamily. Its role was confirmed in 
cardiac endothelium because VP exhibited effects through activa-
tion of P2Rs (40).

vasopressin and Synaptic Plasticity

Vasotocin/vasopressin neuropeptides affect several sex-typical 
and species-specific behaviors and produce an integrational 
neural substrate for the dynamic regulation of these behaviors 
via endocrine and sensory stimuli. Different types of social 
behaviors are influenced by VT and VP, influencing the objec-
tives of many neuroanatomical studies of VT/VP distribution 
and central nervous system (CNS) targets (4, 41, 42). There is a 
sexually dimorphic vasopressinergic extrahypothalamic network 
that plays a key role in the modulation of behavior by VP (43), 
and sex differences in VP distribution were first demonstrated 
in rats (44).

In vertebrates, behaviors such as reproductive, smell recogni-
tion, social communication, pair-bonding, parental care, and 
aggressive behavior are also modulated by VT/VP (41, 45, 46). In 
different species of vertebrates, both central and peripheral VT/
VP administration stimulate spawning behavior, phonotaxis, 
sexual receptivity, lordosis, courtship, and mating (4, 41, 47).

In the rat brain, V1aR is believed to play the predominant role 
in regulating behavior. V1aR is found in neural networks involved 
in responses related to social behavior and exhibits considerable 
plasticity (45, 46, 48). V1aR is expressed in olfactory bulb, hip-
pocampal dentate gyrus, cerebellum, septal nuclei, accumbens 
nucleus, arcuate nuclei, suprachiasmatic nuclei, and periven-
tricular nuclei and the lateral hypothalamic area, parvocellular 
paraventricular and anteroventral nucleus of the thalamus, cir-
cumventricular organs including the pineal, and the subfornical 
organ (49, 50). Further, V1bR also participates in the neural 
regulation of social behaviors (51), but has received much less 
attention due to a lack of specific drugs (52, 53). V1bR transcripts 
and immunoreactive cell bodies are localized to the cerebellum, 
cerebral cortex, hippocampus, olfactory bulb (including in the 
area periglomerular), PVN, piriform cortex layer II, red nucleus, 
septum, and suprachiasmatic nucleus (54–61).

Vasopressinergic as well as oxytocinergic systems can be 
modulated by circulating gonadal steroids and together are 
involved in behavioral regulation (4, 41, 62, 63). Sex hormones 
affect the quantity and localization of the VT/VP receptors in the 
brain (64). Previous studies (64, 65) have shown that behavioral 
responses, such as courtship behavior in newts, aggression in 
hamsters, and parental behaviors in voles (66), depend on VT/
VP and the presence of gonadal steroids.

Role of vasopressin in Parental and Sexual 
Behavior
The ability of an animal to recognize intra- and interspecific 
individuals is essential for all complex relationships. Several 

studies (5, 46, 63, 67–71) have shown that VP participates in the 
modulation of non-social and social behaviors.

In this sense, vasopressinergic neurons play an important 
role in coding information from social contact (47). In rodents, 
social information is primarily mediated by the exchange of 
olfactory information, and there is evidence that VP signal-
ing is important in brain areas where olfactory information is 
processed. Wacker et  al. (51) described populations of vaso-
pressinergic neurons in the main and accessory olfactory bulbs 
and anterior olfactory nucleus that are involved in processing 
social odor cues. Pharmacological studies have shown that VP 
administration improves social recognition in both sexes (58, 
63). If applied bilaterally in the olfactory bulbs, extending the 
memory retention interval for the recognition of male rat odor 
is extended (72).

In rodents, intracerebroventricular microinjections of VP ago-
nists facilitate social memory and can significantly extend social 
recognition and memory consolidation for as much as 120 min 
(73, 74). V1aR antagonists produce marked effects on learning, 
memory, and social behaviors (59, 63). Intracerebroventricular 
and intraseptal microinjection of V1aR antagonists block social 
recognition, and VP microinjection can rescue deficits in social 
recognition in Brattleboro rats that lack VP (74–77).

Bielsky et  al. (45) demonstrated that V1aR knockout mice 
(V1aRKO) display an enormous deficit in social recognition, 
providing strong evidence that V1aR is essential for this action. 
Similarly, V1bR knockout mice (V1bRKO) also presented defi-
cits in the social memory test (52, 53). However, the increased 
V1aR expression in the lateral septum (LS) facilitated social 
behavior (78).

Among other social behaviors, the parental behavior exerts 
an essential role in the behavioral development of offspring (79). 
Maternal care is best studied; however, pup-directed positive 
behaviors, such as retrieval and kyphosis (huddling), are exhib-
ited by no-parturient animals and are characteristics of socially 
monogamous or cooperative breeding species. Male parental care 
has been primarily studied in relation to the vasopressinergic 
system, which is sexually dimorphic and androgen-dependent 
because testosterone promotes VP synthesis (79).

Paternal care is highly demonstrated by prairie vole males (80, 
81). Lim and Young (82) demonstrated that the infusion of VP 
(0.1 ng) directly into the LS of these animals can enhance lick-
ing/grooming (LG) behavior toward pups and that this behavior 
is blocked by the use of a V1aR antagonist (80). The father LG 
behaviors and retrieving the pups exert a pivotal role on the 
development of the VP systems and aggressive behavior of their 
adult offspring (79). In adult male rats, LG behaviors increase the 
levels of V1aR binding within the amygdale nucleus (46).

Besides the parental behavior, the VP system is also an 
important mediator of maternal behavior. In the peripartum and 
lactation periods, there is an increase in the expression of mRNA, 
receptors, and density/binding of VP in the maternal brain. This 
increase contributes to the adaptations that develop in the female 
maternal care. Previous studies (83–85) have already suggested 
a role for VP facilitating maternal care, but more recent studies 
showed substantial evidence of this neuropeptide facilitating 
maternal behavior [for review, see Bosch and Newman (86)]. 
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Furthermore, in females, V1aR density was significantly correlated 
with postpartum LG of the offspring (87).

Most studies are based on infusion of VP and V1aR antagonists 
in specific areas of the CNS participating in the neural circuitry of 
maternal behavior and thus demonstrating the modulation of VP 
in this behavior [for review, see Ref. (86, 88–91)].

Moreover, previous studies (92, 93) with HAB (high anxiety-
related behavior) and LAB (low anxiety-related behavior) dams 
also reinforce that central VP modulates the maternal behavior 
because the blocking of V1aR by repeated acute intracerebroven-
tricular administration of a selective antagonist promoved 
decrease arched back nursing and the time the dam spent with 
the pups in HAB dams.

In conjunction with these findings, the involvement of V1bR 
in the modulation of maternal behavior was demonstrated in 
V1bRKO mice (94), which showed that lactating females who 
received the V1bR antagonist in the lateral ventricle decreased the 
nursing and interaction with their pups.

In addition to maternal care, lactating rats exhibit aggressive 
behavior that is observed during the first two postpartum weeks 
and which aims to protect the offspring against a potentially 
dangerous intruder (95, 96). The role of VP in aggression has 
received attention, and previous studies (86, 88, 89, 91, 97–100) 
provide substantial evidence for VP promoting maternal aggres-
sive behavior. Neuroanatomical studies with multiparous rats 
revealed significant increases in V1aR mRNA expression in the 
amygdala, SON, and LS in females on the fifth postpartum day 
when compared with primiparous rats (101, 102).

Bosch and Neumann (90) demonstrated that microinjection 
of a selective V1aR antagonist bilaterally into the BNST reduced 
maternal aggression (91) and the VP within the central nucleus of 
the amygdala (CeA) was positively correlated with the increased 
offensive behavior (90). Furthermore, other study by Bosch and 
Neumann (92) reported that in HAB rats VP promotes maternal 
aggression, and Lonstein and Gammie (103) showed the increased 
expression of the VP gene in the PVN. On the other hand, studies 
with Sprague-Dawley lactating rats showed different results, as 
the intracerebroventricular infusions of VP reduced maternal 
aggression, while treatments with an V1aR antagonist increased 
maternal aggression during early lactation (88).

Vasopressin-deficient Brattleboro rats exhibit reduced 
aggressive maternal behavior and reduced attacks in males 
without sexual experience against intruders (99). In other study 
on female pregnancy (51, 104), increasing V1aR levels in the 
PVN, CeA, and LS were positively correlated with aggressive 
behavior. The fluctuations observed in the OTR and V1aR in 
important areas of the CNS appear to regulate maternal aggres-
sion during the peripartum period. In a pharmacological study, 
microinjection of a selective V1aR antagonist bilaterally into the 
BNST reduced maternal aggression behavior but did not alter 
maternal care (105).

Furthermore, VP may be a new target for studies on treat-
ments involving V1aR antagonists or synthetic VP to promote 
maternal care or suppress aggression in lactating females 
exposed to chronic stress-associated disorders (98). Using a 
model of VP-deficient mothers, Fodor et  al. (105) demon-
strated that these rats have decreased LG behavior and act less 

depressive. Thus, they suggest that VP antagonists could be an 
option for future studies on postpartum depression; however, 
the possible side effects of maternal neglect require further 
investigation (90, 105).

Some findings suggest that V1bR might also be involved in 
the modulation of aggressive behavior in both females and 
males. V1bRKO lactating mice showed an increased latency and 
decreased number of attacks against intruders when compared 
with wild-type mothers (97). The defensive behavior was studied 
in V1bRKO male mice and increased social behavioral responses 
were observed (106). In support, V1bRKO male mice also had 
impaired attack behavior toward a conspecific (97).

The role of this nonapeptide in sexual behavior has also been 
described in the past decades, and previous studies showed 
that VT/VP modulates specific types of vocalization in rats and 
squirrel monkeys (107). VT/VP central administration enhances 
pair-bonding and smell-recognition behaviors as a key feature for 
the onset of sexual behavior (66, 107).

Since the 1980s, studies have described the importance of 
vasopressinergic projections in both sexes in relation to sexual 
behavior. In this context, Meyerson et al. (104) administered an 
antagonist of VPRs into the lateral ventricles of female Sprague-
Dawley rats in the neonatal period; this treatment induced a 
persistent increase in VP content and facilitated female sexual 
behavior. This study provided functional and immunocyto-
chemical evidence of the importance of VP in female sexual 
behavior. In the same decade, Södersten et al. (108) reported that 
intracerebroventricular injections of VP inhibit sexual behavior 
in receptive female Wistar rats. These findings were reinforced by 
Pedersen and Boccia (109), which suggested that VP influences 
ovarian steroid activation of female sexual behavior via interac-
tions with OT.

In males, Bohus (110) observed that VP agonists reversed the 
decrease of sexual behavior after castration, but injections of VP 
into LS of males did not dramatically alter sexual behavior (111, 
112). In the 1990s, the role of VP in the modulation of male sexual 
behavior was hypothesized to be due to the refractory period in 
rats and consequently be an inhibitor of sexual behavior in males 
(112). In 1993, Winslow et  al. (66) reported that VP is neces-
sary to partner preference formation in monogamous prairie 
vole. However, these studies commonly focused on differences 
in neurotransmitter systems in brain structure between sexes 
instead of the role of the neurotransmitter on sexual behavior. 
Knowledge about differences in cell density, neurotransmitter 
content, receptors distribution, and vasopressinergic projections 
in rats and voles between sexes does not necessarily cause sex 
differences in sexual behavior (113).

Knockout animals were also used to investigate the role of 
VP and its receptors in sexual behavior. V1bRKO mice exhibited 
deficits in social behaviors that require olfactory function, 
including aggression and social recognition, but these animals 
had normal sexual behavior (52). The BNST is a sexually dimor-
phic structure that can be involved in the control of male sexual 
behavior because males have more VP neurons and denser 
projections from this area and in the medial amygdaloid nucleus 
than females (114). However, studies about VP innervation 
have focused on female sexual behavior. VP innervation from 
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the LS inhibits sexual behavior in females; thus, hypothetically, 
the higher levels of VP in males are correlated with less lordosis 
behavior (115).

In humans, VP has been reported as a selective enhancer of 
recognition of sexual cues in a behavioral task administered to 
males (116). Additionally, Argiolas and Melis (117) conducted 
an elegant review about the control of sexual behavior by neu-
ropeptides in the species studied thus far, including rats, mice, 
monkeys, and humans (117), and describe VP as an ineffective 
neuropeptide on copulatory behavior in males but as an inhibitor 
of lordosis in female sexual behavior.

The role of VP in sexual behavior remains unclear. Controversial 
results can be explained by the different methods applied and the 
interactions of this peptide with others, which should always be 
considered.

In conclusion, the lineage for VP or VP-like neuropeptides 
is evolutionarily stable and present in all vertebrate species. The 
neural distribution of VP neurons and its projections and also 
the distribution of VPRs are widely investigated for more than 
30  years. These extensive data collected shows that male and 
female have important differences in the VP distribution across 
the CNS. The role of VP in osmotic and cardiovascular homeosta-
sis is well established in the literature; however, the neuropeptides 
VT/VP are also critically involved in the modulation of social 
behaviors in many species. In mammals, the parental and sexual 
behaviors are mediated by VT/VP system and mainly by V1aR in 
specific brain circuits that provide important information for the 
onset and control of these behaviors in normal and pathological 
conditions. Future investigations must be conducted to further 
elucidate the involvement of V1bR modulating social behaviors.
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