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Cell-Autonomous Sex Differences in Gene Expression in
Chicken Bone Marrow–Derived Macrophages

Carla Garcia-Morales, Sunil Nandi, Debiao Zhao, Kristin A. Sauter, Lonneke Vervelde,

Derek McBride, Helen M. Sang, Mike Clinton,1 and David A. Hume1

We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in

recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600

transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts

encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the

homogametic sex. A smaller set of W chromosome–specific genes was expressed only in females. LPS signaling in mammals is

associated with induction of type 1 IFN–responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of

chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels

than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal

hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages

cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expres-

sion of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN

with a higher basal set point of IFN-responsive genes. The Journal of Immunology, 2015, 194: 2338–2344.

G
ender-specific differences in innate and acquired im-
munity have been well-documented in mammals (1, 2).
In general, these differences are attributed to direct and

indirect actions of the sex hormones. For example, a recent study
demonstrated that the female-specific bias in type 1 diabetes in-
cidence in the NOD mouse was an indirect consequence of the
effect of androgens on the gut microbiota (3). Others have dem-
onstrated an interaction between estrogen and type 1 IFN sig-
naling in regulating susceptibility in SLE models (4). Of course,
males and females also differ in chromosomal complement. In
mammals, the Y chromosome contains relatively few genes, and
the double complement of genes on the X chromosome in females
is controlled by X chromosome inactivation. It has generally been
assumed that there are few Y chromosome–encoded functions
other than testis determination; however, recent studies concluded
that the Y chromosome genes encode proteins associated with

general cellular functions (5, 6), and there is emerging evidence
for effects of Y chromosome sequence polymorphisms on innate

immunity and autoimmune pathology in both mice and humans

(7). In birds, the heterogametic sex is female (ZW). Analysis of

mixed-sex chimeric (gynandromorph) birds indicated that somatic

cells in the chicken have an inherent cell-autonomous sex identity

(8, 9). In a series of experiments where undifferentiated cells were

transplanted between early chick embryos of different sexes, and

the resulting chimeric embryos allowed to develop to an advanced

stage, the transplanted donor cells retained their donor sex iden-

tity. Male donor cells expressed male-specific transcripts even

when fully integrated into a female gonad, and vice versa (9).

Although some Z chromosome genes appear to be expressed at

similar levels in male and female birds (i.e., compensated) (10),

the large majority are not, and dosage compensation in birds

appears to be regulated on a gene-by-gene basis (11–13)
The type 1 IFN (IFN-a, IFN-b) clusters are located on the Z

chromosome in birds (14). If IFN expression is not dosage com-

pensated, one might anticipate that male birds would produce more

effective defense against infections. However, the reverse appears

to be the case. In a study involving a large number of chicken flocks

(.300,000 male and female birds), mortality rates resulting from

infectious diseases were ∼70% higher in males than in females

(15). In this and other studies, the responses to bacterial, viral, and

protein Ags were assayed, and females were found to both respond

earlier and with higher Ab titers than males [e.g., to the major

poultry pathogen Newcastle Disease virus (15, 16)]. IFN-b is a key

regulator of antibacterial as well as antiviral responses in mammals.

In murine macrophages responding to the TLR4 agonist, bacterial

LPS, the transient induction of IFN-b via the MyD88-independent

pathway and activation of transcription factors IRF1 and IRF3

leads to autocrine induction of IFN-responsive genes (17). LPS and

IFN signaling is, in turn, subject to stringent feedback control by

the inducible suppressor of cytokine signaling (SOCS1) (18, 19)
Studies of macrophage responses to LPS in mice and pigs have

exploited the ability to grow macrophage cells from the marrow in
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M-CSF (CSF1) (20–22). This system also permits the identifica-
tion of macrophage autonomous genetic differences in gene ex-
pression between strains and breeds, since the cells from different
individuals are cultivated in a common culture environment ex
vivo (23). We previously cloned and expressed chicken CSF1 and
showed that it can be used to produce chicken bone marrow–de-
rived macrophages (BMDM) (24). In the current study, we dem-
onstrate that BMDM from male and female birds retain an
intrinsic sex identity that includes differential expression of IFN-
responsive autosomal genes.

Materials and Methods
Tissue preparation

ISA Brown eggs obtained from the National Avian Research Facility at the
Roslin Institute were incubated in a humidified atmosphere at 39˚C either
to hatch, or for the required time. For fadrozole-induced gonadal sex
reversal, the eggs were injected with either 1 mg fadrozole (Sigma-
Aldrich) in PBS (10 mg/ml) or with PBS solution alone on day 3 of
incubation (H&H Stage 18) and then reincubated for an additional 11 d
for bone marrow collection. Embryos were then recovered and decapi-
tated. Eggs were injected with the maximum tolerable dose of the aro-
matase inhibitor (1 mg/egg), and only treated embryos with gonads that
had acquired a gross morphology that was fully male were used in
our analysis. Gonad pairs were processed histologically and sections
immunostained for the presence of male-specific and female-specific
proteins. Abs were from AbD Serotec (aromatase) and from Millipore
(SOX9).

Femurs and tibias were collected from sexed hatchling birds, or in the
case of the sex reversal experiments, from embryos at day 14 of devel-
opment and stored on ice while the sex of individual embryos was deter-
mined. Bones were stripped of muscle and bone marrow flushed using a fine
needle and RPMI 1640 medium, under sterile conditions. Four separate
pools of material, each from five individual birds of the same sex and
treatment, were generated in each experiment. Bone marrow cells were
cultured on bacteriological plastic dishes as previously described (24) in
RPMI 1640 medium containing 10% FBS, 350 ng/ml recombinant chicken

CSF1 (BMDM normal growth media) at 41˚C for 1 wk to allow macro-
phage differentiation. At the end of this time, there is a confluent and pure
population of macrophages. The macrophages were harvested by squirting
them from the plate with medium, replated at a concentration of 106 cells/ml
in 6-well plates, and incubated with or without a predefined maximal dose
of LPS [100 ng/ml, Salmonella Minnesota R595; Sigma-Aldrich; as used
in previous studies in mammals (22, 23)] prior to RNA harvest.

RNA extraction

Total RNAwas extracted using RNA-Bee (AMS Biotechnology) according
to the manufacturer’s instructions. RNA quality and quantity was assessed
by Agilent Bioanalyser RNA 6000 Nanochip analysis and by Nanodrop
spectroscopy (Thermo Scientific).

Affymetrix array analysis

Microarray analysis was performed by ARK Genomics using Affymetrix
systems and reagents. Hybridization probes were generated using the
AmbionWT labeling kit and 500 ng RNA. Signal intensities were measured
using a GeneChip Scanner 3000 7G and analyzed with GeneChip Command
Console Software (AGCC), applying RMA normalization to the CEL files.
To ensure robust male:female comparisons, only probes with signal in-
tensities above the average of the lowest quartile + 3 SDs were included in
our analyses. Microarray data have been deposited in the National Center
for Biotechnology Information Gene Expression Omnibus (GSE59921)
(http://www.ncbi.nlm.nih.gov/genbank).

Functional enrichment analysis

Ensembl database entries were used to identify mammalian homologs for
chicken genes and enrichment based on functional annotations deter-
mined by ToppFun analysis (ToppGene Suite; http://toppgene.cchmc.org/).
The categories included in this analysis were: molecular function, bi-
ological process, cellular component, domain, pathway, interaction,
and transcription factor binding site. The number of genes assigned to
each category and the significance of the scores are shown. Only scores
with p values # 0.01 and representing a minimum of three genes are
shown (assignments with a minimum of two genes are shown for the
CASI-W analysis, because of the limited number of genes in this cate-
gory).

FIGURE 1. Network analysis of the gene expression profiles of male and female BMDM. Pools of bone marrow cells, each from five newly hatched male

or female birds, were cultured in chCSF1 for 7 d, harvested, and cultured for an additional 24 h with or without LPS. mRNA was isolated and analyzed

using Affymetrix expression arrays. The sets of coexpressed genes were identified using the network analysis tool Biolayout Express3D. The results are

displayed in three dimensions, with nodes within each cluster given a common color, and each node joined by edges in blue. At left, the dataset clearly

separates into four broad clusters, genes that are upregulated or downregulated by LPS to the same extent in each sex, and sets of genes that display female-,

or male-enriched expression patterns. The clusters labeled cell autonomous sex identity (CASI) are largely encoded on the sex chromosomes. The panels at

right show the average expression profiles of genes within distinct clusters showing male- or female-specific expression. From left to right, there are three

control female samples (F1C, F2C, and F3C), then corresponding samples with LPS (F1-LPS, F2-LPS, and F3-LPS), three control males samples (M1-C,

M2-C, and M3-C), and the corresponding samples treated with LPS (M1-LPS, M2-LPS, and M3-LPS).
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Results
Expression profiling of male and female BMDM

BMDM were differentiated from bone marrow collected from 15
male birds and 15 female birds between 1 and 3 d after hatch. The

bone marrow was obtained from newly hatched chicks to ensure

that any differences were not due to gonadal hormones produced by

sexually mature birds. Material from five individual birds was

combined to reduce any impact of interindividual variation, and six

pools representing three male and three female biological replicates

were generated. Macrophages were harvested and then replated and

cultured with or without the addition of LPS. The Affymetrix

Chicken Genome Array was used to determine relative gene ex-

pression between male and female macrophages both before LPS

treatment and 24 h after stimulation with LPS. The late time point

was chosen to focus specifically on the downstream targets of

endogenous IFN-b, which is a known early-response gene in

macrophages.
To analyze the data, we initially used the network-based ana-

lytical tool, Biolayout Express3D (25). As shown in Fig. 1A, the

dataset could be segregated into a substantial number of clusters of

genes sharing similar patterns of transcription. Each of the clusters

can be represented as an average expression profile of its members

(Fig. 1B), highlighting patterns of particular interest. Four of the

most informative clusters are shown in detail in Fig. 2. Fig. 2A

shows one of the largest clusters, cluster 2, which contains some

600 probe sets. The genes within this cluster were equally expressed
in macrophages from male and female birds, and induced to a sim-
ilar extent in all three pooled replicates by 24-h LPS stimulation. It
contains the very well studied lysozyme gene, which is known to be
profoundly LPS-inducible in the chicken (26), and many other
transcripts describe previously in a study of induction of gene ex-
pression in HD11 macrophage line by LPS (27). As noted in pre-
vious analyses of the responses of mouse, pig, and human
macrophages to LPS (20–22), this late-responsive cluster includes
many known feedback regulators of TLR4 signaling, such as Batf3,
Dusp1, and Nfkbia. As in mammals, the LPS-induced cluster does
contain both the type 1 (Ifnar1) and type II (Ifngr2) IFNRs. How-
ever, the known IFN-induced genes are absent from this set of
LPS-induced genes, suggesting either that the MyD88-independent
pathway was not activated in chicken BMDM, or that the two
sexes differ in their response. One obvious possibility was that these
genes would be more highly induced in the male cells because of the
presence of the IFN clusters on the Z chromosome, but the only
cluster conforming to that pattern, cluster 369, contained only three
genes. Of these, only the chemokine gene annotated as IL8 (CXCL1;
∼2-fold more inducible in males, from a similar basal level to
females) was highly expressed and has a known function.
Cluster 3 contains ∼330 clone sets, and the average expression

profile displays ∼1.5-fold enrichment in all the male-derived
samples (Fig. 2B). Many of these transcripts are encoded on the
Z chromosome, summarized in detail in Supplemental Table IA. The

FIGURE 2. Gene expression profiles of clusters of coregulated genes in chicken BMDM. The figures show the average expression profiles of selected

clusters of biological interest derived from the data in Fig. 1. From left to right in each panel, there are three control female samples (F1C, F2C, and F3C),

then corresponding samples with LPS (F1-LPS, F2-LPS, and F3-LPS), three control males samples (M1-C, M2-C, and M3-C), and the corresponding

samples treated with LPS (M1-LPS, M2-LPS, and M3-LPS). In each panel, the box at right lists the annotated transcripts within each cluster.
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data confirm the significance of the differential expression, and the
tight clustering of relative expression in macrophages from males at
an average of 1.63-fold enrichment compared with the female. A
corresponding small cluster of transcripts (cluster 15; Fig. 2C) de-
rived from the W chromosome was detected only in macrophages
from female birds. None of these differentially expressed sex chro-
mosome encoded transcripts in either males or females has a known
function in the regulation of innate immune function.
The reason why known IFN-inducible genes are absent from the

common LPS-induced cluster (cluster 2) is that they formed two
separate clusters (clusters 8 and 18; Fig. 2D), in which the ex-
pression was higher in macrophages from female than male birds,
and was also significantly different between the individual pools
from females. The expression pattern in females has a dominant
influence on the correlation coefficient that underlies the cluster-

ing method, and obscured the fact that many of these genes are, in
fact, LPS-inducible in males. Supplemental Table IB summarizes
the data for all of the genes that were significantly more highly
expressed in the macrophages from females, and Supplemental
Table IC summarizes a GO analysis, highlighting the clear en-
richment in known IFN-responsive transcripts. Fig. 3 shows the
small subset of genes within this set that is inducible by LPS in the
BMDM from males to the level seen constitutively in females (see
also more detailed descriptions in Supplemental Table ID). A
notable member of this set is the inducible feedback regulator of
IFN signaling, SOCS1 (18, 19).
To summarize, there is a large set of transcripts that distinguishes

cells frommale and female birds, most of which are associated with
the sex chromosomes, and the macrophages of female birds express
IFN-responsive genes constitutively.

FIGURE 3. Gene expression profiles of individual LPS-responsive genes in BMDM from male and female birds. Representative expression profiles of

a subset of genes expressed constitutively at higher levels in macrophages from female birds and induced in male birds. The results are the average of three

separate pools. The primary data, additional annotation and other genes with this profile are provided in Supplemental Table ID.
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Effect of sex-reversal on sexually dimorphic expression

Despite the common tissue culture environment and the extensive
proliferation of progenitors that occurs in the cell culture used to
generate BMDM, there is a formal possibility that differential gene
expression is an epigenetic consequence of the organizational
effects of male and female embryonic hormones. To eliminate this
possibility, we produced sex-reversed birds. Sex reversal of the ZW
gonad was achieved by treatment with an inhibitor of aromatase
enzyme activity (fadrozole), which prevents the production of es-
trogen from androgens and produces gonadal sex reversal in female
birds (28). Eggs were injected with either fadrozole ([1 mg/egg]
or with PBS on day 3 of incubation [H&H Stage 18]) and
then reincubated for an additional 11 d to collect bone marrow.
Gonads from genetic female embryos treated with fadrozole
expressed the testis-associated marker Sox9, showed reduced levels
of the aromatase enzyme, and acquired the gross morphology and
internal structures (sex cords) typical of a developing testis (Fig. 4).
The Affymetrix Chicken Gene 1.0 ST Array was used to monitor
gene expression in macrophages from male, female, and sex-
reversed female embryos. In effect, this is a complete replication
of the analysis, albeit using marrow from an earlier developmental
stage. The complete datasets are provided in Supplemental Tables II
and III. Fadrozole had no significant effect on the expression of the Z
chromosome genes, which continued to be expressed in a sexually
dimorphic fashion in male and female macrophages derived from
sex-reversed embryos (Supplemental Table IIIB). Crucially, the
female-biased expression of IFN-target genes was not suppressed
(masculinized) by altering the embryonic hormonal environment
from female to male (Supplemental Table IIIC).

Discussion
Although there have been a number of reports on the transcriptomic
response of chicken macrophage cell lines to LPS (27), to our

knowledge, this is the first study of primary chicken BMDM that

illustrates their use as a system. In mouse (21) and pig (23), analysis
of BMDM provided a system in which cells from different indi-
viduals or strains can be assayed in a common culture system,
removed from effects of other cell types or environment. The
response to LPS in macrophages is a complex transcriptional cas-
cade (21, 29–31), starting with immediate early genes transcribed
from poised RNA-pol II complexes and followed by induction of
downstream targets by the early gene products (32). Those products
include both inducible transcription factors and autocrine regulators
including the many proinflammatory cytokines.
At the same time, there is the induction of a large cohort of

feedback regulators, so-called inflammation suppressor genes (33),
which will eventually damp the inflammatory response and return
the cells by 18–24 h to a new steady state that is resistant to further
stimulation by LPS. In the current study, we focused specifically
on that later 24-h time point. By that time, we noted the induced
expression of some 600 transcripts that were shared by macro-
phages from males and females, including many of the known
feedback regulators. No doubt there are many more such regu-
lators among the large set of genes on the array platform that await
informative annotation.
A recent eQTL analysis of the response of human peripheral

bloodmonocytes to LPS identified a cohort of genes induced at 24 h
that was correlated in trans with sequence variation at the IFN-b
locus (34). In mammalian (18, 21) and avian (27) macrophages,
IFN-b is an immediate early gene and induced transiently by LPS;
we anticipated that measurement of the downstream target genes
would provide a more sensitive indication of any differential
regulation of the pathway between male and female macrophages
as a consequence of the presence of the IFN cluster on the Z
chromosome. The pattern we observed was the direct reverse of
the anticipated outcome; the macrophages from the female birds
expressed many known IFN-responsive genes constitutively, as-
sociated with relatively higher expression of the IFN-responsive
transcription factors IRF1 and IRF7 (Supplemental Table IB). We
were not able to detect IFN-b mRNA by quantitative RT-PCR in
either male or female cells (data not shown) or on the arrays.
However, like the response to LPS, the response to exogenous type 1
IFN in mouse macrophages is transient and is subject to inducible
feedback control, notably by SOCS1 (18, 21). Interestingly, com-
monly used mouse strains, C57BL/6 and BALB/c also differ in the
basal expression of many known IFN-responsive genes, an obser-
vation that has been attributed to low level constitutive expression of
IFN-b in the C57BL/6 line (21). Accordingly, we suggest that the
underlying mechanism is that BMDM of the chicken, like those of
the mouse, produce endogenous IFN at low levels. In males, with the
entire cluster of type 1 IFN genes on the Z chromosome, the level of
expression induces both a larger initial response and a more com-
plete shutdown. In females, the lower expression of IFN also pro-
duces a less-effective induction of feedback regulators, and the
overall induction of IFN target genes is sustained. However, it is also
possible that other Z chromosome– or W chromosome–encoded
transcripts contribute to the shutdown of IFN-responsive genes in
males or their sustained induction in females.
We can only infer that the differential expression of the IFN-

responsive genes in females underlies their greater resistance to
pathogens. Most studies of avian infectious disease susceptibility,
including studies of pathogen-induced gene expression use mixed
populations of males and females andmade no distinctions between
their responses. Similarly, we do not have direct evidence that the
differences in expression of IFN-responsive gene expression are
due to lack of dosage compensation on the Z chromosome. The
original study that localized the genes to the Z chromosome
addressed this question but could not demonstrate differences in

FIGURE 4. Effect of fadrozole on expression of sex-specific proteins in the

chick embryo gonads. Panels show images generated from histological sec-

tions through the left and right gonads of a PBS-treated female embryo, the

left and right gonads of a PBS-treated male embryo, and the left and right

gonads of a fadrozole-treated female embryo. Images show each section

stained with the nuclear dye, Hoechst (blue), and immunostained for expres-

sion of Aromatase (green) and SOX9 (red). Fadrozole-treated female gonads

clearly adopt a testicular morphology and show reduced levels of aromatase

and obvious expression of the male-specific SOX9. Scale bars, 20 mm.
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IFN production between the sexes because of a high degree of
variation in virus-induced expression between individuals of both
sexes (35). Interestingly, even though we examined pools of
macrophages from five birds, there was substantial variation be-
tween the pools in expression of the IFN-inducible genes as a class
(Fig. 2D), which is likely to be associated with variation in the
common regulator, IFN. Genes on the Z chromosome have
evolved more rapidly than the autosomes in avian species (36).
Because functional variation in the single copy of the IFN loci in
the female line would immediately impact upon antiviral defense
and the vast majority of viruses have evolved mechanism to evade
or compromise IFN-mediated defenses (37), one would expect the
IFN genes to be especially subject to selection. Chicken BMDM
cultured as described herein can be infected with several viral
pathogens including Marek’s disease virus and infectious bron-
chitis virus (IBV). However, despite the basla differences in ex-
pression of IFN-responsive genes, we did not observe any
difference in the replication of infectious bronchitis virus when
macrophages from male and female birds were compared (K.A.
Sauter and L. Vervelde, unpublished observations). The BMDM
system could be used to assess the impact of genetic variation on
the response to viral or bacterial pathogen challenge, or the effect
of genetic background as we have done previously in the pig (23).
Clearly, such studies in birds would need to examine the responses
of male and female birds separately.
The use of sex-reversed birds demonstrated clearly that the

sexually dimorphic characteristics are inherent features of male and
female macrophages and unrelated to prior gonadal hormone ex-
posure. Aside from the IFN genes, the male and female macro-
phages differed from each other in their expression of many other
genes on the Z and W chromosomes. The majority of these genes
are also differentially expressed in other embryonic and adult
tissues and seem to be the hallmarks of cell-autonomous sex
identity (D. Zhao, D. McBride, S. Nandi, and M. Clinton, man-
uscript in preparation). Our findings would support the proposal
by Mank and Ellegren (13) that the limited sex chromosome
dosage compensation in birds occurs on a gene-by-gene, rather
than a chromosome-wide basis, as appears to be the case for
random allelic inactivation on the autosomes in mammals (38).
None of the genes overexpressed in a male-specific manner has
a known immune function, but the female-specific W chromo-
some–associated genes (Supplemental Table IIB) are significantly
enriched for genes that interact with IFN-stimulated gene 15,
a ubiquitin-like protein that is conjugated to intracellular target
proteins upon IFN activation (39). So, like the mammalian Y
chromosome, the avian W could potentially have genes that
contribute to immune regulation and certainly does contribute to
a novel female macrophage-associated transcriptome.
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