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1  | INTRODUC TION

Why do some areas, such as the Amazonian forest, exhibit such 
rich diversity of species while other areas show such poor diver‐
sity? For centuries, naturalists and ecologists have been intrigued 
by the uneven spatial distribution of species diversity (Humboldt, 
1808), and the reason behind this fact is one of the most prom‐
inent and long‐lasting debates in ecology. In 2005, Science 
Magazine celebrated its 125th anniversary with a special issue 
containing the most compelling questions that face current scien‐
tific inquiry. The question, “What Determines Species Diversity?” 
was featured in the top 25 (Pennisi, 2005). This probably reflects 
a general concern over the future of biodiversity: If we are to pre‐
dict and mitigate the ongoing global biodiversity loss (Lovejoy & 

Nobre, 2018), we need to understand the processes responsible 
for creating and maintaining diversity (Ricklefs, 1987).

Many competing hypotheses dedicated to describing patterns of 
biodiversity spatial variation have been proposed (Hillebrand, 2004; 
MacArthur & Wilson, 1967; McCain, 2005; Mittelbach et al., 2001). 
Even though it is almost certain that environmental components (e.g., 
climate, energy, heterogeneity) affect diversity at local scale, the ex‐
tent to which the evolutionary history of different areas influence 
their diversity is still controversial (Francis & Currie, 1998; Latham & 
Ricklefs, 1993; Ricklefs, Latham, & Qian, 1999; Svenning, Eiserhardt, 
Normand, Ordonez, & Sandel, 2015). The “historical hypotheses” can 
be tracked back to Wallace (1878), who invoked factors such as glaci‐
ations and ecosystem age to explain global biodiversity patterns. The 
importance of history's role on current species diversity patterns is 
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Abstract
The spatial distribution of biodiversity and related processes is the core of 
Biogeography. Amazonia is the world's most diverse rainforest and the primary 
source of diversity to several Neotropical regions. The origins of such diversity con‐
tinue to be an unresolved question in evolutionary biology. Among many competing 
hypotheses to explain the evolution of the Amazonian biodiversity, one stands out as 
the most influential: the refugia hypothesis by Jürgen Haffer. Here, we provide a 
chronological overview on how the refugia hypothesis evolved over the decades and 
how the criticism from different fields affected its acceptance. We conclude that the 
refugia hypothesis alone cannot explain the diversification of the complex Amazonian 
diversity, and perhaps it was not the most important diversification mechanism. 
However, the debate provoked by refugia has produced a great amount of knowledge 
on Amazonian climatic, geological, and evolutionary processes, as well as on species 
distributions, movements, and history.
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based on the argument that all species have been generated in the 
past in specific locations, with differential speciation/extinction rates 
and dispersal limitations (McGlone, 1996). Therefore, it is expected 
that long‐term evolutionary history has left an imprint on the pres‐
ent spatial diversity patterns. Advocates of the historical hypothesis 
argue that local species diversity patterns can only be fully explained 
if larger spatial and temporal scales are taken into account (Ricklefs, 
1987). However, evolutionary processes are less accessible to ex‐
perimentation than ecological processes, making some historical hy‐
pothesis difficult to test (Francis & Currie, 1998; Ricklefs, 1987) or 
disprove (Magnusson, 1997), particularly in very diverse ecosystems.

Amazonia is the largest tropical forest in the world, represent‐
ing over half of the planet's remaining rainforests and hosting a 
considerable part of the world's biodiversity (Myers, Mittermeier, 
Mittermeier, Fonseca, & Kent, 2000). More precisely, one in four 
known terrestrial species in the world lives in the Amazonian rain‐
forests (Dirzo & Raven, 2003). The biodiversity of plant species in 
the Amazon basin, estimated to be as many as 50,000 plant species, 
is the highest on Earth (Hubbell et al., 2008). Amazonia usually has 
more plant species per area than other wet forests in Africa and Asia 
(Turner, 2001; but see Sullivan et al., 2017). Within Amazonia, the 
highest biodiversity areas are in the west, by the Andes, where many 
regions of high diversity and endemism for several taxa, particularly 
plants, birds, and mammals have been located (Rahbek & Graves, 
2001; ter Steege et al., 2003; Tognelli & Kelt, 2004). Amazonia is not 
only the world's most diverse rainforest but also the primary source 
of diversity to other Neotropical regions (Antonelli et al., 2018).

If large‐scale species diversity pattern is intriguing, one might ex‐
pect that the extremely diverse Amazonian forest plays an import‐
ant role in solving this puzzle. In fact, Kanpp and Mallet (2003) stated 
that the origins of the Neotropical species are “the most mysterious 
of all” (p. 71). This is probably the reason why the “Amazon refugia 
hypothesis” became one of the most influential species diversity his‐
torical hypotheses ever proposed. It was first suggested by Haffer 
(1969) and has long been a paradigm for explaining biodiversity of 
Neotropical forests and the debate around it is still alive in the lit‐
erature (Bush, 2017). The aim of this review was to assess how the 
acceptance of the Amazon refugia hypothesis has changed over time 
and to identify its main caveat, as well as the current amount of sup‐
porting evidence in the literature.

2  | WHAT IS THE AMA ZON REFUGIA 
HYPOTHESIS?

Around mid‐20th century, many biologists believed the only mecha‐
nism of species differentiation was geographic isolation of popu‐
lations, which reduced gene flow. Therefore, it was challenging to 
explain how vast contiguous tropical forests could be so diverse. 
One common assumption was that extant differentiated forms that 
currently overlap distributions had been spatially separated in the 
past (Vuilleumier, 1971). In that context, Livingstone's (1967) and 
Moreau's (1963) studies provided evidence of considerable past 

climate and vegetational changes in Africa and the consequential 
effects on faunal diversification (Moreau, 1966). Jürgen Haffer's 
famous Science paper (1969) applied the same logic to propose 
that climate and vegetation changes were the main drivers for the 
Amazonian high species diversity. In his hypothesis explanation, 
Haffer postulated that

…during several dry climatic periods of the Pleistocene 
and post‐Pleistocene, the Amazonian forest was di‐
vided into a number of smaller forests which were 
isolated by tracts of open, nonforest vegetation. The 
remaining forest served as ‘refuge areas’ for numer‐
ous populations of forested animals, which deviated 
from one another during periods of geographic iso‐
lation. The isolated forests were again united during 
humid climatic periods when the intervening open 
country became once more forest‐covered, per‐
mitting the refuge‐area population to expand their 
ranges. � (Haffer, 1969, p.131)

In other words, Haffer suggests that during the past glacial ages, 
Amazonia suffered several cycles of forest retraction and expansion, 
which favored speciation through population geographic isolation 
(vicariance). The “glacial refugia” was not a novel concept introduced 
by Haffer, but it had been recently proposed to explain species past 
distribution in Europe (Godwin Sir, 1975), Australia (Keast, 1961), and 
Africa (Moreau, 1966). Haffer used patterns of annual rainfall and pres‐
ent‐day avian distribution in Amazonia as evidence to identify proba‐
ble geographic locations of nine forest refuges in Amazonian lowlands. 
The refugia hypothesis offered historical explanation to both the geo‐
graphic distribution of closely related taxa and to the high species di‐
versity pattern over large geographic scale within Amazonia. Although 
it was originally proposed for birds, the hypothesis was a working 
model that should apply for other forest‐dwelling species.

The Amazon refugia hypothesis was attractive because it was 
applicable for a wide range of taxa, established a clear relation‐
ship between biogeographic history and evolutionary mechanism, 
and created a diversity of questions for future investigators to 
explore. However, the hypothesis had some built‐in assumptions: 
(a) Species’ geographic distribution data were valid for hypothesis 
generation; (b) Amazonia was drier during glaciation times due to 
decreases in the mean annual precipitation, and the past and cur‐
rent center of higher rainfall areas were coincident; (c) forested 
taxa experienced rapid speciation centered on ice ages; and most 
importantly, (d) allopatric speciation was the main mechanism that 
originated most Amazonian forest species (Bush & Oliveira, 2006).

3  | THE CHRONOLOGY OF THE AMA ZON 
REFUGIA HYPOTHESIS

During the years following Haffer's publication, the evidence 
supporting the refugia hypothesis mounted. Reconstructions of 
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distributions of major vegetation types during the last glacial pe‐
riod, based on geomorphological data, indicated past existence of 
isolated forested areas corresponding in size and location to the 
proposed refugia (Ab’Saber, 1977). The hypothesis was reinforced 
by several biological studies on current diversity distribution of sev‐
eral animal groups, particularly birds (Haffer, 1978), lizards (Vanzolini 
& Williams, 1970), butterflies (Brown, 1977), scorpions (Lourenco, 
1986), but also woody plants (Prance, 1973), and even diversity of 
languages in Amazonian tribes (Meggers, 1975). Those studies sug‐
gested particular regions with high diversity within Amazonia, with 
some spatial overlapping between regions across studies, corrobo‐
rating the past existence of forest refugia in those areas.

The refugia hypothesis became popular and developed its own vo‐
cabulary. The term “refugia” expanded to include analogous terms such 
as “centers of dispersal,” “centers of distribution,” and “semi‐refuges” 
(Muller, 1973), and the word “hypothesis” was progressively replaced 
by “theory.” The paradox of the high species richness in the stable 
Amazonian region seemed solved by forest retraction/expansion in 
the glacial/interglacial dynamics (Vuilleumier, 1971), and conservation 
strategies overlapping protected areas, and refugia locations were 
suggested (Lovejoy, 1982; Perry, 1982). In the late 1970s, Simpson and 
Haffer (1978) compiled all the supporting evidence to consolidate the 
prominent position of the refugia hypothesis. As concluding remarks, 
they stated the following: “At present the evidence seems indisputable 
that much of the development of the modern Amazonian biota can be 
attributed to a succession of Pleistocene changes” (p. 514).

Criticism toward the forest refugia started to grow at the turn 
of the 1980s. Skeptical researchers doubted the actual evidence 
on the extreme forest cover changes during the Pleistocene and 
the mechanisms needed to cause them. Specifically, there were 
concerns on whether climatological drivers alone, particularly the 
predicted lower average temperature and rainfall, could cause 
massive savanna expansion over Amazonian forests during gla‐
cial times (Whitten, 1979). Climatologists also questioned the 
simplistic uniform decrease in the mean annual precipitation over 
the entire Amazonia region during glaciations, as predicted by the 
hypothesis (Whitten, 1979). Latter studies would confirm a high 
precipitation instability across the eastern and southern Amazonia 
during the Pleistocene, contrasting with much more stable climatic 
conditions in the west of the biome (Cheng et al., 2013; Mayle, 
2000). Another source of criticism was on the circularity of using 
current species distribution patterns as the main evidence of the 
mechanism that generated these patterns (Endler, 1982a). Beven, 
Connor, and Beven (1984) argued that the observed spatial extent 
of overlap between sets of refugia proposed for different taxa, 
which was one of the main assumptions underpinning the hypoth‐
esis, was no different from that expected given random placement. 
Nelson, Ferreira, Dasilva, and Kawasaki (1990) suggested that high 
species diversity in some proposed refugia locations could be, at 
least for plants, due to sampling artifacts (but see De Oliveira & 
Daly, 1999). At this point, the theory seemed a premature idea and 
the call for independent geological, palynological, and paleoeco‐
logical data increased (Connor, 1986).

Although there were some studies both supporting and contra‐
dicting the refugia hypothesis in the early 90s using mainly animals 
as models (Brumfield & Capparella, 1996; Froehlich, Supriatna, & 
Froehlich, 1991), the decade also witnessed the input of palynologi‐
cal studies to the reconstruction of past Amazonian vegetation cover, 
much to the detriment of the credibility of the refugia hypothesis. 
Pollen history obtained from sediment of lake and river bottoms in 
the lowland Amazonia indicated that forests continuously occupied 
regions believed to be savanna during the last glaciation maximum 
(Colinvaux, DeOliveira, Moreno, Miller, & Bush, 1996; Haberle & 
Maslin, 1999). Haffer argued that the long pollen data from Colinvaux 
et al. (1996), Colinvaux, De Oliveira, and Bush (2000) could not be 
used as evidence against the refuge existence because the pollen 
data were from the “Imerí refuge” region, which was predicted by the 
hypothesis to be forested during glacial periods (Haffer & Prance, 
2001). However, as pollen and geological data accumulated, it rein‐
forced the idea that Amazonian lowlands were forested throughout 
the late Quaternary and Tertiary periods (Colinvaux, Irion, Rasanen, 
Bush, & de Mello, 2001), with no evidence of forest fragmentation, 
except for some ecotone movements at the borders of the biome 
(Absy et al., 1991; Colinvaux et al., 2000; Fontes et al., 2017).

The pollen and geological data also have their own caveats. The 
first caveat is related to the spatial distribution of the lakes from 
which data comes from. To date, most of the studied lakes are located 
in the periphery of Amazonia or are from atypical higher elevation 
locations (as most lakes in lowland Amazonia are not that old; Cheng 
et al., 2013; Fontes et al., 2017). Hence, there are data gaps in central 
Amazonia concerning paleoecological data, which hampers the full 
understanding of forest fragmentation dynamics (if any) during the 
last glacial period. Besides spatial gaps, the second caveat refers to 
temporal gaps on the sedimentary records. For example, the Pata, 
Maicuru, and Carajás lake records contain temporal gaps with limited 
or no information (see D'Apolito, Absy, & Latrubesse, 2013), as well as 
the speleothem record studied by of Wang et al. (2017).

The uncertainty about the Pleistocene forest isolation argument 
created a gap for alternative hypotheses, such as the riverine hy‐
pothesis (Capparella, 1991), marine transgressions (Nores, 1999), 
and the disturbance vicariance hypothesis (Colinvaux, 1998). All 
those hypotheses evoked vicariant mechanisms other than climate‐
driven vegetational changes to explain Amazonian diversity (see 
Haffer, 1997 for detailed description of those alternative hypoth‐
eses). The compelling set of evidence that savanna did not expand 
enough to create refugia during the Pleistocene made Haffer adjust 
his hypothesis to include climate‐driven vegetation change during 
the Neogene, Paleogene, or even before (Haffer, 1997). In his own 
words, “refuge theory does not refer to a particular time of specia‐
tion but to a particular mode of speciation” (Haffer, 2008, p. 934).

Forest fragmentation was the vicariance mechanism and the 
keystone of the refugia hypothesis. While some opponents of the 
refugia argued that other vicariance events (alternative historical 
hypothesis cited above) may have had a stronger influence than the 
vegetation changes on Amazonian species diversification (Cheviron, 
Hackett, & Capparella, 2005), others doubted whether any vicariant 
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process was needed to explain Neotropical diversity (Kanpp & Mallet, 
2003). The Amazon is a big enough space that long‐distance dis‐
persal followed by allopatric isolation could readily occur and drive 
speciation (Dexter et al., 2017). Alternatively, Darwin (1958, p. 105) 
had suggested that parapatric speciation can be more important 
than allopatric speciation in generating diversity in vast, continuous 
habitats. Several studies have provided evidence and arguments 
that parapatric speciation played a role in the Neotropics (Brumfield 
& Capparella, 1996; Endler, 1982a; Ortiz, Lima, & Werneck, 2018; 
Smith, Wayne, Girman, & Bruford, 1997; Whinnett et al., 2005). This 
is possible because large areas have higher ecological diversity and 
support larger populations than isolated small areas and therefore 
usually have higher genetic variability subjected to speciation due 
to isolation by distance (Kanpp & Mallet, 2003). However, parapat‐
ric speciation proposals are often criticized because the mechanism 
of ecological divergence that contributes to reproductive isolation, 
which is a prerequisite for parapatric speciation, is usually unclear. 
Moreover, distinguishing the importance of parapatric from allopat‐
ric process can be problematic, as similar geographic congruence of 
species and species boundaries can sometimes be explained by both 
processes (Endler, 1982b).

Important studies were conducted to test predictions of the refu‐
gia hypothesis in the early 2000s. At this point, researchers were seek‐
ing to integrate spatial distribution and timing of the diversification of 
lineages to understand diversification patterns (Donoghue & Moore, 
2003). One aspect of the refugia hypothesis that was challenged was 
the implicit prediction that divergence times should be coincident 
among taxa that share a common history. According to the refugia hy‐
pothesis, forest fragmentation should have simultaneously impacted 
vicariance of codistributed taxa. This was strongly refuted by the phy‐
logenetic study of Whinnett et al. (2005) using Lepidoptera as a model. 
This study also corroborated the notion that parapatric differentiation 
may be an important driver in continuous Amazonian forests. Another 
important prediction of the refugia hypothesis is that forest animal 
populations must have experienced substantial demographic growth 
accompanying forest expansion during interglacial ages. Although 
one study found genetic evidence of substantial population growth 
accompanying habitat expansions for North American mammals, the 
study did not find similar evidence for Amazonian mammals after the 
last glacial period. (Lessa, Cook, & Patton, 2003). The refugia hypothe‐
sis would also predict a geographically restricted center of endemism, 
which is not corroborated by the extensive geographic distribution of 
several Amazonian tree species (Ter Steege et al., 2013).

Not only the synchrony of taxa diversification and the evi‐
dence of demographic expansion were challenged. By the 2000s, 
another pillar of the refugia hypothesis was under attack: the age 
of species diversification. Several independent molecular studies, 
with different animal taxa, indicated that times of species diver‐
gence preceded the Quaternary period (Boubli & Ditchfield, 2000; 
Clough & Summers, 2000; Glor, Vitt, & Larson, 2001; Hoorn et 
al., 2010; Moritz, Patton, Schneider, & Smith, 2000). Although 
a considerable amount of Amazonian tree diversity seems to 
have originated in the Pleistocene (Richardson, Pennington, 

Pennington, & Hollingsworth, 2001), most plant species diversity 
in the Neotropics was also proven to be ancient, with great diver‐
sification more than 50 Mya (Wilf, 2003; Wing et al., 2009). Even 
birds, which were used as a model in the original refugia‐hypoth‐
esis paper, began to diversify before the onset of the Pleistocene 
(Cheviron et al., 2005; Eberhard & Bermingham, 2005; Ribas, 
Gaban‐Lima, Miyaki, & Cracraft, 2005).

As most of the main pillars of the original Amazon refugia hypoth‐
esis had been questioned or falsified by the late 2000s, one might 
expect that the debate has ceased. Nevertheless, it has continued. 
Two years before his death, Haffer published a long paper responding 
to many of the palynological, geomorphological, and biological argu‐
ments against his hypothesis and that criticized authors who “directed 
critical comments at distorted caricatures of the Refuge hypothe‐
sis” (Haffer, 2008, p. 932). In the last decade, there have been many 
studies that provided evidence supporting (do Amaral et al., 2009; 
Fouquet et al., 2012; Garzon‐Orduna, Benetti‐Longhini, & Brower, 
2014; Hubert et al., 2007; Mirabello & Conn, 2008; Pavan, Martins, 
Santos, Ditchfield, & Redondo, 2011; Ruiz‐Garcia et al., 2010; Thomas 
et al., 2012) and refuting (de Melo, Lima‐Ribeiro, Terribile, & Collevatti, 
2016; Freycon, Krencker, Schwartz, Nasi, & Bonal, 2010; Fuchs, Chen, 
Johnson, & Mindell, 2011; Poelchau & Hamrick, 2013; Ribas, Aleixo, 
Nogueira, Miyaki, & Cracraft, 2012) the Pleistocene‐refugia hypothe‐
sis, consequently keeping the dispute alive.

4  | FINAL REMARKS

The Amazon refugia hypothesis was an elegant and dominant para‐
digm that stimulated the debate of drivers of Neotropical diver‐
sity for half‐century. The hypothesis was largely influenced by the 
success of related temperate‐forest refugia hypotheses (Bennett, 
Tzedakis, & Willis, 1991) and reached its golden age when only in‐
direct biogeographic evidence was available, but suffered severe 
opposition with the advance of the well‐dated paleoecological and 
molecular data. The two main current debates around the Amazon 
Refugia hypothesis are (a) the ancient versus Pleistocene diversifi‐
cation, and (b) the scarcity and incompleteness of existing paleo‐
ecology records that impede a satisfactory reconstruction of the 
paleovegetation basin‐wide.

The refugia hypothesis has changed over time, and the number, 
size, and location of the isolated refugia were loosened. The idea 
of an open savanna matrix, which was initially thought to separate 
refugia forests patches, was replaced by a mosaic of various types of 
savanna, dry forest, and other intermediate vegetation types (Sato & 
Cowling, 2017). The timeframe of the refugia hypothesis was also re‐
laxed to “any period of the earth's history” as opposed to the original 
Pleistocene and post‐Pleistocene. The connectivity between refugia 
through riverine forests that were resistant to drier climates has also 
become acceptable. All these changes helped this hypothesis to sur‐
vive in the face of new evidence.

During the past decades, there have been studies confirming 
and refuting almost every aspect of the refugia hypothesis. The 
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most disputed aspect still seems to be about the fragmentation in‐
tensity that Amazonia experienced during the ice ages (Bush, 2017). 
Palynology and geology experts strongly disagree on the extent 
of past savanna‐like vegetation in the Amazonian region, based on 
available evidence. The only consensus is that Amazonian speciation 
and diversity are very complex (Antonelli et al., 2010; Hoorn et al., 
2010), and that their elucidation still suffer from limited geographic 
and taxonomic sampling (Leite & Rogers, 2013).

It would be over simplistic to believe that such enormous diver‐
sity could be explained by evoking a single mechanism (Cheviron et 
al., 2005). Several studies have suggested that the Amazonian di‐
versity appears to be the result of multiple factors with contribu‐
tion of both allopatric and parapatric diversification mechanisms 
across different taxa (Whinnett et al., 2005). Vicariant processes 
including Andean uplift, riverine barriers, marine transgressions, and 
climatic‐driven vegetation shifts, as well as nonvicariant processes, 
such as range expansion, habitat gradients, and even domestication 
(Levis et al., 2017), played a role on the distributions of species. The 
Amazonian species variability is a result of all those processes acting 
independently, or in interplay, with variable intensities, at different 
times in different species (Antonelli et al., 2010; Noonan & Gaucher, 
2005). That is probably why concordant evolutionary histories or 
simultaneous divergence times across Amazonian taxa are rarely 
found. Therefore, it is reasonable to say that most of the diversi‐
fication of the Amazonian biota is not directly associated with the 
mechanism of the Pleistocene refuge hypothesis.

The history of Amazonian biodiversity continues to be an unre‐
solved question in evolutionary biology (Antonelli et al., 2010). The 
forest refugia hypothesis cannot explain the origin and maintenance 
of the Amazonian diversity alone, and perhaps it was not the most 
important mechanism of species differentiation. From that per‐
spective, the hypothesis has failed. However, not only the refugia 
hypothesis, but any simple unifying explanation for the Amazonian 
species diversity has also failed (Bush, 2005). Therefore, the refu‐
gia hypothesis, and many of the alternative hypotheses, still can‐
not be ruled out as relevant explanations for some aspects of the 
Amazonian diversity (Garzon‐Orduna et al., 2014). Even though 
there is no definitive or simple answer for the question concerning 
the origin of the incredible Amazonian biodiversity, the successive 
tests of the refugia hypothesis have generated much knowledge on 
Amazonian climatic, geological, and evolutionary process, as well as 
on species distributions, movements, and history (Bush & Oliveira, 
2006). In this sense, it has been a successful hypothesis.

Understanding how Amazonian biodiversity has developed 
and identifying the related mechanisms has never been so urgent. 
For the past decades, Amazonia has been experiencing unprec‐
edented threats, including persistent high deforestation rates, 
widespread use of fire, and global climate changes (Lovejoy & 
Nobre, 2018). It is expected that, with current deforestation 
trends, 40% of Amazon forests will be cleared and about a quar‐
ter of Amazon mammal species will lose more than 40% of their 
distribution by 2050 (Soares‐Filho et al., 2006). The deforestation 
might disrupt the hydrological cycle and tip the ecological point 

to flip forested to nonforest ecosystems in eastern, southern, and 
central Amazonia (Lovejoy & Nobre, 2018). A better understand‐
ing of the mechanisms behind the diversification processes might 
enable us to anticipate and mitigate ongoing biodiversity loss in 
the Amazonia.
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