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Abstract 
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, 
antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-
life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence 
(AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration 
of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier 
methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and 
variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive 
models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a 
comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, 
showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of 
peptide-based drug discovery. 

Keywords: protein engineering; therapeutic peptides; deep learning; large language models; deep generative models; peptide-base drug 
discovery; artificial intelligence
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Introduction 
Engineered peptides exhibit wide-ranging therapeutic effects, 
such as antimicrobial, antitumour, antithrombotic and immuno-
modulatory activity [1]. Peptide drugs offer potential advantages 
over traditional small-molecule drugs, including increased selec-
tivity, affinity, efficacy, safety and reduced toxicity and immuno-
genicity [2]. However, the brief half-life, limited oral bioavailability 
and susceptibility to plasma degradation of peptide drugs remain 
a challenge for their widespread clinical application [3]. 

The growing availability of numerous peptide sequences and 
their functions have driven the development of computational 
tools to store and share peptide information[4]. General and 
activity-specific databases have been established and are publicly 
accessible [5, 6]. Besides, artificial intelligence (AI) methods 
and predictive systems through machine learning (ML) have 
substantially evolved in recent years, particularly in protein 
engineering applications [7]. 

The rapid evolution of AI has marked the beginning of a new 
era of sophisticated ML algorithms in biomedicine, significantly 
impacting drug discovery [8]. Integration of ML has taken on a 
multifaceted dimension, including classifier methods, predictive 
systems and generative approaches [9]. 

Classifier methods are crucial for identifying diverse peptide 
activities, from biological functions to categorical properties [5]. 
In contrast, predictive models prove their utility by estimating 
numerical properties, such as binding affinities in protein–peptide 
interactions, evaluating toxicity and predicting inhibitory activity 
[10]. 

Deep generative models (DGMs) have emerged as tools for 
the design of therapeutic peptides [11]. In particular, generative 
adversarial networks (GANs), variational autoencoder (VAE) 
and diffusion models facilitate the generation of novel peptide 
sequences aimed at specific objectives [9, 12]. However, auto-
mated or assisted peptide design still faces challenges, such 
as the optimization of peptide processing, the establishment 
of informative representation strategies and the meticulous 
development and validation of predictive models. 

This work describes peptides and their different properties 
and usabilities for biotechnology and therapeutic applications. 
It also presents traditional strategies for training ML models. 
Subsequently, it discusses the potential applications of DGMs 
as a foundational tool for designing peptides with therapeutic 
potential. Besides, a comparative analysis of the most common 
DGMs strategies is addressed. This work also proposes a 
comprehensive AI-assisted peptide design and validation pipeline. 
Finally, different challenges are discussed concerning achieving 
an autonomous therapeutic peptide design supported by AI 
approaches. 

Peptides and their biotechnology 
applications 
Peptides exhibit unique biochemical and therapeutic attributes 
and can be synthesized or obtained from natural sources. This 
section aims to offer a perspective on peptides, exploring their 
multifaceted biological functions, moonlighting attributes and 
applications [13, 14]. 

Peptide overview, synthesis process, function 
biological activities and moonlighting effects 
Peptides consist of short chains of amino acids, with a molecular 
weight ranging from 0.5 to 10 kDa [15], and a length ranging from 

a couple of amino acids up to 100 [16]. Their role in biological 
processes is diverse, including functions as structural compo-
nents, enzymatic inhibitors, hormones, host defence molecules 
and neurotransmitters [11]. Moreover, peptides can also act as cell 
surface receptors [17] and play an essential role in drug delivery 
applications [17, 18]. 

These macromolecules can acquire secondary structures, com-
monly forming α-helix and β sheets structural patterns [19], but 
also more complex structures [20]. Lasso peptides, for exam-
ple, have a unique 3D structure where the C-terminus threads 
through an N-terminal macrolactam ring in a right-handed con-
formation, which provides stability against chemical, thermal and 
proteolytic degradation [21]. 

Peptides can be isolated from natural sources [1], including 
venoms [22], food products [23] and marine organisms [24]. Alter-
natively, peptides can be produced using recombinant techniques 
and chemical synthesis [25, 26]. 

In the recombinant approach, organisms like E. coli, S. cerevisiae 
and P. pastoris are used to produce heterologous peptides using the 
host cell protein production machinery [14]. In contrast, chemical 
procedures allow synthesis automation for large-scale industrial 
production [27]. Common chemical techniques are solid-phase 
peptide synthesis [11] and liquid-phase peptide synthesis [28]. 

Peptides can exhibit different biological activities with mul-
tifaceted properties. Figure 1A summarizes the main biological 
activities reported. As therapeutic properties, peptides play a 
role as antimicrobial, antitoxin and anticancer [2]. In the cos-
metic industry, peptides can be used for wound healing and 
anti-aging activities. Peptides can also facilitate the molecular 
binding of proteins, DNA and RALF molecules. Peptides with 
immunological, neurological, signalling, drug delivery, propeptide, 
taste and cell–cell communication properties have been reported 
[5, 29–31]. Finally, peptides can also exhibit toxic effects, with 
reports of cytotoxic, allergen, endotoxin and neurotoxin charac-
teristics [32–34]. 

Evolution and adaptability have moulded peptides into exhibit-
ing two or more concurrent biological activities [35]. This unique 
and promiscuous attribute is called moonlighting activity. Unlike 
conventional peptides or proteins with defined functions, moon-
lighting peptides can acquire different activities in various cellu-
lar contexts or environments [35, 36]. 

Figure 1B describes the moonlighting for the primary biological 
activities reported in the Peptipedia database [5]. Therapeutic 
peptides have been demonstrated to present toxic properties. 
Cell–cell communication peptides also play therapeutic and sig-
nalling roles. The moonlighting effect was also analyzed for spe-
cific therapeutic peptides, including antimicrobial, metabolic, and 
anti-cancer. (See section S1 of Supplementary Material for more 
details). Moreover, specific antimicrobial peptides (AMPs) with 
antifungal, antibacterial and antiviral biological activities exhibit 
moonlighting properties. The moonlighting effect is also a prop-
erty for antibacterial peptides, existing peptides with anti-gram 
(+) and anti-gram (-) activity (See section S1 of Supplementary 
Material for more details). 

Leveraging moonlighting peptides as therapeutics presents 
potential advantages over traditional small-molecule drugs. 
The ability to combine multiple therapeutic functions into a 
single drug could alleviate the treatment burden for patients. 
Furthermore, such peptides could simultaneously target various 
disease-related pathways [35]. However, their multifunctional 
nature may also give rise to specificity issues, and their design 
complexity is compounded by the necessity to understand these 
unique structure–function relationships.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae275#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae275#supplementary-data
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Figure 1. Biological activities of peptides, moonlight activity and main applications. A. Functional biological activities were grouped into 10 categories, 
including therapeutic, neurological drug delivery vehicle, sensorial, immunological, molecular binding, propeptide, signal peptide, transit and other 
activities (colour boxes) with different categories and subcategories. A total of 96 activities considering properties, reported activity and experimental 
validations have been generated in our previous work [5]. B. Moonlight evaluation of the 10 main activities reported in [5]. Therapeutic peptides are 
highly related to propeptides, drug delivery vehicles and sensorial peptides. Neurological peptides are also highly related to drug delivery vehicles and 
molecular binding. In contrast, sensorial peptides have a low relation with immunological peptides. C. Summary of peptide applications, considering 
industrial, biotechnology and therapeutic applications. 

Biotechnology and therapeutic applications of 
peptides 
Peptides exhibit many natural functions and offer significant 
potential for diverse applications. Peptide synthesis with non-
canonical or artificial residues further expands their utility 
(e.g. by modifying residues in cationic AMPs to enhance pro-
teolysis resistance) [37]. Figure 1C provides an overview of the 
primary applications of peptides in industry, biotechnology and 
therapeutics. 

In the industrial sector, peptides have been applied as biosen-
sors and used explicitly for pollutant and pathogen detection 

[38]. Peptides have also been employed in the food industry as 
food preservatives, hydrogelators, foam stabilizers and emulsify-
ing agents [39]. For biotechnology applications, peptides have been 
used for plant protection and as immune inducers, playing pivotal 
roles as insecticidal and herbicides [40–42]. 

In therapeutic applications, peptides have generated antimi-
crobial drugs, including antifungal, antiviral and antibacterial 
[43]. Examples of therapeutic peptides are (i) WK2, designed to 
combat multi-drug resistant Salmonella [44], (ii) Teicoplanin a 
semisynthetic peptide for treating severe infections [45] and (iii) 
insulin and semaglutide for diabetes treatment [46].
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Another relevant type of peptide for therapeutic applications 
are the cell-penetrating peptides (CPPs). These peptides can pen-
etrate cell membranes, reach intracellular targets and facilitate 
drug delivery [47]. For example, the cyclic and amphipathic pep-
tide [WR]5 has been used for the intracellular delivery of small 
interfering RNA and the enhancement of curcumin uptake [48]. 

Other peptides have the potential to improve neurodegenera-
tive disorders like Alzheimer’s and Parkinson’s disease [49]. The 
P110 peptide inhibits Dynamin-related protein 1 (Drp1), a crucial 
regulator of mitochondrial fission, offering stable preservation of 
dopaminergic neurons in Parkinson’s disease [50]. Under stress, 
activated Drp1 translocates to mitochondria, leading to excessive 
mitochondrial fission and dopaminergic neuronal death. 

ML strategies to develop predictive models 
for peptides 
In recent years, there has been a substantial increase in the 
number of peptides documented in the literature [5]. This 
sequence abundance has, in turn, stimulated interest in applying 
computational biology techniques to analyse peptide sequences, 
predict biological activities, calculate physicochemical properties 
and assist in peptide design [51, 52]. However, applying AI and ML 
methodologies presents various challenges, from data collection 
and processing to predictive model validation to selecting an 
appropriate training strategy. This section reviews the classical 
approaches of data-driven methods for building predictive models 
and discusses the ML-based models for peptide tasks. 

ML definitions and main characteristics 
ML is a sub-field of AI focused on algorithms and statistical 
models based on the idea that computers can analyse and learn 
from data patterns and use that knowledge to make predictions, 
classify objects or solve various problems [53]. 

Four learning types are currently applied to solve com-
putational biology problems: (i) supervised learning, (ii) non-
supervised learning, (iii) reinforcement learning and (iv) gener-
ative learning [54] (See Fig. 2A and section S2 of Supplementary 
Materials for more details). In addition to the different learning 
types, two main focuses have been implemented for developing 
models using ML strategies, classic ML approaches and deep 
learning (DL) architectures [55]. 

DL approaches have been efficient for image recognition, nat-
ural language processing and speech recognition [56]. In biotech-
nology and bioinformatics, DL has allowed the development of 
predictive models to estimate protein–protein interactions, clas-
sification systems for unknown enzymes through recognition of 
enzyme commission numbers [57] and predictive systems for 
protein structures such as RoseTTAFold [58] or AlphaFold [59]. 

The applications of transfer learning approaches by applying 
foundational trained models to biology context have demon-
strated usability to develop efficient predictive models [60]. More-
over, the combination of transfer learning with semi-supervised 
strategies has facilitated the implementation of predictive models 
to address the data scarcity in protein engineering and fitness 
landscapes [61]. 

A classic data-driven pipeline to develop 
predictive models through ML techniques for 
protein engineering tasks 
There are four main steps for developing predictive models 
for peptides using ML strategies and protein sequences or 

structures: collecting and processing datasets, numerical repre-
sentation strategies, training and validating predictive models 
and evaluating performances using classic metrics. Figure 2B 
summarizes the standard strategies and schematizes a classic 
data-driven pipeline. 

During the collecting process, different sources could be 
employed to obtain protein sequences or structures depending 
on the objective of the predictive model. Usually, generic 
databases like Peptipedia [5], SATPdb [62] or LAMP2 [63] are  
used for collecting AMPs. In contrast, specialized databases like 
quorum sensing signalling peptides [64], anti-angiogenic peptides 
predictors [65] and bacteriocin peptides [66] are employed for 
collecting specific information. 

Before training predictive models, numerical representation 
strategies must be applied to process peptide sequences. Current 
approaches favour the use of learning representations, due to 
their ability to catch functional and structural information from 
the context sequence [67, 68]. However, baseline methods like One 
Hot encoder, feature engineering and physicochemical encoders 
could also be applied (See section S2 of Supplementary Material 
for more details). 

Finally, for training models, a classic pipeline could be applied 
[69], including a standard division of the dataset in training and 
testing partitions, a k−fold cross-validation technique to prevent 
overfitting and the application of classic metrics to evaluate and 
compare the performance of the predictive models (See section S2 
of Supplementary Materials for more details). 

Current methods, strategies and implemented 
models for peptide design 
Predictive models have been developed to explore and analyse 
peptide sequences, with a shared focus on tasks such as AMP 
classification, including ensemble learning process [70] and  DL  
architectures [71] to train the classification models. Besides, 
antiviral classification systems applying Random Forest, support 
vector machine and DL methods have been successfully imple-
mented [72–75]. 

Classification models for therapeutic applications have been 
implemented, including anti-inflammatory detection peptides 
[76], anticancer peptides identification [77] and CPPs recognition 
[78]. 

Pharmacological properties for therapeutic peptides have also 
been the focus of developing predictive models. The prediction 
of half maximal inhibitory concentration (IC50) [79], estimating 
free radical scavenging activity and chelating properties [80] 
and half-life in blood [81] have been addressed by applying ML 
approaches. 

These models not only facilitate the exploration of unknown 
sequences but may also contribute to the design of peptides 
with desirable properties. Typically, they integrate DGM strategies 
to advance sequence generation learning supported by compu-
tational property classification methods. Nevertheless, despite 
this progress, a unified pipeline for training predictive models in 
functional classification tasks remains needed. 

Towards an autonomous peptide-based 
drug discovery 
In this section, we will discuss the integration of ML and AI 
techniques in developing peptide-based drug discovery systems. 
First, we will show ML methods to support drug discovery; then, 
different deep generative strategies will be explained and dis-
cussed, evaluating different advantages and disadvantages. Next,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae275#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae275#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae275#supplementary-data
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Figure 2. The main learning type process, the different applications to solve biotechnology and a data-driven pipeline to build predictive models 
supported by ML strategies. A The four main learning strategies used in biotechnology: (i) Supervised learning is used to build predictive models. (ii) 
Pattern recognition or unsupervised learning is applied to identify behaviours in an unlabelled dataset. (iii) Reinforcement learning is applied to update 
predictive models supported by new experimental evidence or knowledge. (iv) Generative learning is applied to create or design new examples and is 
employed as a landscape navigation strategy. B A classic data-driven approach to generate and use predictive models employing protein sequences 
as input to train the predictive model. First, a dataset is built by collecting information from databases, repositories, public resources or experimental 
reports. Once the dataset is built, numerical representation strategies are applied to code the protein sequences, generating an interpretable dataset for 
ML algorithms. The coded dataset is the input used to train a predictive model by applying supervised learning algorithms. Then, the predictive model’s 
performance is evaluated, and the model is validated through new examples or simulated datasets. Finally, the validated model explores the latent 
space and rebuilds the mutational landscape. 

traditional protein engineering strategies generated to assist the 
peptide design will be analysed and compared with generative 
approaches. Finally, a proposal pipeline to discover therapeutic 
peptides will be explored. 

Drug discovery supported by ML methods 
Drug discovery is the process by which new candidate drugs 
are developed [82]. Traditional drug discovery involves (i) target 
identification, (ii) target validation, (iii) lead compound identi-
fication and (iv) lead optimization [83]. This process can often 
take decades and has a cost that can exceed a billion US dollars 
per target [84], considering that most drugs do not reach the 
market [85]. 

In contrast, drug repurposing is the exploration of new thera-
peutic applications for existing drugs [86]. Drug repurposing has 
different advantages, including safety, efficacy and accelerating 
the clinical assessment [87]. 

The combination of ML approaches with biomedical datasets 
can facilitate the identification of novel therapeutic targets, 
studying molecular characteristics, protein interactions, biologi-
cal activities and adverse effects [4]. 

Different predictive models have been implemented to assist 
drug discovery, including methods like BANDIT, a Bayesian ML 
approach [88], and DeepDTnet, a DL approach that combines 
phenotypic, genetic, chemical and cellular network profiles to 
guide the drug discovery [89].
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Alternatively, drug–target interaction predictive models have 
been developed to evaluate drug candidates. These methods have 
been based on Random Forest algorithms combined with a graph-
based features extraction process [90], deep belief network [91] 
and long short-term memory (LSTM) architectures combined with 
protein characteristics and drug molecular substructure finger-
prints [92]. 

ML frameworks can also predict drugs’ adverse effects at 
diverse stages of the discovery process. Two relevant approaches 
have been implemented: a deep neural network to assess the 
probability of adverse drug reactions in novel pharmaceutical 
compounds [93], and a geometric self-expressive model to help 
identify side effects during drug clinical trials [94]. 

In contrast to the current ML methods implemented to assist 
drug discovery, generative learning strategies have been devel-
oped to design de novo molecules or drugs with desirable targets 
[95]. Methods based on combinations of graph-generative mod-
els with Monte Carlo tree search [96] and transformer-decoder 
architectures to produce de novo smiles [97] have demonstrated 
the usability of the ML approaches to the discovery of new drugs. 

While generators generative learning implemented for drug 
discovery exemplify the potential of AI models for small molecule 
design [96, 97], their capability can further extend into the domain 
of peptide design [98]. 

DGM for the generation of new peptide 
sequences 
DGMs aim to capture the underlying data distribution of a 
given dataset to generate novel instances that accurately 
represent the properties of the original data [99, 100]. For 
peptide design, DGMs can not only generate de novo peptide 
sequences but also perform learning representation tasks and 
likelihood learning tasks, where the model can learn to assign 
a greater probability to protein sequences that acquire desired 
characteristics [12]. 

There are multiple steps in the pipeline for peptide design using 
DGMs. First, the model needs to be trained. To this aim, peptide 
databases, datasets and repositories are collected and processed. 
Next, the collected peptide sequences require a numerical rep-
resentation to provide the models with an interpretable input. 
Peptide representation can rely on feature descriptors, amino acid 
coding or embedding representations [98]. Then, the model is 
trained on the represented data; modelling the distribution of the 
training set allows us to learn the underlying data distribution and 
generate novel sequences. 

In this section, the most common generative strategies are 
described, then state-of-the-art-related protein design, genera-
tion or discovery is analysed. Besides, a comparative analysis of 
the different generative approaches is addressed, including the 
advantages and disadvantages of each one. 

Variational autoencoders 
A VAE is a generative model combining autoencoders and varia-
tional inference elements. VAEs are used to learn representations 
of unsupervised input data and generate new data samples that 
resemble the training data [12]. 

Overall, VAEs are powerful generative models capable of learn-
ing rich representations of complex data distributions and gener-
ating new samples with desirable properties. They have applica-
tions in various domains, including image generation, text gener-
ation and anomaly detection. 

VAE introduces a probabilistic aspect, learning a distribution 
in the latent space (see Fig. 3A). The most relevant components of 

a VAE model are (i) an encoder network, (ii) a reparametrization 
trick, (iii) a latent space, (iv) a decoder network and (v) a loss 
function [99]. 

During training, the VAE optimizes the parameters of both the 
encoder and decoder networks to minimize the combined loss 
function. This process involves passing input data through the 
encoder network to obtain latent space representations, sampling 
from the latent space and then reconstructing the data using 
the decoder network. The model’s parameters are updated using 
gradient descent techniques. 

Once trained, the VAE can generate new data samples by 
sampling from the learned latent space distribution and passing 
the samples through the decoder network. By varying the samples 
in the latent space, the model can generate diverse and realistic 
data samples that resemble the training data. 

Generative adversarial networks 
GANs are generative models based on energy-based models 
(EBMs). Two components are most relevant for a GAN: a generator 
network and a discriminator network [101] (see  Fig. 3B). 

The generator is a neural network that takes random noise 
(often drawn from a simple distribution such as Gaussian) as 
input and produces data samples as output. Initially, the genera-
tor produces random noise, but as training progresses, it learns to 
generate increasingly realistic samples that resemble the training 
data [98]. In contrast, the discriminator is another neural network 
that takes input data samples and predicts whether they are real 
or fake [98]. 

The training process of a GAN model is called adversarial 
training. During the training process, the generator and discrimi-
nator are trained simultaneously. The generator aims to produce 
indistinguishable samples from real data, while the discriminator 
aims to classify real and generated samples correctly [99]. During 
training, the generator and discriminator are updated iteratively. 
The generator creates fake samples and attempts to fool the 
discriminator, while the discriminator is updated to better distin-
guish between real and fake samples. This process continues until 
the generator produces samples that the discriminator is not able 
to differentiate from real data [101, 102]. 

Neural language models 
Neural language models (NLMs) use neural networks to compre-
hend and generate human language. Designed to capture intricate 
patterns and relationships within a given language, these models 
are proficient in diverse tasks such as language understand-
ing, sentiment analysis, machine translation and text generation 
(refer to Fig. 3C) [99]. Key components of NLMs are (i) Neural 
Network Architecture, (ii) Word Embeddings, (iii) Pre-training and 
Transfer Learning, (iv) Contextual Understanding, (v) Transformer 
Models and (vi) Generative Language Models. 

NLMs predominantly adopt two main frameworks: recurrent 
neural networks (RNNs) and attention models. In RNNs, LSTM and 
gated recurrent units are used to construct autoregressive models. 
These models effectively capture sequential data by retaining 
historical information in their hidden states [98]. 

Flows-based and EBMs 
Flow-based models are generative models that learn the mapping 
between data samples and their corresponding probability densi-
ties. These methods utilize invertible neural networks to establish 
a bidirectional mapping between inputs and a latent represen-
tation. Unlike some generative models that rely on approximate
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Figure 3. Classic DL architectures through DGMs employed for peptide design. A An autoencoder is a DL architecture that facilitates encoding the input 
data into a lower dimensional representation, reconstructing the original input as closely as possible. The autoencoders have two main components: 
an encoder and a decoder. B VAEs are a specific type of autoencoder that introduces probabilistic elements into the model, enabling it to learn a 
probabilistic distribution of the data in the latent space. VAEs are particularly effective for generating new, similar data points and are often used in  
generative modelling tasks. C NLMs, also known as autoregressive models, are a class of AI models that use neural networks to understand and generate 
human language. These models are designed to capture the complex patterns and relationships within a given language, enabling them to perform tasks 
such as language understanding, sentiment analysis, machine translation and text generation. D GANs are a class of AI algorithms that generate new, 
realistic data samples that resemble a given dataset. The main components in a GAN are (i) generator, (ii) discriminator, (iii) adversarial training, (iv)  
loss function and (v) training process. 

sampling, flow-based models often use exact inference and ana-
lytical computations [ 99] (see  Fig. 3D). 

Different components are necessary to develop a flow-based 
model, including (i) the base distribution, (ii) the transformation 
network, (iii) invertible transformation functions and (iv) an out-
put distribution. 

EBMs are a diverse category of ML models characterized by 
their unique approach to modelling data. EBMs are designed to 
learn an energy function rather than directly learning a prob-
ability density function on the input space [103]. According to 
this energy function, observed or plausible data states are given 
low values (referred to as ‘energies’), whereas unobserved or 
improbable states are given high values [99]. EBMs differ from 
conventional generative methods because they do not require 
normalizing probability distributions. 

EBMs are more flexible for handling probability distributions, 
due to integrating the energy function into the learning model 
[103]. 

Diffusion models 
Diffusion models are generative models that iteratively apply 
reversible transformations to a noise process. These models 
efficiently generate high-quality, diverse samples in various 
domains, such as images, text and audio [104]. Figure 3E presents 
a schematic representation of the diffusion model approaches. 

The type of model starts with a noise process as the initial 
input. Then, reversible transformations to the noise process are 
applied iteratively. Each transformation is designed to gradually 

change the noise process into a data sample while preserving 
reversibility [105]. 

Diffusion models typically incorporate an annealing schedule 
to control the diffusion rate and ensure stable training. The 
annealing schedule gradually adjusts the magnitude of the 
reversible transformations over time, allowing for smoother 
transitions and better convergence [106]. 

Diffusion models are trained using maximum likelihood esti-
mation. The training objective is to minimize the negative log-
likelihood of the data samples under the diffusion model. This 
objective encourages the model to learn reversible transforma-
tions that can accurately transform the noise process into realistic 
data samples [105]. 

Once trained, diffusion models can generate new data samples 
by running the diffusion process forward from random noise. By 
varying the random noise inputs, diffusion models can generate 
diverse, high-quality samples that resemble the training data 
distribution [104]. 

Generative approaches applied for peptide design and 
discovery 
Different VAE strategies have been implemented to assist the pep-
tide design or discovery. Methods like PepVAE [107], PepCVAE [108] 
and GM-Pep [109] have been proposed for AMP design supported 
by VAE approaches. Two relevant methods for AMP design are 
proposed in [110] and  [111]. 

[110] used a deep autoencoder to design AMPs, achieving suc-
cess in 48 days with a 10% hit rate. HydrAMP, a conditional
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variational autoencoder (cVAE), uncovers a continuous represen-
tation of peptides, leveraging controlled creativity [111]. Using 
HydrAMP, AMPs, including a superior analogue (Hydraganan-1) of 
Pexiganan, were generated and experimentally tested against E. 
coli strains [111]. 

Other examples of peptide design using VAE strategies are 
target-specific peptide inhibitors [112], peptide inhibitors target-
ing β-catenin [113], peptides with desired bioactivity and mem-
brane permeability properties [114] and peptide–MHC binding 
[115]. 

GANs are among the most widely used generative models 
for the design of peptides [103]. GANDALF (Generative Adver-
sarial Network Drug-tArget Ligand Fructifier) is a deep convolu-
tional GAN-based method that incorporates information about 
the active atoms of the protein–ligand interaction domain [116]. 
GANDALF generates novel peptides and predicts their binding 
affinity to a specific target. Rather than using protein–protein 
interaction databases, this model is trained on drug–ligand inter-
actions of protein and FDA-approved peptide drugs based on the 
THP database [117]. It also uses data from PDB for 3D structures, 
Uniprot for the names of interacting proteins or peptides and 
CASTp to calculate protein pockets [118, 119]. This model has 
generated peptides to target cancer-related proteins, including 
PD-1, PDL-1 and CTLA-4 [116, 120]. 

Another GAN-based method for designing peptides, specifi-
cally bioactive antiviral peptides, is PandoraGAN [121]. It uses 
LeakGan, a modified GAN used in text generation, to generate 
peptides that undergo initial validation based on their amino acid 
composition, net charge, instability index, repeats and patterns. 

Methods like AMPGAN v2 [122], AI4AVP [75] and HelixGAN 
[123] have also been implemented using GAN strategies to assist 
therapeutic peptide design. 

Applying NLM strategies [124] have implemented AMPTrans-
LSTM, a deep generative network-based approach designed to 
rationalize AMPs. Comprising two interconnected submodels: 
a long- and short-term memory sampler and a transformer-
converter, the model demonstrates a success rate ranging 
between 30% and 50%. It generates new peptide sequences while 
preserving essential AMP features. 

Flows-based models have been implemented focusing more 
on drug discovery. An example of these models is TagMol [125]. 
TagMol is a probabilistic end-to-end EBM for target-specific drug 
design. This approach uses the EBM to evaluate the binding affin-
ity scores between protein–ligand pairs precisely. TagMol demon-
strated that it could generate molecules with binding affinity 
scores similar to real molecules. 

Different approaches have been implemented to assist peptide 
design, focused on diffusion model strategies [98]. Examples of 
the implemented strategies are AMP-diffusion. This method inte-
grates latent diffusion with protein language models to generate 
AMPs [126]. Another relevant method for peptide therapeutic 
peptide design is the combination of structure prediction net-
works with diffusion generative approaches [127]. Alternatively, 
methods like Geometric Latent Diffusion [128] and multi-modal 
contrastive diffusion models [129] have been designed to support 
the therapeutic peptide design. 

A simple comparative analysis of the different 
generative strategies employed for peptide design 
The different strategies implemented to design therapeutic pep-
tides have proven successful in their application. However, there 
are differences in their operation that require attention to identify 
their advantages and disadvantages. 

When formulating strategies based on VAEs, leveraging a 
latent space informed by distributions facilitates the generation 
of peptide sequences exhibiting an amino acid distribution 
similar to those in the training data. A more extensive repertoire 
of sequences enhances the likelihood of producing successful 
peptides as it expands the scope of potential explorations. 
However, a higher volume of feasible peptides does not inherently 
guarantee acquiring the desired biological activity. Given peptides’ 
propensity for moonlighting properties, there exists the possibility 
of uncovering novel biological activities that may not necessarily 
be advantageous. Consequently, when employing VAE-based 
design methodologies, incorporating a validator for the peptide 
sequences generated by the models becomes imperative. 

Alternatively, design methodologies based on GANs require 
training a discriminator component to distinguish between real 
and fake sequences. While GAN-based approaches often offer 
advantages over VAE methods, like a validation process for gen-
erated sequences, their implementation requires careful consid-
eration of various factors. First, achieving a balanced dataset is 
crucial; any class imbalance could impede the model’s ability to 
generalize effectively. Secondly, ensuring accurate differentiation 
between positive and negative elements, particularly in peptide 
sequences, demands adopting appropriate representation strate-
gies. Therefore, integrating generative methods with Transform-
ers to leverage pre-trained representation learning models proves 
beneficial for incorporating decoding techniques and facilitating 
the discrimination of genuine from spurious sequences. Intro-
ducing additional components complicates generative strategies’ 
training, validation and use. 

Methods based on NLMs typically incorporate DL architectures 
such as RNNs or LSTMs. Training these models relies on natural 
language processing techniques. Achieving robust generalization 
with these models is challenging, often necessitating a substantial 
volume of training examples. Their appeal lies in their ability to 
analyse context and semantics for model development. Never-
theless, akin to VAE-based approaches, evaluating their efficacy 
requires integrating a classification model, thus complicating the 
training process. However, recent studies have reported precision 
rates exceeding 80% in developing AMPs, underscoring the effi-
cacy and utility of these methods. 

Recently, advances in peptide design methodologies have 
showcased remarkable efficacy, particularly in therapeutic 
peptide development. Among these methods, diffusion-based 
strategies have emerged as standout performers compared with 
approaches like VAE or GAN. Leveraging diffusion models enables 
efficient and high-fidelity reconstruction of new examples. 
Additionally, unlike flow-based or NLMs, there appears to be no 
significant correlation between the complexity of the training 
architectures and model performance. Notably, recent efforts 
have integrated generative learning with contrastive learning 
strategies to enhance performance in trained models. 

Finally, while various strategies exist to aid peptide design and 
significant advances have been made in generative AI, several 
challenges warrant careful consideration before peptides proceed 
to experimental testing. These challenges encompass the analysis 
of toxicological and immunogenic properties, which are critical 
for ensuring safety and non-desirable effects. Additionally, pep-
tides like bacteriocins often feature post-translational modifi-
cations (PTMs), a factor not accounted for in standard peptide 
generation processes. Assessment of pharmacological and phar-
macodynamic attributes, such as half-life and quality measured 
via IC50, is imperative. Moreover, evaluating potential undesirable 
activities stemming from peptides’ moonlighting effects is crucial.
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Lastly, given that most therapeutic peptides act as receptor tar-
gets, computational affinity assessment against these receptors 
could enable the development of efficient filters for experimental 
peptide testing. 

Therapeutic peptide discovery through ML and 
DGMs 
Various computational strategies have been used to facilitate the 
discovery of peptides with therapeutic potential. 

These approaches focused on exploring classification systems 
and reconstructing mutational landscapes to inform rational pro-
tein design [130]. Additionally, the advances in structure pre-
dictions supported by AlphaFold have generated a new era for 
peptide-based drug discovery, facilitating the generation or dis-
covery of new therapeutic peptides [131]. Alternatively, methods 
rooted in DGMs have demonstrated effectiveness in generating or 
identifying peptides exhibiting antimicrobial and signal peptide 
activities [110]. 

However, navigation through a latent space, investigation of 
diverse conformations and assessment of different functional 
components tied to the capacity and characteristics of peptides 
designed using AI remains challenging. 

In particular, unique validation techniques and property cal-
culations associated with the activity and quality of the designed 
peptide are needed. 

This section presents a potential pipeline for discovering pep-
tides with therapeutic activity. This pipeline encompasses pre-
dictive modelling of peptide properties, tools for predicting inter-
action affinity and bioinformatics methods that offer in silico 
validation of generated sequences. Experimental validation can 
be undertaken based on the specific application. 

The proposed pipeline is illustrated in Fig. 4, outlining three 
key components essential for advancing the discovery of peptides 
with desirable therapeutic attributes. 

The initial component (refer to Fig. 4A) is dedicated to designing 
and implementing models to classify biological activity. These 
models specialize in binary or multiclass classification of the 
biological activities of unknown peptides or those generated by 
generative systems. 

For instance, they categorize peptides as antiviral, antihyper-
tensive, antibacterial or peptides with antiviral activity that rec-
ognize viruses within the Retroviridae family and the HIV species. 
Beyond models for classifying biological activity, evaluation mod-
els may be needed to assess functional mechanisms. For example, 
evaluating the potential to inhibit the integrase enzyme or assess-
ing peptides’ ability to hinder fusion between the GP41 protein and 
the host in the case of anti-HIV peptides. 

Another consideration is a peptide’s capacity for multiple activ-
ities, such as forming interactions with proteins, membrane per-
meability and moonlighting capabilities. Introducing new rules 
or conditions to the peptides explored via classification systems 
facilitates the integration of regulatory elements into the design 
process, constrains navigation within the latent space and fosters 
guided learning for design systems. 

The construction of these models follows the strategies out-
lined earlier in this work, including using numerical representa-
tion methods to validate implemented classification models. 

The second component focuses on designing and implement-
ing an affinity prediction system between protein and peptide, 
which only applies to peptides targeting a protein (See Fig. 4B. 

The binding affinity predictive component proposes strate-
gies involving matrix or object representations to characterize 
the interaction complex and train predictive models through DL 

architectures, focusing on CNN or GCN methods. By applying 
such architectures, explainable AI methods can be integrated to 
support predictions from an interpretative and explanatory point 
of view. 

The integration of XAi approaches will allow an under-
standing of the relevant zones or patterns that dictate the 
model’s response, facilitating the design guidance of peptides 
exhibiting high affinity for the identified protein zones and key 
residues that encourage a favourable interaction with the target 
protein. 

Finally, the third component is dedicated to the generative 
method for exploring novel sequences (See Fig. 4C). Techniques 
such as VAEs or GANs have been previously utilized to navigate 
the latent space of peptides awaiting exploration. 

Initially, only peptides with a specific biological activity of 
interest are considered input. Nevertheless, there is also potential 
to incorporate unknown peptides displaying a specific biological 
activity, such as adding peptides to the dataset with antiviral prop-
erties, even in cases where there is no experimentally validated 
information, especially concerning anti-HIV activity. 

Functional classification models are crucial for assimilating 
these new sequences in such scenarios. The development of 
this analytical approach encourages dataset expansion, thereby 
broadening the latent space to uncover novel peptides. 

Once the generative models are trained and validated, the next 
step is to explore and navigate the latent space. To achieve this, 
optimization methods that rely on heuristic algorithms can be 
integrated to explore new sequences. 

These identified sequences must be validated using biolog-
ical activity classification methods and, if necessary, methods 
predicting affinity to target proteins of interest. In this context, 
validation serves as a set of rules or checkpoints that must be met 
to propose a peptide as a potential candidate for experimental 
validation. Additional validations are also required, such as the 
analysis of physicochemical properties and stability and the esti-
mation of toxicity. 

Reinforcement learning-based methods can be incorporated 
into the generation and validation stages to update the model 
responses. Incorporating a layer of active learning enhances the 
model’s performance and improves its generalization. Including 
experimental validation data further enhances functional classi-
fication and prediction models for better guidance when explor-
ing or navigating the latent space. 

Challenges and opportunities: perspectives 
on peptide design in therapeutic 
applications 
The advantages of peptide-based therapeutics include their effi-
cacy, safety, specificity, customizable nature and various synthesis 
options. Nevertheless, pursuing peptides for medical applications 
still faces essential challenges despite strides in in silico drug 
discovery and design. 

One of the obstacles to IA-assisted peptide design is the lack 
of a centralized, comprehensive and curated source of peptide 
information. As described earlier, there are individual efforts such 
as LAMP [63] for specific biological activity or PepipediaDB [5] 
for general purpose. However, accelerated advances will require 
global collaborative efforts. 

Individual and fragmented data availability results in inconsis-
tencies and misclassifications; for example, very different biolog-
ical activities have been reported for the same peptide. However, a 
significant challenge is the scarcity of systematized experimental
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Figure 4. A generalizable in silico pipeline to design therapeutic peptides with desirable properties combining ML, DGMs and biological structural 
validations. A Pipeline to train functional biological classification models, including the classic steps to develop predictive models using ML approaches. 
B Pipeline to train a binding affinity predictive model using ML algorithms. In this case, it is necessary to represent the protein, the ligand and the complex 
structure. C. A pipeline to build a generative model for designing therapeutic peptides. The pipeline includes the DGM, the functional classification 
system, the protein-binding affinity predictive model and bioinformatics approaches to validate the designed peptide sequences. 

data on the half-life, IC50 and other critical biochemical and 
biological variables. 

A consortium effort to support and maintain a centralized data 
source and incentives to encourage the deposit of experimental 
data may overcome this challenge. 

Despite the abundance of strategies, techniques and method-
ologies for developing functional activity classification models 
and predictive systems for peptides’ physicochemical and ther-
modynamic properties, many of these approaches are challenging 
to replicate or access. This poses a significant obstacle not only to 
share results and methodologies but also to compare strategies 
effectively. 

During the training of biological activity classification sys-
tems and the development of predictive systems, a crucial aspect 
involves the techniques used for the representation and coding of 
the peptide sequence. 

Traditional methods like One-Hot encoding or physicochemical 
property coding often encounter challenges due to variations 
in sequence lengths. zero-padding techniques are typically 
employed to ensure uniformity during model training, intro-
ducing noise that increases with significant sequence length 
differences. 

Solutions focusing on feature engineering-based representa-
tion offer an alternative, yet challenges persist in identifying
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relevant variables and needs reduction techniques. Moreover, 
models developed using these strategies often need to improve, 
rendering them inefficient for therapeutic peptide design. 
Recently, representation learning methods leveraging pre-trained 
models have emerged as a promising solution, promoting superior 
performance in predictive models. However, their computational 
overhead can be substantial, particularly when handling large 
datasets. 

The issue extends beyond methodological complexity to 
include the availability and accessibility of benchmark datasets. 
Thus, there is a pressing need to enhance replicability and 
ensure persistent access to benchmark datasets. The develop-
ment of gold-standard datasets capable of validating various 
training strategies and facilitating performance comparisons is 
imperative. 

On the other hand, peptide design requires a delicate balance 
between safety, delivery efficiency, stability and preservation of 
efficacy and specificity. Minor alterations in the peptide sequence 
can significantly impact binding affinity and susceptibility to 
degradation. 

The moonlighting property of peptides adds another layer of 
complexity. That can, however, be exploited to achieve a combina-
tion of binding properties, transport capacity, mobility and inter-
actions at various molecular levels. Current technical advances, 
such as implementing deep generative methods to generate 
new sequences and multi-task modelling, may overcome this 
challenge. 

Alternatively, hierarchical predictive systems or rule-decision 
classification systems might be implemented for numerical 
models predicting the desired properties such as IC50, half-life, 
toxicity, etc. 

Peptides, being proteins, are susceptible to PTMs. Unfortu-
nately, these modifications are often overlooked during modelling, 
creating a gap and introducing uncertainty in peptide design. 
Notably, bacteriocin peptides, utilized as antimicrobials to com-
bat antibiotic resistance, frequently exhibit such modifications, 
demonstrating the need to incorporate PTMs predictive models 
into the pipeline of therapeutic peptide design (See more details 
in section S3 of Supplementary Material). 

Lastly, provided that a comprehensive curated source of pep-
tide information to train potent models is generated, a continuous 
update and feedback with experimental data will be required. 
Reinforcement learning will enable the continuous update of the 
model, which in turn will increase performance and generaliza-
tion capabilities. 

Despite these challenges, automated peptide generation has 
the potential to produce sequences with desired characteris-
tics, such as enzymatic degradation resistance and specificity. 
Integrating generative methods, predictive systems and bioinfor-
matics tools provides invaluable support for exploring peptides, 
uncovering new sequences or peptides with therapeutic activities, 
and synergizing with traditional methods like directed evolution 
and rational design. Integrating these tools will accelerate the dis-
covery of novel peptides to complement conventional therapeutic 
arsenals. 

Key Points 
• In this work, the properties of different functional pep-

tides, therapeutic and biotechnology applications, rele-
vant repositories, datasets and biological databases for 
peptide sequences are analysed. 

• This work presents the most relevant machine learning 
strategies applied to develop predictive models using 
aminoacid sequences or protein structures as input for 
peptide studies. 

• This work describes therapeutic peptide characteristics 
and strategies for the design and discovery, focusing on 
generative learning. 

• An artificial intelligence pipeline to address the most 
common problems and challenges related to automated 
therapeutic peptide design is proposed in this work. 

Supplementary data 
Supplementary data is available online at Briefings in Bioinformatics 
online. 
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