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Abstract

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial,
antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-
life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence
(AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration
of these complex macromolecules. This perspective delves into integrating Al in peptide development, encompassing classifier
methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and
variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive
models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a
comprehensive Al-assisted peptide design and validation pipeline. The evolving landscape of peptide design using Al is emphasized,
showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of
peptide-based drug discovery.
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Introduction

Engineered peptides exhibit wide-ranging therapeutic effects,
such as antimicrobial, antitumour, antithrombotic and immuno-
modulatory activity [1]. Peptide drugs offer potential advantages
over traditional small-molecule drugs, including increased selec-
tivity, affinity, efficacy, safety and reduced toxicity and immuno-
genicity [2]. However, the brief half-life, limited oral bioavailability
and susceptibility to plasma degradation of peptide drugs remain
a challenge for their widespread clinical application [3].

The growing availability of numerous peptide sequences and
their functions have driven the development of computational
tools to store and share peptide information[4]. General and
activity-specific databases have been established and are publicly
accessible [5, 6]. Besides, artificial intelligence (AI) methods
and predictive systems through machine learning (ML) have
substantially evolved in recent years, particularly in protein
engineering applications [7].

The rapid evolution of Al has marked the beginning of a new
era of sophisticated ML algorithms in biomedicine, significantly
impacting drug discovery [8]. Integration of ML has taken on a
multifaceted dimension, including classifier methods, predictive
systems and generative approaches [9].

Classifier methods are crucial for identifying diverse peptide
activities, from biological functions to categorical properties [5].
In contrast, predictive models prove their utility by estimating
numerical properties, such as binding affinities in protein-peptide
interactions, evaluating toxicity and predicting inhibitory activity
[10].

Deep generative models (DGMs) have emerged as tools for
the design of therapeutic peptides [11]. In particular, generative
adversarial networks (GANSs), variational autoencoder (VAE)
and diffusion models facilitate the generation of novel peptide
sequences aimed at specific objectives [9, 12]. However, auto-
mated or assisted peptide design still faces challenges, such
as the optimization of peptide processing, the establishment
of informative representation strategies and the meticulous
development and validation of predictive models.

This work describes peptides and their different properties
and usabilities for biotechnology and therapeutic applications.
It also presents traditional strategies for training ML models.
Subsequently, it discusses the potential applications of DGMs
as a foundational tool for designing peptides with therapeutic
potential. Besides, a comparative analysis of the most common
DGMs strategies is addressed. This work also proposes a
comprehensive Al-assisted peptide design and validation pipeline.
Finally, different challenges are discussed concerning achieving
an autonomous therapeutic peptide design supported by Al
approaches.

Peptides and their biotechnology
applications

Peptides exhibit unique biochemical and therapeutic attributes
and can be synthesized or obtained from natural sources. This
section aims to offer a perspective on peptides, exploring their
multifaceted biological functions, moonlighting attributes and
applications [13, 14].

Peptide overview, synthesis process, function
biological activities and moonlighting effects
Peptides consist of short chains of amino acids, with a molecular
weight ranging from 0.5 to 10 kDa [15], and a length ranging from

a couple of amino acids up to 100 [16]. Their role in biological
processes is diverse, including functions as structural compo-
nents, enzymatic inhibitors, hormones, host defence molecules
and neurotransmitters [11]. Moreover, peptides can also act as cell
surface receptors [17] and play an essential role in drug delivery
applications [17, 18].

These macromolecules can acquire secondary structures, com-
monly forming a-helix and g sheets structural patterns [19], but
also more complex structures [20]. Lasso peptides, for exam-
ple, have a unique 3D structure where the C-terminus threads
through an N-terminal macrolactam ring in a right-handed con-
formation, which provides stability against chemical, thermal and
proteolytic degradation [21].

Peptides can be isolated from natural sources [1], including
venoms [22], food products [23] and marine organisms [24]. Alter-
natively, peptides can be produced using recombinant techniques
and chemical synthesis [25, 26].

In the recombinant approach, organisms like E. coli, S. cerevisiae
and P. pastoris are used to produce heterologous peptides using the
host cell protein production machinery [14]. In contrast, chemical
procedures allow synthesis automation for large-scale industrial
production [27]. Common chemical techniques are solid-phase
peptide synthesis [11] and liquid-phase peptide synthesis [28].

Peptides can exhibit different biological activities with mul-
tifaceted properties. Figure 1A summarizes the main biological
activities reported. As therapeutic properties, peptides play a
role as antimicrobial, antitoxin and anticancer [2]. In the cos-
metic industry, peptides can be used for wound healing and
anti-aging activities. Peptides can also facilitate the molecular
binding of proteins, DNA and RALF molecules. Peptides with
immunological, neurological, signalling, drug delivery, propeptide,
taste and cell-cell communication properties have been reported
[5, 29-31]. Finally, peptides can also exhibit toxic effects, with
reports of cytotoxic, allergen, endotoxin and neurotoxin charac-
teristics [32-34].

Evolution and adaptability have moulded peptides into exhibit-
ing two or more concurrent biological activities [35]. This unique
and promiscuous attribute is called moonlighting activity. Unlike
conventional peptides or proteins with defined functions, moon-
lighting peptides can acquire different activities in various cellu-
lar contexts or environments [35, 36].

Figure 1B describes the moonlighting for the primary biological
activities reported in the Peptipedia database [5]. Therapeutic
peptides have been demonstrated to present toxic properties.
Cell-cell communication peptides also play therapeutic and sig-
nalling roles. The moonlighting effect was also analyzed for spe-
cific therapeutic peptides, including antimicrobial, metabolic, and
anti-cancer. (See section S1 of Supplementary Material for more
details). Moreover, specific antimicrobial peptides (AMPs) with
antifungal, antibacterial and antiviral biological activities exhibit
moonlighting properties. The moonlighting effect is also a prop-
erty for antibacterial peptides, existing peptides with anti-gram
(+) and anti-gram (-) activity (See section S1 of Supplementary
Material for more details).

Leveraging moonlighting peptides as therapeutics presents
potential advantages over traditional small-molecule drugs.
The ability to combine multiple therapeutic functions into a
single drug could alleviate the treatment burden for patients.
Furthermore, such peptides could simultaneously target various
disease-related pathways [35]. However, their multifunctional
nature may also give rise to specificity issues, and their design
complexity is compounded by the necessity to understand these
unique structure-function relationships.
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Figure 1. Biological activities of peptides, moonlight activity and main applications. A. Functional biological activities were grouped into 10 categories,
including therapeutic, neurological drug delivery vehicle, sensorial, immunological, molecular binding, propeptide, signal peptide, transit and other
activities (colour boxes) with different categories and subcategories. A total of 96 activities considering properties, reported activity and experimental
validations have been generated in our previous work [5]. B. Moonlight evaluation of the 10 main activities reported in [5]. Therapeutic peptides are
highly related to propeptides, drug delivery vehicles and sensorial peptides. Neurological peptides are also highly related to drug delivery vehicles and
molecular binding. In contrast, sensorial peptides have a low relation with immunological peptides. C. Summary of peptide applications, considering

industrial, biotechnology and therapeutic applications.

Biotechnology and therapeutic applications of
peptides
Peptides exhibit many natural functions and offer significant
potential for diverse applications. Peptide synthesis with non-
canonical or artificial residues further expands their utility
(e.g. by modifying residues in cationic AMPs to enhance pro-
teolysis resistance) [37]. Figure 1C provides an overview of the
primary applications of peptides in industry, biotechnology and
therapeutics.

In the industrial sector, peptides have been applied as biosen-
sors and used explicitly for pollutant and pathogen detection

[38]. Peptides have also been employed in the food industry as
food preservatives, hydrogelators, foam stabilizers and emulsify-
ingagents [39]. For biotechnology applications, peptides have been
used for plant protection and as immune inducers, playing pivotal
roles as insecticidal and herbicides [40-42].

In therapeutic applications, peptides have generated antimi-
crobial drugs, including antifungal, antiviral and antibacterial
[43]. Examples of therapeutic peptides are (i) WK2, designed to
combat multi-drug resistant Salmonella [44], (ii) Teicoplanin a
semisynthetic peptide for treating severe infections [45] and (iii)
insulin and semaglutide for diabetes treatment [46].
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Another relevant type of peptide for therapeutic applications
are the cell-penetrating peptides (CPPs). These peptides can pen-
etrate cell membranes, reach intracellular targets and facilitate
drug delivery [47]. For example, the cyclic and amphipathic pep-
tide [WR]s has been used for the intracellular delivery of small
interfering RNA and the enhancement of curcumin uptake [48].

Other peptides have the potential to improve neurodegenera-
tive disorders like Alzheimer’s and Parkinson’s disease [49]. The
P110 peptide inhibits Dynamin-related protein 1 (Drp1l), a crucial
regulator of mitochondrial fission, offering stable preservation of
dopaminergic neurons in Parkinson'’s disease [50]. Under stress,
activated Drp1 translocates to mitochondria, leading to excessive
mitochondrial fission and dopaminergic neuronal death.

ML strategies to develop predictive models
for peptides

In recent years, there has been a substantial increase in the
number of peptides documented in the literature [5]. This
sequence abundance has, in turn, stimulated interest in applying
computational biology techniques to analyse peptide sequences,
predict biological activities, calculate physicochemical properties
and assist in peptide design [51, 52]. However, applying Al and ML
methodologies presents various challenges, from data collection
and processing to predictive model validation to selecting an
appropriate training strategy. This section reviews the classical
approaches of data-driven methods for building predictive models
and discusses the ML-based models for peptide tasks.

ML definitions and main characteristics

ML is a sub-field of Al focused on algorithms and statistical
models based on the idea that computers can analyse and learn
from data patterns and use that knowledge to make predictions,
classify objects or solve various problems [53].

Four learning types are currently applied to solve com-
putational biology problems: (i) supervised learning, (ii) non-
supervised learning, (iii) reinforcement learning and (iv) gener-
ative learning [54] (See Fig. 2A and section S2 of Supplementary
Materials for more details). In addition to the different learning
types, two main focuses have been implemented for developing
models using ML strategies, classic ML approaches and deep
learning (DL) architectures [S5].

DL approaches have been efficient for image recognition, nat-
ural language processing and speech recognition [56]. In biotech-
nology and bioinformatics, DL has allowed the development of
predictive models to estimate protein—protein interactions, clas-
sification systems for unknown enzymes through recognition of
enzyme commission numbers [S57] and predictive systems for
protein structures such as RoseTTAFold [58] or AlphaFold [59].

The applications of transfer learning approaches by applying
foundational trained models to biology context have demon-
strated usability to develop efficient predictive models [60]. More-
over, the combination of transfer learning with semi-supervised
strategies has facilitated the implementation of predictive models
to address the data scarcity in protein engineering and fitness
landscapes [61].

A classic data-driven pipeline to develop
predictive models through ML techniques for
protein engineering tasks

There are four main steps for developing predictive models
for peptides using ML strategies and protein sequences or

structures: collecting and processing datasets, numerical repre-
sentation strategies, training and validating predictive models
and evaluating performances using classic metrics. Figure 2B
summarizes the standard strategies and schematizes a classic
data-driven pipeline.

During the collecting process, different sources could be
employed to obtain protein sequences or structures depending
on the objective of the predictive model. Usually, generic
databases like Peptipedia [5], SATPdb [62] or LAMP2 [63] are
used for collecting AMPs. In contrast, specialized databases like
quorum sensing signalling peptides [64], anti-angiogenic peptides
predictors [65] and bacteriocin peptides [66] are employed for
collecting specific information.

Before training predictive models, numerical representation
strategies must be applied to process peptide sequences. Current
approaches favour the use of learning representations, due to
their ability to catch functional and structural information from
the context sequence [67, 68]. However, baseline methods like One
Hot encoder, feature engineering and physicochemical encoders
could also be applied (See section S2 of Supplementary Material
for more details).

Finally, for training models, a classic pipeline could be applied
[69], including a standard division of the dataset in training and
testing partitions, a k—fold cross-validation technique to prevent
overfitting and the application of classic metrics to evaluate and
compare the performance of the predictive models (See section S2
of Supplementary Materials for more details).

Current methods, strategies and implemented
models for peptide design

Predictive models have been developed to explore and analyse
peptide sequences, with a shared focus on tasks such as AMP
classification, including ensemble learning process [70] and DL
architectures [71] to train the classification models. Besides,
antiviral classification systems applying Random Forest, support
vector machine and DL methods have been successfully imple-
mented [72-75].

Classification models for therapeutic applications have been
implemented, including anti-inflammatory detection peptides
[76], anticancer peptides identification [77] and CPPs recognition
[78].

Pharmacological properties for therapeutic peptides have also
been the focus of developing predictive models. The prediction
of half maximal inhibitory concentration (ICs) [79], estimating
free radical scavenging activity and chelating properties [80]
and half-life in blood [81] have been addressed by applying ML
approaches.

These models not only facilitate the exploration of unknown
sequences but may also contribute to the design of peptides
with desirable properties. Typically, they integrate DGM strategies
to advance sequence generation learning supported by compu-
tational property classification methods. Nevertheless, despite
this progress, a unified pipeline for training predictive models in
functional classification tasks remains needed.

Towards an autonomous peptide-based
drug discovery

In this section, we will discuss the integration of ML and Al
techniques in developing peptide-based drug discovery systems.
First, we will show ML methods to support drug discovery; then,
different deep generative strategies will be explained and dis-
cussed, evaluating different advantages and disadvantages. Next,
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ML algorithms. The coded dataset is the input used to train a predictive model by applying supervised learning algorithms. Then, the predictive model’s
performance is evaluated, and the model is validated through new examples or simulated datasets. Finally, the validated model explores the latent

space and rebuilds the mutational landscape.

traditional protein engineering strategies generated to assist the
peptide design will be analysed and compared with generative
approaches. Finally, a proposal pipeline to discover therapeutic
peptides will be explored.

Drug discovery supported by ML methods

Drug discovery is the process by which new candidate drugs
are developed [82]. Traditional drug discovery involves (i) target
identification, (ii) target validation, (iii) lead compound identi-
fication and (iv) lead optimization [83]. This process can often
take decades and has a cost that can exceed a billion US dollars
per target [84], considering that most drugs do not reach the
market [85].

In contrast, drug repurposing is the exploration of new thera-
peutic applications for existing drugs [86]. Drug repurposing has
different advantages, including safety, efficacy and accelerating
the clinical assessment [87].

The combination of ML approaches with biomedical datasets
can facilitate the identification of novel therapeutic targets,
studying molecular characteristics, protein interactions, biologi-
cal activities and adverse effects [4].

Different predictive models have been implemented to assist
drug discovery, including methods like BANDIT, a Bayesian ML
approach [88], and DeepDTnet, a DL approach that combines
phenotypic, genetic, chemical and cellular network profiles to
guide the drug discovery [89].
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Alternatively, drug-target interaction predictive models have
been developed to evaluate drug candidates. These methods have
been based on Random Forest algorithms combined with a graph-
based features extraction process [90], deep belief network [91]
and long short-term memory (LSTM) architectures combined with
protein characteristics and drug molecular substructure finger-
prints [92].

ML frameworks can also predict drugs’ adverse effects at
diverse stages of the discovery process. Two relevant approaches
have been implemented: a deep neural network to assess the
probability of adverse drug reactions in novel pharmaceutical
compounds [93], and a geometric self-expressive model to help
identify side effects during drug clinical trials [94].

In contrast to the current ML methods implemented to assist
drug discovery, generative learning strategies have been devel-
oped to design de novo molecules or drugs with desirable targets
[95]. Methods based on combinations of graph-generative mod-
els with Monte Carlo tree search [96] and transformer-decoder
architectures to produce de novo smiles [97] have demonstrated
the usability of the ML approaches to the discovery of new drugs.

While generators generative learning implemented for drug
discovery exemplify the potential of Al models for small molecule
design [96, 97], their capability can further extend into the domain
of peptide design [98].

DGM for the generation of new peptide
sequences

DGMs aim to capture the underlying data distribution of a
given dataset to generate novel instances that accurately
represent the properties of the original data [99, 100]. For
peptide design, DGMs can not only generate de novo peptide
sequences but also perform learning representation tasks and
likelihood learning tasks, where the model can learn to assign
a greater probability to protein sequences that acquire desired
characteristics [12].

There are multiple steps in the pipeline for peptide design using
DGMs. First, the model needs to be trained. To this aim, peptide
databases, datasets and repositories are collected and processed.
Next, the collected peptide sequences require a numerical rep-
resentation to provide the models with an interpretable input.
Peptide representation can rely on feature descriptors, amino acid
coding or embedding representations [98]. Then, the model is
trained on the represented data; modelling the distribution of the
training set allows us to learn the underlying data distribution and
generate novel sequences.

In this section, the most common generative strategies are
described, then state-of-the-art-related protein design, genera-
tion or discovery is analysed. Besides, a comparative analysis of
the different generative approaches is addressed, including the
advantages and disadvantages of each one.

Variational autoencoders

A VAE is a generative model combining autoencoders and varia-
tional inference elements. VAEs are used to learn representations
of unsupervised input data and generate new data samples that
resemble the training data [12].

Overall, VAEs are powerful generative models capable of learn-
ing rich representations of complex data distributions and gener-
ating new samples with desirable properties. They have applica-
tions in various domains, including image generation, text gener-
ation and anomaly detection.

VAE introduces a probabilistic aspect, learning a distribution
in the latent space (see Fig. 3A). The most relevant components of

a VAE model are (i) an encoder network, (ii) a reparametrization
trick, (iii) a latent space, (iv) a decoder network and (v) a loss
function [99].

During training, the VAE optimizes the parameters of both the
encoder and decoder networks to minimize the combined loss
function. This process involves passing input data through the
encoder network to obtain latent space representations, sampling
from the latent space and then reconstructing the data using
the decoder network. The model’s parameters are updated using
gradient descent techniques.

Once trained, the VAE can generate new data samples by
sampling from the learned latent space distribution and passing
the samples through the decoder network. By varying the samples
in the latent space, the model can generate diverse and realistic
data samples that resemble the training data.

Generative adversarial networks

GANs are generative models based on energy-based models
(EBMs). Two components are most relevant for a GAN: a generator
network and a discriminator network [101] (see Fig. 3B).

The generator is a neural network that takes random noise
(often drawn from a simple distribution such as Gaussian) as
input and produces data samples as output. Initially, the genera-
tor produces random noise, but as training progresses, it learns to
generate increasingly realistic samples that resemble the training
data [98]. In contrast, the discriminator is another neural network
that takes input data samples and predicts whether they are real
or fake [98].

The training process of a GAN model is called adversarial
training. During the training process, the generator and discrimi-
nator are trained simultaneously. The generator aims to produce
indistinguishable samples from real data, while the discriminator
aims to classify real and generated samples correctly [99]. During
training, the generator and discriminator are updated iteratively.
The generator creates fake samples and attempts to fool the
discriminator, while the discriminator is updated to better distin-
guish between real and fake samples. This process continues until
the generator produces samples that the discriminator is not able
to differentiate from real data [101, 102].

Neural language models

Neural language models (NLMs) use neural networks to compre-
hend and generate human language. Designed to capture intricate
patterns and relationships within a given language, these models
are proficient in diverse tasks such as language understand-
ing, sentiment analysis, machine translation and text generation
(refer to Fig. 3C) [99]. Key components of NLMs are (i) Neural
Network Architecture, (if) Word Embeddings, (iii) Pre-training and
Transfer Learning, (iv) Contextual Understanding, (v) Transformer
Models and (vi) Generative Language Models.

NLMs predominantly adopt two main frameworks: recurrent
neural networks (RNNs) and attention models. In RNNs, LSTM and
gated recurrent units are used to construct autoregressive models.
These models effectively capture sequential data by retaining
historical information in their hidden states [98].

Flows-based and EBMs

Flow-based models are generative models that learn the mapping
between data samples and their corresponding probability densi-
ties. These methods utilize invertible neural networks to establish
a bidirectional mapping between inputs and a latent represen-
tation. Unlike some generative models that rely on approximate
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an encoder and a decoder. B VAEs are a specific type of autoencoder that introduces probabilistic elements into the model, enabling it to learn a
probabilistic distribution of the data in the latent space. VAEs are particularly effective for generating new, similar data points and are often used in
generative modelling tasks. C NLMs, also known as autoregressive models, are a class of Al models that use neural networks to understand and generate
human language. These models are designed to capture the complex patterns and relationships within a given language, enabling them to perform tasks
such as language understanding, sentiment analysis, machine translation and text generation. D GANs are a class of Al algorithms that generate new,
realistic data samples that resemble a given dataset. The main components in a GAN are (i) generator, (i) discriminator, (iii) adversarial training, (iv)

loss function and (v) training process.

sampling, flow-based models often use exact inference and ana-
lytical computations [99] (see Fig. 3D).

Different components are necessary to develop a flow-based
model, including (i) the base distribution, (ii) the transformation
network, (iii) invertible transformation functions and (iv) an out-
put distribution.

EBMs are a diverse category of ML models characterized by
their unique approach to modelling data. EBMs are designed to
learn an energy function rather than directly learning a prob-
ability density function on the input space [103]. According to
this energy function, observed or plausible data states are given
low values (referred to as ‘energies’), whereas unobserved or
improbable states are given high values [99]. EBMs differ from
conventional generative methods because they do not require
normalizing probability distributions.

EBMs are more flexible for handling probability distributions,
due to integrating the energy function into the learning model
[103].

Diffusion models

Diffusion models are generative models that iteratively apply
reversible transformations to a noise process. These models
efficiently generate high-quality, diverse samples in various
domains, such as images, text and audio [104]. Figure 3E presents
a schematic representation of the diffusion model approaches.
The type of model starts with a noise process as the initial
input. Then, reversible transformations to the noise process are
applied iteratively. Each transformation is designed to gradually

change the noise process into a data sample while preserving
reversibility [105].

Diffusion models typically incorporate an annealing schedule
to control the diffusion rate and ensure stable training. The
annealing schedule gradually adjusts the magnitude of the
reversible transformations over time, allowing for smoother
transitions and better convergence [106].

Diffusion models are trained using maximum likelihood esti-
mation. The training objective is to minimize the negative log-
likelihood of the data samples under the diffusion model. This
objective encourages the model to learn reversible transforma-
tions that can accurately transform the noise process into realistic
data samples [105].

Once trained, diffusion models can generate new data samples
by running the diffusion process forward from random noise. By
varying the random noise inputs, diffusion models can generate
diverse, high-quality samples that resemble the training data
distribution [104].

Generative approaches applied for peptide design and
discovery
Different VAE strategies have been implemented to assist the pep-
tide design or discovery. Methods like PepVAE [107], PepCVAE [108]
and GM-Pep [109] have been proposed for AMP design supported
by VAE approaches. Twwo relevant methods for AMP design are
proposed in [110] and [111].

[110] used a deep autoencoder to design AMPs, achieving suc-
cess in 48 days with a 10% hit rate. HydrAMP, a conditional
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variational autoencoder (cVAE), uncovers a continuous represen-
tation of peptides, leveraging controlled creativity [111]. Using
HydrAMP, AMPs, including a superior analogue (Hydraganan-1) of
Pexiganan, were generated and experimentally tested against E.
coli strains [111].

Other examples of peptide design using VAE strategies are
target-specific peptide inhibitors [112], peptide inhibitors target-
ing B-catenin [113], peptides with desired bioactivity and mem-
brane permeability properties [114] and peptide-MHC binding
[115].

GANs are among the most widely used generative models
for the design of peptides [103]. GANDALF (Generative Adver-
sarial Network Drug-tArget Ligand Fructifier) is a deep convolu-
tional GAN-based method that incorporates information about
the active atoms of the protein-ligand interaction domain [116].
GANDALF generates novel peptides and predicts their binding
affinity to a specific target. Rather than using protein-protein
interaction databases, this model is trained on drug-ligand inter-
actions of protein and FDA-approved peptide drugs based on the
THP database [117]. It also uses data from PDB for 3D structures,
Uniprot for the names of interacting proteins or peptides and
CASTp to calculate protein pockets [118, 119]. This model has
generated peptides to target cancer-related proteins, including
PD-1, PDL-1 and CTLA-4 [116, 120].

Another GAN-based method for designing peptides, specifi-
cally bioactive antiviral peptides, is PandoraGAN [121]. It uses
LeakGan, a modified GAN used in text generation, to generate
peptides that undergo initial validation based on their amino acid
composition, net charge, instability index, repeats and patterns.

Methods like AMPGAN v2 [122], AI4AVP [75] and HelixGAN
[123] have also been implemented using GAN strategies to assist
therapeutic peptide design.

Applying NLM strategies [124] have implemented AMPTrans-
LSTM, a deep generative network-based approach designed to
rationalize AMPs. Comprising two interconnected submodels:
a long- and short-term memory sampler and a transformer-
converter, the model demonstrates a success rate ranging
between 30% and 50%. It generates new peptide sequences while
preserving essential AMP features.

Flows-based models have been implemented focusing more
on drug discovery. An example of these models is TagMol [125].
TagMol is a probabilistic end-to-end EBM for target-specific drug
design. This approach uses the EBM to evaluate the binding affin-
ity scores between protein-ligand pairs precisely. TagMol demon-
strated that it could generate molecules with binding affinity
scores similar to real molecules.

Different approaches have been implemented to assist peptide
design, focused on diffusion model strategies [98]. Examples of
the implemented strategies are AMP-diffusion. This method inte-
grates latent diffusion with protein language models to generate
AMPs [126]. Another relevant method for peptide therapeutic
peptide design is the combination of structure prediction net-
works with diffusion generative approaches [127]. Alternatively,
methods like Geometric Latent Diffusion [128] and multi-modal
contrastive diffusion models [129] have been designed to support
the therapeutic peptide design.

A simple comparative analysis of the different
generative strategies employed for peptide design
The different strategies implemented to design therapeutic pep-
tides have proven successful in their application. However, there
are differences in their operation that require attention to identify
their advantages and disadvantages.

When formulating strategies based on VAEs, leveraging a
latent space informed by distributions facilitates the generation
of peptide sequences exhibiting an amino acid distribution
similar to those in the training data. A more extensive repertoire
of sequences enhances the likelihood of producing successful
peptides as it expands the scope of potential explorations.
However, a higher volume of feasible peptides does not inherently
guarantee acquiring the desired biological activity. Given peptides’
propensity for moonlighting properties, there exists the possibility
of uncovering novel biological activities that may not necessarily
be advantageous. Consequently, when employing VAE-based
design methodologies, incorporating a validator for the peptide
sequences generated by the models becomes imperative.

Alternatively, design methodologies based on GANs require
training a discriminator component to distinguish between real
and fake sequences. While GAN-based approaches often offer
advantages over VAE methods, like a validation process for gen-
erated sequences, their implementation requires careful consid-
eration of various factors. First, achieving a balanced dataset is
crucial; any class imbalance could impede the model’s ability to
generalize effectively. Secondly, ensuring accurate differentiation
between positive and negative elements, particularly in peptide
sequences, demands adopting appropriate representation strate-
gies. Therefore, integrating generative methods with Transform-
ers to leverage pre-trained representation learning models proves
beneficial for incorporating decoding techniques and facilitating
the discrimination of genuine from spurious sequences. Intro-
ducing additional components complicates generative strategies’
training, validation and use.

Methods based on NLMs typically incorporate DL architectures
such as RNNs or LSTMs. Training these models relies on natural
language processing techniques. Achieving robust generalization
with these models is challenging, often necessitating a substantial
volume of training examples. Their appeal lies in their ability to
analyse context and semantics for model development. Never-
theless, akin to VAE-based approaches, evaluating their efficacy
requires integrating a classification model, thus complicating the
training process. However, recent studies have reported precision
rates exceeding 80% in developing AMPs, underscoring the effi-
cacy and utility of these methods.

Recently, advances in peptide design methodologies have
showcased remarkable efficacy, particularly in therapeutic
peptide development. Among these methods, diffusion-based
strategies have emerged as standout performers compared with
approaches like VAE or GAN. Leveraging diffusion models enables
efficient and high-fidelity reconstruction of new examples.
Additionally, unlike flow-based or NLMs, there appears to be no
significant correlation between the complexity of the training
architectures and model performance. Notably, recent efforts
have integrated generative learning with contrastive learning
strategies to enhance performance in trained models.

Finally, while various strategies exist to aid peptide design and
significant advances have been made in generative Al, several
challenges warrant careful consideration before peptides proceed
to experimental testing. These challenges encompass the analysis
of toxicological and immunogenic properties, which are critical
for ensuring safety and non-desirable effects. Additionally, pep-
tides like bacteriocins often feature post-translational modifi-
cations (PTMs), a factor not accounted for in standard peptide
generation processes. Assessment of pharmacological and phar-
macodynamic attributes, such as half-life and quality measured
via IC50, is imperative. Moreover, evaluating potential undesirable
activities stemming from peptides’ moonlighting effects is crucial.



Lastly, given that most therapeutic peptides act as receptor tar-
gets, computational affinity assessment against these receptors
could enable the development of efficient filters for experimental
peptide testing.

Therapeutic peptide discovery through ML and
DGMs

Various computational strategies have been used to facilitate the
discovery of peptides with therapeutic potential.

These approaches focused on exploring classification systems
and reconstructing mutational landscapes to inform rational pro-
tein design [130]. Additionally, the advances in structure pre-
dictions supported by AlphaFold have generated a new era for
peptide-based drug discovery, facilitating the generation or dis-
covery of new therapeutic peptides [131]. Alternatively, methods
rooted in DGMs have demonstrated effectiveness in generating or
identifying peptides exhibiting antimicrobial and signal peptide
activities [110].

However, navigation through a latent space, investigation of
diverse conformations and assessment of different functional
components tied to the capacity and characteristics of peptides
designed using Al remains challenging.

In particular, unique validation techniques and property cal-
culations associated with the activity and quality of the designed
peptide are needed.

This section presents a potential pipeline for discovering pep-
tides with therapeutic activity. This pipeline encompasses pre-
dictive modelling of peptide properties, tools for predicting inter-
action affinity and bioinformatics methods that offer in silico
validation of generated sequences. Experimental validation can
be undertaken based on the specific application.

The proposed pipeline is illustrated in Fig. 4, outlining three
key components essential for advancing the discovery of peptides
with desirable therapeutic attributes.

Theinitial component (refer to Fig. 4A) is dedicated to designing
and implementing models to classify biological activity. These
models specialize in binary or multiclass classification of the
biological activities of unknown peptides or those generated by
generative systems.

For instance, they categorize peptides as antiviral, antihyper-
tensive, antibacterial or peptides with antiviral activity that rec-
ognize viruses within the Retroviridae family and the HIV species.
Beyond models for classifying biological activity, evaluation mod-
els may be needed to assess functional mechanisms. For example,
evaluating the potential to inhibit the integrase enzyme or assess-
ing peptides’ ability to hinder fusion between the GP41 protein and
the host in the case of anti-HIV peptides.

Another consideration is a peptide’s capacity for multiple activ-
ities, such as forming interactions with proteins, membrane per-
meability and moonlighting capabilities. Introducing new rules
or conditions to the peptides explored via classification systems
facilitates the integration of regulatory elements into the design
process, constrains navigation within the latent space and fosters
guided learning for design systems.

The construction of these models follows the strategies out-
lined earlier in this work, including using numerical representa-
tion methods to validate implemented classification models.

The second component focuses on designing and implement-
ing an affinity prediction system between protein and peptide,
which only applies to peptides targeting a protein (See Fig. 4B.

The binding affinity predictive component proposes strate-
gies involving matrix or object representations to characterize
the interaction complex and train predictive models through DL
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architectures, focusing on CNN or GCN methods. By applying
such architectures, explainable Al methods can be integrated to
support predictions from an interpretative and explanatory point
of view.

The integration of XAi approaches will allow an under-
standing of the relevant zones or patterns that dictate the
model’s response, facilitating the design guidance of peptides
exhibiting high affinity for the identified protein zones and key
residues that encourage a favourable interaction with the target
protein.

Finally, the third component is dedicated to the generative
method for exploring novel sequences (See Fig. 4C). Techniques
such as VAEs or GANs have been previously utilized to navigate
the latent space of peptides awaiting exploration.

Initially, only peptides with a specific biological activity of
interest are considered input. Nevertheless, there is also potential
to incorporate unknown peptides displaying a specific biological
activity, such as adding peptides to the dataset with antiviral prop-
erties, even in cases where there is no experimentally validated
information, especially concerning anti-HIV activity.

Functional classification models are crucial for assimilating
these new sequences in such scenarios. The development of
this analytical approach encourages dataset expansion, thereby
broadening the latent space to uncover novel peptides.

Once the generative models are trained and validated, the next
step is to explore and navigate the latent space. To achieve this,
optimization methods that rely on heuristic algorithms can be
integrated to explore new sequences.

These identified sequences must be validated using biolog-
ical activity classification methods and, if necessary, methods
predicting affinity to target proteins of interest. In this context,
validation serves as a set of rules or checkpoints that must be met
to propose a peptide as a potential candidate for experimental
validation. Additional validations are also required, such as the
analysis of physicochemical properties and stability and the esti-
mation of toxicity.

Reinforcement learning-based methods can be incorporated
into the generation and validation stages to update the model
responses. Incorporating a layer of active learning enhances the
model’s performance and improves its generalization. Including
experimental validation data further enhances functional classi-
fication and prediction models for better guidance when explor-
ing or navigating the latent space.

Challenges and opportunities: perspectives
on peptide design in therapeutic
applications

The advantages of peptide-based therapeutics include their effi-
cacy, safety, specificity, customizable nature and various synthesis
options. Nevertheless, pursuing peptides for medical applications
still faces essential challenges despite strides in in silico drug
discovery and design.

One of the obstacles to IA-assisted peptide design is the lack
of a centralized, comprehensive and curated source of peptide
information. As described earlier, there are individual efforts such
as LAMP [63] for specific biological activity or PepipediaDB [5]
for general purpose. However, accelerated advances will require
global collaborative efforts.

Individual and fragmented data availability results in inconsis-
tencies and misclassifications; for example, very different biolog-
ical activities have been reported for the same peptide. However, a
significant challenge is the scarcity of systematized experimental
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Figure 4. A generalizable in silico pipeline to design therapeutic peptides with desirable properties combining ML, DGMs and biological structural
validations. A Pipeline to train functional biological classification models, including the classic steps to develop predictive models using ML approaches.
B Pipeline to train a binding affinity predictive model using ML algorithms. In this case, it is necessary to represent the protein, the ligand and the complex
structure. C. A pipeline to build a generative model for designing therapeutic peptides. The pipeline includes the DGM, the functional classification
system, the protein-binding affinity predictive model and bioinformatics approaches to validate the designed peptide sequences.

data on the half-life, IC50 and other critical biochemical and
biological variables.

A consortium effort to support and maintain a centralized data
source and incentives to encourage the deposit of experimental
data may overcome this challenge.

Despite the abundance of strategies, techniques and method-
ologies for developing functional activity classification models
and predictive systems for peptides’ physicochemical and ther-
modynamic properties, many of these approaches are challenging
to replicate or access. This poses a significant obstacle not only to
share results and methodologies but also to compare strategies
effectively.

During the training of biological activity classification sys-
tems and the development of predictive systems, a crucial aspect
involves the techniques used for the representation and coding of
the peptide sequence.

Traditional methods like One-Hot encoding or physicochemical
property coding often encounter challenges due to variations
in sequence lengths. zero-padding techniques are typically
employed to ensure uniformity during model training, intro-
ducing noise that increases with significant sequence length
differences.

Solutions focusing on feature engineering-based representa-
tion offer an alternative, yet challenges persist in identifying



relevant variables and needs reduction techniques. Moreover,
models developed using these strategies often need to improve,
rendering them inefficient for therapeutic peptide design.
Recently, representation learning methods leveraging pre-trained
models have emerged as a promising solution, promoting superior
performance in predictive models. However, their computational
overhead can be substantial, particularly when handling large
datasets.

The issue extends beyond methodological complexity to
include the availability and accessibility of benchmark datasets.
Thus, there is a pressing need to enhance replicability and
ensure persistent access to benchmark datasets. The develop-
ment of gold-standard datasets capable of validating various
training strategies and facilitating performance comparisons is
imperative.

On the other hand, peptide design requires a delicate balance
between safety, delivery efficiency, stability and preservation of
efficacy and specificity. Minor alterations in the peptide sequence
can significantly impact binding affinity and susceptibility to
degradation.

The moonlighting property of peptides adds another layer of
complexity. That can, however, be exploited to achieve a combina-
tion of binding properties, transport capacity, mobility and inter-
actions at various molecular levels. Current technical advances,
such as implementing deep generative methods to generate
new sequences and multi-task modelling, may overcome this
challenge.

Alternatively, hierarchical predictive systems or rule-decision
classification systems might be implemented for numerical
models predicting the desired properties such as IC50, half-life,
toxicity, etc.

Peptides, being proteins, are susceptible to PTMs. Unfortu-
nately, these modifications are often overlooked during modelling,
creating a gap and introducing uncertainty in peptide design.
Notably, bacteriocin peptides, utilized as antimicrobials to com-
bat antibiotic resistance, frequently exhibit such modifications,
demonstrating the need to incorporate PTMs predictive models
into the pipeline of therapeutic peptide design (See more details
in section S3 of Supplementary Material).

Lastly, provided that a comprehensive curated source of pep-
tide information to train potent models is generated, a continuous
update and feedback with experimental data will be required.
Reinforcement learning will enable the continuous update of the
model, which in turn will increase performance and generaliza-
tion capabilities.

Despite these challenges, automated peptide generation has
the potential to produce sequences with desired characteris-
tics, such as enzymatic degradation resistance and specificity.
Integrating generative methods, predictive systems and bioinfor-
matics tools provides invaluable support for exploring peptides,
uncovering new sequences or peptides with therapeutic activities,
and synergizing with traditional methods like directed evolution
and rational design. Integrating these tools will accelerate the dis-
covery of novel peptides to complement conventional therapeutic
arsenals.

Key Points
e In this work, the properties of different functional pep-
tides, therapeutic and biotechnology applications, rele-
vant repositories, datasets and biological databases for
peptide sequences are analysed.
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e This work presents the most relevant machine learning
strategies applied to develop predictive models using
aminoacid sequences or protein structures as input for
peptide studies.

e This work describes therapeutic peptide characteristics
and strategies for the design and discovery, focusing on
generative learning.

¢ An artificial intelligence pipeline to address the most
common problems and challenges related to automated
therapeutic peptide design is proposed in this work.

Supplementary data

Supplementary data is available online at Briefings in Bioinformatics
online.
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