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Abstract: The aim of this in vitro study was to determine whether the process chain influences the
accuracy of a computer-assisted dynamic navigation procedure. Four different data integration
workflows using cone-beam computed tomography (CBCT), conventional impressions, and intraoral
digitization with and without reference markers were analyzed. Digital implant planning was
conducted using data from the CBCT scans and 3D data of the oral models. The restoration of the
free end of the lower jaw was simulated. Fifteen models were each implanted with two new teeth for
each process chain. The models were then scanned with scan bodies screwed onto the implants. The
deviations between the planned and achieved implant positions were determined. The evaluation of
all 120 implants resulted in a mean angular deviation of 2.88 ± 2.03◦. The mean 3D deviation at the
implant shoulder was 1.53 ± 0.70 mm. No significant differences were found between the implant
regions. In contrast, the workflow showed significant differences in various parameters. The position
of the reference marker affected the accuracy of the implant position. The in vitro examination
showed that precise implantation is possible with the dynamic navigation system used in this study.
The results are of the same order of magnitude that can be achieved using static navigation methods.
Clinical studies are yet to confirm the results of this study.

Keywords: surgery; computer-assisted; computer-aided surgery; dental implants; computer-guided
surgery; dynamic navigation; real-time tracking

1. Introduction

The objective of prosthetic implant restoration is to restore the masticatory organs
after tooth loss. Therefore, the functional and esthetic rehabilitation should be as natural
as possible [1]. The long-term success of implant restoration is determined by multiple
factors [2]. When planning implant positions, various aspects must be considered and
assessed equally. For example, the bone condition [3], soft tissue condition [4], distances
between the implants and neighboring teeth [5], and position of the cement space [6] must
be considered while planning an implant position. Prosthetic-driven planning is shown to
be suitable for achieving this goal in an optimal and predictable manner [7]. A previous
study reported implants placed using computer-assisted procedures had a similar one-year
survival rate as implants placed via a conventional procedure [8]. However, patient pain
and discomfort are significantly reduced when a flapless procedure is used [9]

Digital 3D planning has been used to achieve favorable implant positioning. The ac-
tual condition of the alveolar bone is recorded using three-dimensional imaging (computed
tomography (CT) or cone beam computed tomography (CBCT)), and merged with the
target of a digitized prosthetic planning goal [1]. Computer-assisted procedures enable
the implementation of digital implant planning [10]. In static navigation, drill templates
are used to implement the planning. The use of drill templates for implants has been ex-
tensively examined [11]. This procedure has proven to be clinically accurate and achieves
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predictable results [12,13]. Various studies regarding the accuracy of static navigation
have identified influencing factors including intraoral positioning and fixation of tem-
plates [14]. The manufacturing process for the drill template can also impact the accuracy
of implant placement, as can the materials used [15–17]. Several studies have reported the
influence of different drill sleeves on accuracy [18–20]. However, major inaccuracies in the
implementation can often be traced back to application errors, not to the actual process [21].

In addition to static computer-assisted surgical procedures, dynamic procedures are
also available [1]. The preparation of the implant bed and implant insertion are achieved
by a surgeon who navigates the oral cavity with a three-dimensional representation of the
actual implant bed on a screen [22]. The positions of the instruments are recognized in real-
time using optical tracking systems with defined reference markers and are displayed on a
screen [23]. These procedures have been introduced in various preclinical studies [24–26].
The development of computer technology and associated computer-aided methods has
increased the use of dynamic navigation in clinical practice in recent years [1]. Due to the
open-source systems, any implant systems can be used with dynamic navigation; however,
it is not possible to store a static template using these systems [1]. The implantation is
conducted with real-time visualization, allowing for intraoperative modifications of the
plan [13]. Dynamic navigation can also be used when there is little vertical space, unlike
drill templates [27]. However, the complexity of the surgical procedure requires sufficient
training, and a learning curve has been reported [28]. The results of a systematic review
on the accuracy of dynamic computer-assisted navigation revealed comparable clinical
outcomes to those of static navigation. However, there is heterogeneity among individual
dynamic navigation systems that must be considered [29]. The development of surgical
implant procedures based on virtual and augmented reality technologies has resulted in an
increase in the quality of restoration [30].

The aims of this in vitro study were to determine influencing factors on the accuracy
of a dynamic navigation procedure and to clarify whether the workflow of implant plan-
ning and the implementation of 3D planning affect accuracy. In addition, we examined
whether the position of the implant and the resulting relative position of the marker affect
the accuracy.

2. Materials and Methods

In this controlled in vitro study, four process chains (Table 1) of data integration for
implementing dynamic navigation were examined. In addition, the accuracy of the overall
system and variables related to the implant region were analyzed. Fifteen identical models
made of hard plastic (mandible B6 Bone Standard, GOS Göttinger OP-Simulationssysteme,
Northeim, Germany) were used for each of the four process chains. These models repre-
sented a partially edentulous lower jaw with a unilateral free-end in regions 45–48 that
required restoration.

Table 1. Overview of the four different process chains.

Workflow

A B_1 B_2 C

Data Generation

CBCT CBCT image
with marker CBCT image CBCT image CBCT image

On the patient Intraoral scan Two intraoral scans (with
and without marker) Alginate impression Intraoral scan

Virtually Creation of a digital
marker template

In the laboratory Two model scans (with
and without marker)

3D printing of a
marker template

Reference marker in surgery Surgery with
Denatray Surgery with Denatray Surgery with Denatray Surgery with

marker template
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2.1. Implantation Planning and Models

Individual planning for the two implants was performed for each model using implant
planning software (coDiagnostiX Version 9.11, Dental Wings GmbH, Chemnitz, Germany).
The planning data were loaded and digitally assigned to each other.. The planning data
differed for each process chain.

An implant in region 45 (bone level tapered, BLT) with a diameter of 3.3 mm and
length of 10 mm (Straumann Institut AG, Basel, Switzerland) and an implant in region
47 (BLT) with a diameter of 4.1 mm and length of 10 mm (Straumann Institut AG, Basel,
Switzerland) were planned. The implant planning was based on prosthetic principles.
The implants were centered on the ridge in a vestibular-lingual alignment. The distance
between the two implants was 15 mm in each case. The implants were aligned parallel
to one another using the parallelization function of the program. After the planning was
completed, the data were transferred to the navigation system. The CBCT, planning, and
marker positioning data were converted into a form that the navigation system could read
using a function of the coDiagnostiX planning software. All planning steps were performed
by an experienced dentist (A.K.).

The data were transferred to a DENACAM navigation system (Mininavident AG,
Liestal, Switzerland). The DENACAM system works with a camera attached to the surgical
handpiece (Figure 1). A marker is placed in the mouth, or in this case, on the model as a
reference structure (Figure 2). The system is guided using a 3D display on a screen that is
clearly visible to the surgeon. The position, angle, and depth are displayed in real-time.
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Figure 2. Plastic model with fixed marker, in this example a model from Group A.

The models were fixed in a stable position on a worktop according to the prescribed
protocol (Figure 3). Implantation was performed according to the drilling protocol provided
by the implant manufacturer. All model implantations were performed by an experienced
dentist (A.K.) using a contra-angle handpiece. The end position of the implant was deter-
mined using the DENACAM system’s display. Neither visual control nor readjustment of
implant position was performed.
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Figure 3. Implementing implantation under standardized laboratory conditions.

Each drill, including the implant, was automatically registered with a registration
instrument before its use (Figure 4). Each drill was inserted in the surgical contra-angle
handpiece and placed in a registration block with the marker for automatic registration.
The dimensions of the drill were measured. This measurement was compared to the
manufacturer’s specifications. This procedure was performed each time the drill was
changed to provide a system with precise information on the length and diameter of the
drill being used.
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Figure 4. Registering the drill.

2.2. Process Chains

CBCT with a marker and intraoral digitization without a marker (A): a prefabricated
holder of the reference marker (DENATRAY, Mininavident, Liestal, Switzerland) was
attached to the model with a synthetic thermoplastic material (DENABEADS, Mininavident,
Liestal, Switzerland). It was positioned counter-laterally to the implantation region within
regions 36 and 37. The marker, a plate made of zirconium oxide ceramic with defined
characteristics, was inserted into the tray. The model was positioned with the marker
placed on a holder in a digital volume tomograph (CBCT, Gendex CB500, Gendex Dental
Systems, Des Plaines, IL, USA). The CBCTs were performed with a standardized resolution
of 0.2 voxels. After CBCT was performed, the tray holder was removed and intraoral
digitization of the model was performed using a Trios 3 scanner (3Shape A/S, Copenhagen,
Denmark). For implant planning, CBCT and intraoral digitization of the model were read
into the planning software. During model implantation, the holder with the marker was
repositioned in the same place on the model teeth.

CBCT without a marker and intraoral digitization with and without a marker (B_1):
a CBCT was produced from the model without the use of a reference marker using the
settings described in process A. Intraoral digitization of the jaw was carried out. Once
intraoral digitization was complete, a holder with the marker was placed in the same
manner described in process A. A subsequent intraoral digitization was created with
the holder and marker in place. For implant planning, the CBCT image and intraoral
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digitization were input into the planning software without a marker and with a marker.
During model implantation, the holder and marker were in place.

CBCT without a marker and conventional impression and extraoral digitization with
and without a marker (B_2): this approach is a variant of process B_1 that uses the more
conventional approach of an alginate impression of the jaw (Blueprint cremix, Dentsply
DeTrey, Constance, Germany) instead of intraoral digitization. A model was constructed
from a super hard stone in the dental laboratory. The model was then scanned in a
laboratory scanner (E4, 3Shape A/S, Copenhagen, Denmark) with and without an attached
marker. The CBCT image and placement of the marker were performed as described above.
For implant planning, the CBCT image and extraoral digitization of the plaster model were
input into the planning software with and without markers. During model implantation,
the holder and marker were in place.

CBCT without a marker and intraoral digitization without a marker (C): a CBCT image
and intraoral digitization of the jaw were each performed without a reference marker. The
resulting datasets were used for implant planning. After the planning was complete, a
3D object representing a holder for the reference marker was inserted into the planning.
The object was placed in the contralateral position to the implant region, in regions 34–
36, above the teeth. A reference marker holder that could be securely attached to the
teeth in quadrant III was made using the drill templates. The design data of the marker
templates were sent to an in-house dental laboratory. All marker templates were created
by a dental technician using a 3D printer (Version 3, Formlabs Inc., Somerville, MA, USA).
The templates were cleaned and post-cured according to the manufacturer’s instructions.
During model implantation, the printed holder and marker were in place.

2.3. Registering the Implant Position

After implantation, the scan bodies were screwed onto the two implants. The models
were then optically digitized using a high-precision laboratory scanner (E4, 3Shape A/S,
Copenhagen, Denmark) and a surface dataset was generated and saved as a standard
tessellation language (STL) file. These datasets were integrated into the original digital
plans for the evaluation.

The automated surface best-fit matching using the iterative closest point algorithm in
the treatment evaluation mode of the coDiagnostix software was used to overlay the preop-
erative CBCT with the postoperative lab scans (Figure 5). The overlay and evaluation were
performed by a dentist (M.W.) who was not involved in the planning or implant placement.
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2.4. Analysis of the Implant Position

The metric analysis included the following measurements:

• 3D deviation: the three-dimensional deviation of the midpoints between implant plan-
ning and the clinically-achieved implant position, measured at the implant shoulder
and apex (corresponding to the Euclidean distance).
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• Apico-coronal deviation (height difference): vertical spatial offset measured at the
center of the implant shoulder.

• Axis deviation: Angular deviation of the implant axes between the planned and
clinically-achieved implant positions.

• The two-dimensional deviations in the mesio-distal and bucco-lingual directions were
measured at the implant shoulder and at the implant axis.

2.5. Statistical Analysis

Variables are described as means with standard deviations, 95% confidence intervals
(CIs), and minimum and maximum values. The Shapiro–Wilk test was used to determine
the normality of the distribution of the data. The groups were compared using the analysis
of variance or Kruskal–Wallis tests as appropriate. Tukey’s post-hoc test was performed
for normally-distributed data, and the Mann–Whitney U-test was used to compare data
without normal distribution. Post-hoc tests were used to identify significant differences
between the groups.

All statistical analyses were conducted using SPSS® Statistics version 27 (IBM Corp.
Released 2020, Armonk, NY, USA). Statistical significance was set at p < 0.05.

3. Results

A total of 120 implants in 60 oral models were evaluated. The coronal 3D deviation
was significantly different between the different process chains (p < 0.05).

The mean 3D deviation at the implant shoulder of all 120 implantations was 1.53 mm
(95% CI: 1.40–1.66 mm). The mean angular deviation was 2.88◦ (95% CI: 2.51–3.25◦). The
data for all measured values are shown in Table 2.

Table 2. Deviations between the planned and clinically-achieved implant positions.

Total
n = 60 Models/120 Implants

Region 45
n = 60 Models/60 Implants

Region 47
n = 60 Models/60 Implants p-Value

Mean (SD) 95% CI Min–Max Mean (SD) 95% CI Min–Max Mean (SD) 95% CI Min–Max

Deviation at implant shoulder (mm)

3D 1.53 (0.70) 1.40–1.66 0.20–4.02 1.52 (0.64) 1.36–1.69 0.26–4.02 1.54 (0.77) 1.34–1.74 0.20–3.75 0.923

Mesio-distal 0.70 (0.59) 0.59–0.80 0.02–3.06 0.63 (0.57) 0.48–0.78 0.02–2.37 0.77 (0.62) 0.61–0.93 0.04–3.06 0.208

Bucco-lingual 0.98 (0.68) 0.86–1.11 0.00–2.81 1.09 (0.66) 0.91–1.25 0.00–2.52 0.87 (0.70) 0.71–1.07 0.00–2.81 0.116

Apico-coronal 0.57 (0.50) 0.48–0.67 0.00–2.34 0.48 (0.43) 0.37–
0.60) 0.00–2.17 0.66 (0.54) 0.51–0.80 0.00–2.34 0.059

Deviation at implant apex (mm)

3D 1.79 (0.80) 1.64–1.94 0.29–4.05 1.81 (0.74) 1.78–2.00 0.29–4.05 1.77 (0.86) 1.54–1.99 0.29–3.74 0.766

Mesio-distal 0.81 (0.70) 0.68–0.93 0.01–3.73 0.80 (0.71) 0.62–0.98 0.04–3.73 0.82 (0.69) 0.64–1.00 0.01–3.26 0.890

Bucco-lingual 1.25 (0.75) 1.12–1.39 0.01–3.10 1.36 (0.66) 1.19–1.53 0.20–2.79 1.15 (0.83) 0.93–1.36 0.01–3.10 0.126

Apico-coronal 0.58 (0.50) 0.49–0.67 0.00–2.35 0.50 (0.43) 0.39–0.61 0.00–2.19 0.66 (0.55) 0.52–0.81 0.00–2.35 0.068

Angular
deviation (◦) 2.88 (2.03) 2.51–3.25 0.20–12.70 2.87 (2.22) 2.30–3.44 0.20–12.70 2.89 (1.83) 2.41–3.36 0.40–10.40 0.964

There were no significant differences in the positional deviations between implants in
region 45 and implants in region 47 (Table 2).

The accuracy was different between the four process chains (Table 3). The workflow
had no effect on the angular deviation (F (3, 116) = 1.003; p = 0.394), coronal mesiodistal
deviation (F (3, 116) = 0.386; p = 0.763), apical mesiodistal deviation (F (3, 116) = 0.701;
p = 0.553), coronal horizontal deviation (F (3, 116) = 1.068; p = 0.365), or apical horizontal
deviation (F (3, 116) = 1.228; p = 0.303).
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Table 3. Deviations between the planned and clinically-achieved implant positions.

Process Chain A
n = 15 Models/30 Implants

Process Chain B_1
n = 15 Models/30 Implants

Process Chain B_2
n = 15 Models/30 Implants

Process Chain C
n = 15 Models/30 Implants p-Value

Mean (SD) 95% CI Min–Max Mean (SD) 95% CI Min–Max Mean (SD) 95% CI Min–Max Mean (SD) 95% CI Min–Max

Deviation at implant shoulder (mm)

3D 1.40 (0.65) 1.16–1.64 0.41–3.75 1.85 (0.52) 1.66–2.04 0.53–2.99 1.48 (0.92) 1.14–1.83 0.20–4.02 1.39 (0.59) 1.17–1.61 0.50–3.14 0.034

Mesio-distal 0.80 (0.63) 0.55–1.04 0.06–3.06 0.64 (0.50) 0.45–0.83 0.04–1.70 0.68 (0.66) 0.44–0.93 0.02–2.37 0.67 (0.56) 0.46–0.88 0.04–2.63 0.763

Bucco-lingual 0.60 (0.48) 0.42–0.78 0.06–1.91 1.47 (0.65) 1.47–1.72 0.14–2.6 0.91 (0.75) 0.63–1.19 0.00–2.81 0.95 (0.53) 0.76–1.15 0.00–1.81 <0.005

Apico-coronal 0.67 (0.53) 0.47–0.87 0.00–2.10 0.56 (0.38) 0.41–0.70) 0.01–1.29 0.60 (0.65) 0.36–0.84 0.01–2.34 0.45 (0.37) 0.31–0.59 0.02–1.65 0.303

Deviation at implant apex (mm)

3D 1.54 (0.72) 1.27–1.81 0.75–3.56 2.13 (0.62) 1.90–2.09 0.69–3.49 1.80 (1.06) 1.41–2.20 0.29–4.05 1.68 (0.65) 1.44–1.92 0.63–3.68 0.029

Mesio-distal 0.80 (0.66) 0.55–1.05 0.04–2.87 0.67 (0.51) 0.48–0.86 0.04–1.80 0.83 (0.88) 0.50–1.16 0.04–3.73 0.93 (0.70) 0.66–1.19 0.01–3.26 0.553

Bucco-lingual 0.86 (0.59) 0.64–1.08 0.01–2.41 1.82 (0.68) 1.57–2.07 0.08–3.10 1.23 (0.79) 0.93–1.20 0.12–2.93 1.10 (0.60) 0.88–1.32 0.18–2.31 <0.005

Apico-coronal 0.69 (0.53) 0.49–0.89 0.00–2.12 0.57 (0.39) 0.42–0.71 0.01–1.35 0.62 (0.65) 0.38–0.86 0.01–2.35 0.45 (0.37) 0.31–0.59 0.00–1.62 0.303

Angular
deviation (◦) 2.77 (1.06) 2.37–3.16 0.90–5.50 2.70 (2.61) 1.73–3.68 0.40–12.70 3.43 (2.44) 2.52–3.13 0.50–12.6 2.62 (1.60) 2.02–3.22 0.20–7.70 0.394

p-values were determined using the analysis of variance (ANOVA) test. Process chain A: cone-beam computed tomography (CBCT) with a reference marker and intraoral digitization without a reference marker.
Process chain B_1: CBCT without a reference marker and intraoral digitization with and without a reference marker. Process chain B_2: CBCT without a reference marker and conventional impression and
extraoral digitization with and without a reference marker. Process chain C: CBCT without a reference marker and intraoral digitization without a reference marker.
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Overall, process chain B_1 resulted in the greatest deviations (Table 4). The mean
3D deviation at the implant shoulder resulting from process chain B_1 (1.85 ± 0.52 mm)
was significantly greater than that achieved by process chains A (1.40 ± 0.65 mm), B_2
(1.48 ± 0.92 mm), and C (1.39 ± 0.59 mm). The mean bucco-lingual deviation measured
at the shoulder resulting from process chain B_1 (1.47 ± 0.65 mm) was also significantly
greater than that achieved by process chains A (0.60 ± 0.48 mm), B_2 (0.91 ± 0.75 mm),
and C (0.95 ± 0.53 mm).

Table 4. Comparison of the deviations achieved by each process chain.

A-B_1 A-B_2 A-C B_1-B_2 B_1-C B_2-C

Deviation at implant shoulder (mm)

3D 0.001 * 0.722 0.873 0.003 * 0.002 * 0.844

Mesio-distal 0.747 0.887 0.849 0.992 0.997 1.000

Bucco-lingual <0.001 * 0.220 0.125 0.003 * 0.007 * 0.992

Apico-coronal 0.800 0.937 0.303 0.988 0.835 0.648

Deviation at implant apex (mm)

3D 0.022 * 0.573 0.905 0.366 0.119 0.929

Mesio-distal 0.884 0.998 0.897 0.805 0.481 0.951

Bucco-lingual <0.001 * 0.147 0.502 0.005 * <0.001 * 0.881

Apico-coronal 0.796 0.958 0.255 0.976 0.787 0.536

Angular deviation
(degree) 0.999 0.590 0.992 0.513 0.998 0.413

The p-values for the comparisons are shown. The values were compared using Tukey’s test, with the exception of
3D deviations, which were compared using the Mann–Whitney U test. * indicates statistical significance.

There were no significant differences in angular deviation between any of the four
process chains (Figure 6). The global 3D deviation measured at the coronal end of the
implant was significantly different between process chain B_1 and process chains A, B_2,
and C, as shown in Figure 7.
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4. Discussion

No significant differences were found between the implant regions. In contrast,
the workflow showed significant differences in various parameters. The position of the
reference marker affected the accuracy of the implant position. The in vitro examination
showed that precise implantation is possible with the dynamic navigation system used in
this study.

To date, few in vitro studies have examined the accuracy of implant positions achieved
using dynamic navigation. The first reports were published in 2005 [24,26,31], with subse-
quent publications nearly 10 years later [32–37]. Different tracking systems were examined
in each of these studies. The reference markers were partially distributed at a large distance
from the patient and later were included in the patient’s field of vision. In this study, the
markers were placed intraorally to reduce the complexity of the structure and to achieve a
setting that is adapted to the requirements of oral surgery.

The mean angular deviation in the present study was 2.88 ± 2.03◦. These values show
a high level of precision compared to angular deviations reported in previous studies that
ranged from 1.09 ± 0.55◦ [37] to 12.37 ± 4.18◦ [32]. The unweighted mean value from the
studies mentioned above is 4.4◦. In this study, the angular deviation was not affected by
the process chain or the implant region.

The deviation at the implant exit point has prosthetic importance as inclined implant
axes make designing the proximal contacts difficult in cases where individual abutments are
not used. In particular, the exit point of the implant directly affects the esthetic results [38].
The mean value of the global 3D deviation at the coronal end of the implant in this
study was 1.53 ± 0.70 mm, which is more accurate than the previously-reported values
of 0.41 ± 0.12 mm to 1.58 ± 0.80 mm [29]. In this study, the mean mesio-distal deviation
was 0.70 ± 0.59 mm and the mean bucco-lingual deviation was 0.98 ± 0.68 mm, which are
consistent with the previously reported results of lineal deviations of 0.33 ± 0.19 mm to
3.03 ± 1.81 mm [29]. In this study, the height offset of the 3D-deviation is significant. The
final horizontal position was achieved using the navigation system display, and subsequent
corrections were not made. The height of the implant in relation to the crestal bone can
typically be verified and corrected intraoperatively if the implant planning includes a
sufficient safety distance in the axial direction [39].

The subgroup analysis of the implant regions revealed that the distance between the
implant and the marker had no significant influence on the accuracy between the planned
and clinically-achieved implant positions. The bucco-lingual deviations varied the most
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between process chains. In this study, the bucco-lingual deviation was affected by the
differences in the process chains.

Various factors that influence the accuracy of static navigation have been reported
including template design, template positioning and fixation, and surgical access (open vs.
closed) [40]. However, the type of implant can affect the accuracy of implantation [41]. In
this study, a conical bone-level implant was used in each implantation. Therefore, it is not
clear whether the accuracy of implant placement is influenced by the macrodesign of the
implant or the drill sequence. These factors may be clinically relevant. To avoid possible
uncontrolled co-factors, only one implant system was used in this study. However, the
results of an in vitro study cannot be used to directly support clinical use. For example,
factors such as bone density, bone anatomy, residual teeth, mouth opening, and patient
movements may also affect the accuracy of the implant position and are not accounted for
in in vitro studies. In addition, the placement of the marker is better controlled on models
than with patients. In this study, only one standard mandible position, the unilateral
free-end position of the mandible, was investigated. The intraoral fixation of the reference
marker in cases of significantly reduced residual dentition or complete edentulism has not
yet been described.

Mediavilla-Guzmán et al. examined the differences in accuracy between a static
and dynamic approach in an in vitro study and reported that only the angular deviation
was significantly different between the two approaches (static approach: 2.95 ± 1.48◦;
dynamic approach: 4.00 ± 1.41◦) [35]. In another in vitro study that compared dynamic and
static methods, each accuracy parameter that was measured was found to be significantly
different, with the dynamic system achieving less accuracy; however, the deviation values
were much higher than those found in this study [32].

The experience of the surgeon has a minor influence on the accuracy achieved with
a static approach [42]. However, the experience of the surgeon has been reported as an
influencing factor when dynamic navigation is used [36]. In this study, the experience of
the surgeon was found to play a minor role in the accuracy of the implantation. Implant
osteotomy can be performed under optimized conditions. Clinical studies are necessary
to investigate the effect of the experience and skill of the surgeon on accuracy and the
learning curve. Therefore, when comparing systems, the difficulty of using the system in
clinical practice should be examined in addition to the accuracy of the system.

The transferability of in vitro results to clinical practice has yet to be proven for the
dynamic system presented here. In a systematic review of static navigation, significant
differences were found between in vitro and clinical studies, including differences in the
apical horizontal deviation and the angular deviation [43]. Similar results were reported in
a meta-analysis by Schneider et al. [44]. Factors affecting the transferability of these results
to a clinical setting include the patient’s ability to open the mouth, patient movements, or a
restricted view of the operating field [45].

In contrast to static navigation, relatively few clinical studies regarding dynamic
navigation have been published to date [46–52]. These studies have reported heteroge-
neous factors affecting accuracy. Different dynamic navigation systems, implant planning
programs, and implants were used in these previous studies, resulting in mean angular
deviations between 2.26 ± 1.62◦ and 6.46 ± 3.95◦. The previously reported 3D deviations
at the coronal end of the implant were between 0.67 ± 0.29 mm and 1.37 ± 0.55 mm.

Previous studies have reported similar average deviation values obtained with dy-
namic and static navigation systems [11,43,45]. However, the accuracy varies greatly in
these clinical and in vitro studies. More studies are required to determine whether this is
due to the specific dynamic navigation system. In addition, some systems have only been
evaluated by one surgical team. The accuracy and feasibility of these systems for clinical
use must be examined in future studies. To assess the benefits of this procedure for the
patient, the operation time, surgical difficulty, and cost must also be evaluated.
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5. Conclusions

The in vitro study showed that a sufficiently precise implantation is possible with
the dynamic navigation system used in this study. The workflow influenced the implant
placement accuracy. Accuracy is dependent on the navigation system being used. Clinical
studies are needed to verify the results of this study and to assess the clinical feasibility of
dynamic navigation.
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