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Scalp soft tissue expansion is one of the key medical techniques to generate new skin tissue for correcting various abnormalities
and defects of skin in plastic surgery. Therefore, it is very important to work out the appropriate approach to evaluate the increase
of expanded scalp area and to predict the shape, size, number, and placement of the expander. A novel method using finite element
model is proposed to solve large deformation of scalp expansion in this paper. And the procedure to implement the scalp tissue
expansion with finite element method is also described in detail. The three-dimensional simulation results show that the proposed
method is effective, and the analysis of simulation experiment shows that the volume and area of the expansion scalp can be
accurately calculated and the quantity, location, and size of the expander can also be predicted successfully with the proposedmodel.

1. Introduction

3D imaging has been widely applied in the current plastic
and reconstructive surgery. Noninvasive computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and three-
dimensional laser scanning are increasingly used to generate
tissue structural views for 3D anatomical model [1] to assess
facial growth [2, 3], facial expressions [4, 5], facial asymmetry
of cleft lip and palate patients [6], and facial reconstruction
[7]. This kind of techniques is also expected to model
the reconstruction accurately and to make plastic surgery
planning as a truly interactive procedure. Many literatures
have also shown that various 3D skeleton models have been
made inmaxillofacial surgery. During a planning process, the
simulation of osteotomy can be checked by the computer-
aided design (CAD), where the actual lines of osteotomy can
be clearly identified with the help of CAD.

However, the assessment of soft tissue in the plastic
surgery is more difficult than bones due to the biomechanical
properties of soft tissue, such as nonhomogeneous, quasi-
incompressible, and nonlinear plastic-viscoelastic material
properties. Therefore, computer-aided based soft tissue
expansion technique is introduced into three-dimensional

imaging to assess the structure of soft tissue. Skin soft tissue
expansion technique (as shown in Figure 1) is also one of
the key medical techniques in surgery planning, which is
used to generate new skin flaps for correcting various skin
abnormalities and defects. Therefore, it is widely applied
in many fields such as plastic and reconstructive surgery,
cosmetic surgery, and reparative and reconstructive surgery.
It is also very useful and practical in the treatment of soft
tissue defects in the head and facial area. Meanwhile, it
is critical for a successful surgery planning to effectively
select the shape, size, number, and buried location of the
expander according to the practical state of the defect skin.
Because inadequate expanded flap size may result in failure
of covering the skin defect without enough tension and
overexpanded flap size means wasting tissue, Ji et al. [7]
obtained the data of the scar excision in a child with burned
injuries and the expanded cervicofacial flap by using a 3D
digital scanner. The proposed result shows that the scar area
planned for excisionmatches the area of the face and anterior
neckwith tissue expansionwell. But the result is of theoretical
value, and the influence of biomechanical properties of soft
tissue has not been considered during the whole procedure,
such as wound retraction and flap shrinkage.
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Figure 1: Skin soft tissue expansion surgery.

So far, the accuracy of operation still mainly relies on
the surgeon’s clinical experience accumulated from long-term
practices. It is quite subjective and unstable. To solve the
problems well, simulation of tissue deformation during its
expansion process can provide an additional modality to
improve the mission success rate in tissue expansion surgery,
so it will be discussed in detail in this paper. The main
purpose of this study is to find out the appropriate approach
to obtain more accurate data considering wound retraction
and flap shrinkage after removing the tissue expanders in
surgery, which is based on the images generated from CT
scans. The CAD-based mathematical model is then to be
constructed to simulate the process of the surgery, which
consisted of selecting the proper expanders, removing the
tissue expanders, and covering the soft tissue defect with the
expanded flaps.

In Figure 1(a), there is a practical example of two liquid
expanders implanted into the patient’s head; what is shown
in Figure 1(b) is the healed wound after removing expanders.

The rest of this paper is organized as follows. Section 2
provides the methods employed to simulate scalp soft tissue
expansion. Section 3 focuses on the experiments and the
discussion of the method and experiment results. Section 4
presents a conclusion and the future work.

2. Simulation of Scalp Soft Tissue Expansion
with Finite Element Method

Geometricmodel is the foundation of deformable simulation.
And three-dimensional model is widely used in the simula-
tion of medical tissue deformation. The scalp of the model
usually has a certain thickness. According to the structural
characteristics of the scalp, the thickness is set to 3.4mm [8].
Besides, the model of tetrahedral grids [9] is obtained by free
division method [10] using software Abaqus. The result is
shown in Figure 2.

Scalp expansion is a kind of deformation in large range
and nonlinear problem that contains geometric and material

issues [11]. In this paper, a dynamic finite element model is
introduced to solve the nonlinearity of the problem [12]. The
finite element theory based geometric equations and equilib-
rium conditions for small deformation are no longer suitable
due to the geometric nonlinearity. In general, there are two
main ways to describe large deformation problem, material
description (Lagrange description), and space description
(Euler description) [13]. At the initial time 𝑡

0
= 0, the

coordinate of number of 𝑖 points is 𝑋
𝑖
(𝑖 = 1, 2, 3) and

becomes 𝑥
𝑖
after motion at any time.Themotion of the point

can be represented by the following equation:

𝑥
𝑖
= 𝑥
𝑖
(𝑋
𝑖
, 𝑡) , 𝑖 = 1, 2, 3. (1)

The above equation is the Lagrange description used in
this paper that examines the movement and deformation
using the motion of a specific point. The configuration
of the object before deformation is already known and is
also as a reference model. The configuration of the object
after deformation is computed by finite element method.
Currently, the pair of second class Piola-kirchhoff stress
tensor and Lagrant-Green strain tensor is widely used to
express the energy item using finite element method to solve
nonlinear problem. This pair tensor takes initial configura-
tion as reference configuration.The solving steps of scalp soft
tissue expansion with finite element method are as follows.

2.1. Discrete and Equal Parameter Unit Interpolation. For
the initial configuration, its geometry of internal units is
interpolated with the coordinates of the unit points. Besides,
unit displacement is also obtained by the same interpolation
function as follows:
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(2)
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Figure 2: Scalp model represented by tetrahedral grids.

where 𝑋𝑘
𝑖
is the coordinate of point 𝐾 before deformation

in the direction 𝑖, 𝑢𝑘
𝑖
is the displacement of the point 𝑘 in

the direction 𝑖, and 𝑚 is the number of the unit points. They
can be represented as vectors, 𝑋 = 𝑁𝑋

𝑒
and 𝑈 = 𝑁𝑎

𝑒
,

𝑁 = [𝑁
1
𝐼,𝑁
2
𝐼, . . . , 𝑁

𝑚
𝐼], where 𝐼 is a 3×3 unitmatrix and𝑁

is a 3×3𝑚 shape functionmatrix. Vector𝑋
𝑒
is the coordinate

vector of the initial unit point and 𝑎
𝑒
is the displacement

vector of the unit point. Both of them are 3𝑚 in dimension.

2.2. Derivation of Strain Matrix 𝐵. Strain matrix is repre-
sented by the strain tensor of Green in this paper. At first,
strain tensor of Green 𝐸 is represented by two parts, linear
part 𝐸

𝐿
and nonlinear part 𝐸

𝑁
. So, there are 𝐸 = 𝐸

𝐿
+𝐸
𝑁
and

𝐵 = 𝐵
𝐿
+ 𝐵
𝑁
. 𝐵
𝐿
is the transformational matrix between 𝐸

𝐿

and 𝑎
𝑒
; that is, 𝐸

𝐿
= 𝐵
𝐿
𝑎
𝑒
. 𝐵
𝑁
is the transformational matrix

between 𝐸
𝑁
and 𝑎
𝑒
, and 𝐸

𝑁
= 𝐴 ∗ 𝜃/2. The detailed solving

process of 𝐵
𝐿
and 𝐵

𝑁
is described as follows:
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where 𝜃 is a displacement gradient matrix, 𝜕𝑈/𝜕𝑋
𝑖
is a 3 × 1

matrix, and 0 represents a 3×1 zero matrix. And then 𝐵
𝑁
can

be calculated as in the following equation. That is 𝐵
𝑁
= 𝐴𝐺,

where 𝐺 is obtained by
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2.3. System Balance Equation. For a triangle composed of
three points, second class Piola-kirchhoff stress tensor can be
described as 𝑆 = [𝑆11 𝑆22 𝑆

33
𝑆
23

𝑆
31

𝑆
12]
𝑇. Physical force

load and surface force load are, respectively, represented as
𝑃
0
= [𝑃01 𝑃02 𝑃03]

𝑇, 𝑞
0
= [𝑞01 𝑞02 𝑞03]

𝑇. System balance
equation using virtual work equation is defined as

𝑐
𝑡
∫

𝑒0

𝐵
𝑇
𝑆 𝑑𝑉 = 𝑐

𝑡
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𝑡
∫

𝐴𝑒0

𝑁
𝑇
𝑞
0
𝑑𝐴, (6)

where matrix 𝑐 combines displacement vector 𝑎
𝑒
of element

point with the total displacement vector 𝑎 of finite element
system via the equation of 𝛿𝑎

𝑒
= 𝑐𝛿𝑎. The balance equation

of the whole system can be defined as (7) and obtained by
adding the total unit balance equations given as (6)
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To solve (7), scalp constitutive model is needed to be
introduced and defined as follows [14]:

𝑊 =
𝑎

𝑏
{exp [𝑏

2
(𝐼
1
− 3)] − 1} ,

𝐼
1
= 𝜆
2

1
+ 𝜆
2

2
+ 𝜆
2

3
,

(8)

where 𝑤 represents strain energy density, 𝐼
1
represents the

first strain invariant, 𝜆
1
, 𝜆
2
, and 𝜆

3
are the stretch variables,

respectively, in directions 𝑥, 𝑦, 𝑧, and 𝑎, and 𝑏 represents
parameter 𝑠 of the expander. Because scalp constitutivemodel
is a superelastic material model and 𝑊 = 𝑊(𝐼

1
, 𝐼
2
, 𝐼
3
),

the scalp is defined as superelastic material in this paper.
Considering that external force has nothing to do with the
deformation path of the material, 𝐼

1
= 𝐸
𝑖𝑖
, 𝐼
2
= [(𝐸

𝑖𝑖
)
2
−

𝐸
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× 𝐸
𝑗𝑖
]/2, and 𝐸

𝑖𝑖
= 𝐸
𝑖𝑗
= 𝐸
𝑗𝑖
. For incompressible material,

𝐼
3
= 1. The constitutive equation with rate form can be

obtained by derivation of deformation variables

𝑆
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, (9b)

where 𝑆


𝑖𝑗
is the derivation of time by second class Piola-

kirchhoff stress tensor, 𝐸
𝑘𝑙
is the derivation of time by Green

strain tensor, and𝐷𝑇
𝑖𝑗𝑘𝑙

is tangentmodulus tensor. For a three-
dimensional model, object region is 𝑉

0
and boundary is 𝐴

0𝑡
.

The equivalent nodal load 𝑅 of FEM system can be gotten
by combining𝐷𝑇

𝑖𝑗𝑘𝑙
with balance equation as described in the

following equation:

𝑅 = ∫

V0
𝑁
𝑇
𝑃
0
𝑑𝑉 + ∫

𝐴0𝑡

𝑁
𝑇
𝑞
0
𝑑𝐴 = 𝑎∫

𝑉0

𝐵
𝑇
𝐷𝐵𝑑𝑉. (10)

2.4. System Tangent Stiffness Matrix 𝐾
𝑇
. In general, it is dif-

ficult to obtain accurate stiffness matrix for nonlinear mate-
rial, so stiffness matrix can be replaced by tangent stiffness
matrix which is the curve tangent of stress-strain defined as
follows:

∫

V0
𝐵
𝑇
𝑆 𝑑𝑉 + ∫

V0
(𝑑𝐵)
𝑇
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𝑇
𝑑𝑎, (11)

where 𝐾
𝑇

= 𝐾
𝑀

+ 𝐾
𝑆
and 𝐾

𝑀
= 𝐾
𝐿
+ 𝐾
𝑁
. 𝐾
𝑀

is a
tangent stiffness matrix associated with constitutive matrix,
𝐾
𝐿
is a general small displacement stiffness matrix, 𝐾

𝑁
only

including a linear or quadratic term is caused by a large
displacement, and 𝐾

𝑆
is a tangent stiffness matrix by stress

𝐾
𝐿
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(12)

𝐷
𝑇
in formula (12) contacts unit stress tensor and strain

tensor, representing 𝑑𝑆 = 𝐷
𝑇
𝑑𝐸.𝐾

𝑆
can be calculated by (13)

𝐾
𝑆
= ∫

𝑉0

𝐺
𝑇
�̃�𝐺𝑑𝑉, (13)

where 𝐺 is the transformation matrix of displacement gradi-
ent vector and unit nodal displacement vector.

2.5. Solving Equations by Newton Method

Step 1. Solving linear elastic problem 𝐾
𝐿
𝑎 − 𝑅 = 0, first

approximate solution 𝑎
1 is obtained. 𝑎 is the total displace-

ment vector of FEM system.

Step 2. Compute matrix 𝐴 from 𝑎
1 based on (4). Displace-

ment gradient vector 𝜃 = 𝐺𝑎
𝑒
. Compute 𝐸 through 𝛿𝐴𝜃 =

𝐴(𝛿𝜃) based on the definitions of 𝐴 and 𝜃. Then, compute 𝑆1
and 𝐵1 based on scalp constitutive model𝐷 and 𝑆 = 𝐷𝐸

Step 3. Get unbalanced force 𝜑 via the left part of (9a) minus
the right part of (9b). Get 𝜑1 through 𝑆1 and 𝐵1.

Step 4. Solve tangent stiffness matrix𝐾1
𝑇
with (11) to (13).

Step 5. Compute the correction of displacement via Δ𝑎1 =
−(𝐾
1

𝑇
)
−1

𝜑
1. Get second approximate solution 𝑎2 = 𝑎

1
+ Δ𝑎
1.

Step 6. Iteration on 𝑎
2 from Step 2 to Step 5 till 𝜑𝑛 is small

enough.

2.6. Conditions of Loading and Boundary. The expander
usually is set near the defect area of patient. The stress of the
scalp packaging expander is caused by liquid in expander and
the direction of stress is along the normal expander’s surface.
Therefore, the stress of scalp contact parts is the same as the
stress of expander, which is set as 30N/cm2 in this paper.
Besides, the expander is set as constant regular ellipsoid
whose triaxial proportion is 1.53 : 1 : 1. Suppose the volume of
the virtual ellipsoid is zero and the center point of the virtual
ellipsoid is at the center of specified area at the beginning.
During the scalp deformation, the ellipsoid expands and
its volume increases. The distance between the center point
and scalp surface is computed to decide the virtual ellipsoid
and scalp surface whether the virtual ellipsoid and the scalp
surface is contacted or not.

3. Experiments Result and Analysis

3.1. Experimental Result. The simulation is based on the large
deformation of scalp expansion and conditions of loading and
boundary above. Eight steps are set in software Abaqus and
the time of each step is 0.04 s. Initial state and main process
results of the 8 steps are shown in Figure 3.

3.2. Stress-Strain Analysis. The color in Figure 3 represents
the average stress distribution: red means the maximum and
blue means minimum. It is obvious that the stress is relatively
large in confined areas and the stress decreases from the top
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Figure 3: Continued.
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Figure 3: Results of scalp expansion simulation.

of scalp to the bottom of scalp. Five tetrahedrons are selected
and the average strain-time relationship of four points of each
tetrahedron is shown in Figure 4.

As shown in Figure 4, the stress of tetrahedron 1, 3, or 4
at the edge of area is larger than that of tetrahedron 5 from
0 s to 0.016 s. When the expander is implanted into head,
the downward stress from scalp is large, the strain of top
tetrahedron 5 is restricted, and tetrahedrons 1, 2, 3, and 4
around expand outward. Then, when the expansion strain of
the edge regional is growing and the volume of expander is
increasing, the expansion to the top of scalp becomes obvious.
Therefore, the strain of tetrahedron 5 increases faster than
that of tetrahedrons 1, 2, 3, and 4. With the restrictions of the
fixed scalp around, the strain of tetrahedrons 1 and 2 is quite

small. The strain of tetrahedron 3 is relatively large for the
corner position. The strain of tetrahedron 4 is neither large
nor small for the middle layer position.

3.3. Area Analysis. Before the expansion, coordinates of scalp
surface model are obtained at random.Then, these points are
connected in delta in real time using Delaunay triangulation
method [15] and the area of each triangle is computed. After
accumulation, the area of defect is 4266.04mm2 at last. The
process is shown in Figures 5 and 6.

With the process of calculation result by software Abaqus,
the area of scalp after deformation is shown in Table 1.

After removing the expander, skin shrinkage phe-
nomenon will occur.The part of shrinkage will be 30% based
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Figure 4: Stress-strain analysis diagram.

(a) Sampling inside (Green point) (b) Sampling outside

Figure 5: Random sampling inside and outside the model.

Table 1: The area of scalp after deformation.

Step 𝑆 (mm2) Δ𝑆 (mm2) ∑Δ𝑆 (mm2)
0 117733.11 0 0
1 118504.79 771.68 771.68
2 119319.77 814.98 1586.66
3 120392.57 1072.8 2659.46
4 122278.13 1855.56 4545.02
5 123252.50 974.37 5519.39
6 123638.54 386.04 5905.43
7 124240.53 601.99 6507.42
8 124522.65 282.12 6798.54

on medical experience, so about 1.43 times more new skin is
needed. After the end of the experiment, the area is increased
to 6789.54mm2 which is 1.59 times of the defective area
(4266.04mm2). Considering the utilizable efficiency of new
skin, the surgery can be satisfied.

3.4. Volumetric Analysis. In order to estimate the volume
needed in the operation of scalp tissue expansion, each step
of deformation is processed by software and the volume is
shown in Table 2.

As Table 2 shows, the volume of head increases totally
442012.12mm3 (442.01212mL). It is almost equal to the vol-
ume of expander indeed. So, a 450mL ellipsoid expander is
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(a) Interactive sampling (b) Topology of sampling points

Figure 6: Getting area by interactive sampling in real time.

Table 2: The change of volume.

Step 𝑉 (mm3) Δ𝑉 (mm3) ∑Δ𝑉 (mm3)
0 3107136.50 0 0
1 3166015.68 58879.18 58879.18
2 3220374.85 54359.17 113238.35
3 3289162.78 68787.93 182026.28
4 3404764.16 115601.38 297627.66
5 3467026.40 62262.24 359889.9
6 3491925.98 24899.58 384789.48
7 3530934.93 39008.95 423798.43
8 3549148.62 18213.69 442012.12

needed to be implanted.The results show that the large defor-
mation method proposed in this paper is effective.

4. Conclusion

Tissue expansion is a good option for covering the soft tissue
defect. Successful reconstruction is depended on the precise
judgement on the amount of tissue provided by expansion to
cover the defect. The three-dimensional anatomy alters the
situation that elasticity and contractility of the expanded flap
make it extremely difficult to accurately predict the proper
size implants and the size of skin flaps required to cover the
defects.

Based on small deformation and linear elastic problems
with finite elementmethod, a novel solution to large deforma-
tion of scalp expansion is put forward in this paper.Then, the
concrete steps to implement the scalp tissue expansion pro-
cess with finite element method are also given in detail. The
scalp tissue is simulated as a shell with certain thickness and
is split into tetrahedralmeshes.Thedeformation results prove
that the solution for large deformation is effective. Then, the
stress during the deformation process is also analyzed, and
the volume and the area of the scalp are accurately calculated.
With the proposedmethod, the quantity, placement location,
quantity, and size are predicted successfully.

However, the proposed model used to approximate flap
shrinkage is rough, and it does not take into consideration
other variables such as thickness of flaps and the length of
expansion time which will make the rate of shrinkage differ-
ent. Further studies are required to make the model more
accurate.
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