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Abstract

The inhibition of tyrosinase is the most effective method to decrease melanin synthesis during the process of
pigmentation. We aimed to find compounds from traditional Chinese medicines (TCM) that are more effective than
the most commonly used tyrosinase inhibitor, arbutin. First, we employed homology modeling to construct a
tyrosinase-modeled structure, and structure-based virtual screening to screen from 61,000 TCM compounds. We also
adopted the following quantitative structure-activity relationship (QSAR) models for ligand-based validation: support
vector machine, multiple linear regression, and Bayesian network. Molecular dynamics (MD) simulation was used to
confirm the stability of ligand binding. We found that merresectine C might more effectively bind and inhibit the
activity of tyrosinase than arbutin. This study provides useful evidence for the potential development of a novel
non-toxic bleaching or whitening ingredient.

Keywords: Tyrosinase inhibitor; Traditional Chinese medicine (TCM); Structure-based; Quantitative structure-activity
relationship (QSAR); Ligand-based; Molecular dynamics (MD) simulation
Introduction
Hyperpigmentation, hypermelanosis, skin darkening, or
tanning can be caused by ultraviolet(UV) exposure, drugs,
or post-inflammatory conditions (Praetorius et al. 2013).
UV radiation stimulates melanin synthesis in the epider-
mal melanocytes (Johnson et al. 1972). Drug-induced
hyperpigmentation can be caused by many compounds in-
cluding minocycline, amiodarone, oral contraceptives, and
anticancer drugs (Holm and Nelson 2006; Rappersberger
et al. 1989; Kim et al. 2012; Ibrahimi and Anderson 2010;
Kew et al. 1977). Post-inflammatory hyperpigmentation
can be caused by dermatological inflammatory diseases,
or as a side effect of laser treatment (Ortonne and Bissett
2008; Fisher and James 2010). Tyrosinase function has
been studied in the context of clinically significant dis-
eases such as albinism or vitiligo (Chian and Wilgram
1967; Hertz et al. 1977; Betterle et al. 1984; Bowcock and
Fernandez-Vina 2012), and tyrosinase dysfunction is
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responsible for these depigmentation diseases (Spritz et al.
1990; Song et al. 1994; Robert et al. 2003).
Studies on the mechanism of pigmentation and mela-

nogenesis have been previously reported (Diffey et al.
1995; Bagnara et al. 1979). Melanocytes produce mel-
anin, which determines differences in skin or hair color
(Schallreuter et al. 1994). Melanogenesis, which is the
synthesis and distribution of melanin in the epidermis,
begins with the transcription of proteins required for
melanin synthesis. Then, melanosomes are produced
and transported to the melanocyte dendrites, and then
to adjacent keratinocytes (McGuire and Moellmann
1972; Lin and Fisher 2007). Tyrosinase is a copper-
binding enzyme that is produced only by melanocytic
cells (Setty et al. 2008). The first biochemical survey of
pigmentation was carried out on the mushroom because
of its color and since then, the enzyme has been found
widely distributed from bacteria to mammals (Fitzpatrick
et al. 1950; Kukita and Fitzpatrick 1955; Wood and
Ingraham 1965). Tyrosinase catalyzes the first two im-
portant reactions of melanin synthesis: L-tyrosinase to
L-DOPA through hydroxylation and L-DOPA to dopaqui-
none through oxidation (Wykes et al. 1971; Pomerantz
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1969; Korner and Pawelek 1982; Mirica et al. 2005). Tyro-
sine hydroxylase, the other DOPA-related enzyme in the
nervous system, is not expressed in usual melanocytes.
Tyrosinase is the central enzyme involved in eumelanin
and pheomelanin synthesis via activation of melanocortin
1 receptor (MC1R), then expression of microphthalmia-
associated transcription factor (MITF) (Sealy et al. 1982;
Yaar 2013). Other enzymes involved in melanin synthesis
include tyrosinase-related protein 1 (Trp 1) and Trp 2
(Sendoel et al. 2010). Inhibition of tyrosinase is the most
effective method to decrease melanin synthesis (Bulengo-
Ransby et al. 1993; Stern 2004).
By definition, true tyrosinase inhibitors are different

from melanin inhibitors, which interfere with melanin
formation by blocking its upstream signal transduction
or downstream transportation, regardless of direct en-
zyme interaction. Blocking upstream signal transduction
of tyrosinase includes down-regulation of MC1R activity
and MITF expression. Blocking downstream transporta-
tion includes involvement in melanosomal transfer or
epidermal abrasion leading to melanin loss. Tyrosinase
inhibitors can chelate copper to prevent substrate bind-
ing (Bae-Harboe and Park 2012). Well-known whitening
agents, kojic acid and hydroquinone, may induce adverse
reactions such as skin irritation, dermatitis, depigmen-
tation, and even cancer. Kojic acid may cause liver tox-
icity by increased glutathione S-transferase levels, and
promote hepatocarcinogenesis (Chusiri et al. 2011; Ota
et al. 2009). Hydroquinone may disturb immune re-
sponse by affecting the function of endotoxin-activated
neutrophils or microvascular endothelial cells (Hebeda
et al. 2012; Hebeda et al. 2011). Herbs used for cosmetic
whitening are widely used among Asians who practice
Figure 1 Sequence alignment between the template (3NM8) and P14679_
traditional Chinese medicines (TCM). These agents are
often composed of hundreds or thousands of com-
pounds. It is difficult to distinguish which types of com-
pounds that whiten skin effectively are safe for routine
use (Ernst 2002; Chan 2011).
Searching for pure, safe, and effective ingredients that

can achieve skin lightening would be beneficial. Fortu-
nately, computational techniques have rapidly emerged
in small molecular drug design (Tang and Chen 2015).
TCMs used to lighten skin are often gentle, and have
therapeutic advantage in some diseases. The use of a
TCM database makes it possible to find new molecules
that could be used as future drugs. We aimed to find po-
tent compounds that can inhibit the activity of tyrosin-
ase using computational simulation and the TCM
Database@Taiwan (http://tcm.cmu.edu.tw/).

Methods
Compound database
We used the TCM Database@Taiwan (http://tcm.cmu.edu.tw/)
to perform potential tyrosinase inhibitor screening. The
TCM Database@Taiwan is a large database of TCM com-
pounds and includes 61,000 small molecules. All the small
molecules in the database were passed through Lipinski’s
rule of five, absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) to rule out potential toxic
compounds in Discovery Studio (DS) (Chen 2011).

Homology modeling
We acquired the human tyrosinase sequence from the
Uniprot Knowledgebase (P14679). The 3D structure of
tyrosinase from Bacillus megaterium was acquired from
the Protein Data Bank (PDB ID: 3NM8). We aligned the
human. The identity = 31.8% and similarity = 50.7%.

http://tcm.cmu.edu.tw/
http://tcm.cmu.edu.tw/
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sequence of human tyrosinase (P14679) and homologous
Bacillus megaterium protein (3NM8) by using the “Mod-
eler protocol" in Accelrys Discovery Studio (DS, San Diego,
CA, USA). Based on the results of the sequence alignment,
the percentage of identity and similarity was estimated. We
used the Build Homology Models module in DS to per-
form homology modeling of tyrosinase. We confirmed the
tyrosinase-modeled structure by Ramachandran plot with
Rampage mode in DS.

Disorder prediction
We used the PONDR-FIT protocol in the DisProt web-
site to exclude the disordered residues of the tyrosinase
3D structure.
Figure 2 Ramachandran plot of tyrosinase-modeled structure. Number of
residues in allowed region (~2.0% expected): 13 (4.7%). Number of residues
Structure-based virtual screening
A docking protocol was performed with tyrosinase for all
small compounds from the TCM Database@Taiwan and
the control (arbutin) by LigandFit mode in DS. The proto-
col included hydrogen bonds (H-bond), pi bonds, and
charge interactions. All docking poses between the ligand
and tyrosinase were restricted by the force field of Chem-
istry at HARvard Molecular Mechanics (CHARMm). We
also used the LIGPLOT protocol to display H-bonds and
hydrophobic contact between the ligand and tyrosinase.

Quantitative structure-activity relationship (QSAR) models
We used the support vector machine (SVM) and multiple
linear regression (MLR) models and Bayesian network to
residues in favored region (~98.0% expected) : 252 (91.3%). Number of
in disallowed region : 11 (4.0%).



Figure 3 Disorder disposition of tyrosinase-modeled structure. Binding domains of main residues (illustrated in purple line) are in the non-disordered
area (below the value of 0.5).
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predict the activities of selected TCM compounds. We ob-
tained 24 compounds and pIC50 data of tyrosinase inhibi-
tors from two previous studies: Lee et al. (2009) and
Bandgar et al. (2012) (Lee et al. 2009; Bandgar et al. 2012).
We transformed these compounds to 2D and 3D struc-
tures with ChemBioDraw software. Then, we used the
Calculate Molecular Property module and Genetic Func-
tion Approximation module in DS to find and estimate
the appropriate molecular descriptor for every ligand. We
selected ten optimum descriptors for predicting activity.
Table 1 Top ten TCM compounds ranked by Dock score

Name Dock
score

LigScore Bindi

5-Hydroxy-L-tryptophan 131.298 4.48 − 271

Merresectine C 124.475 4.97 − 383

Bufotenine 121.222 4.08 − 339

Physostigmine 119.468 3.55 − 355

Datumetine 119.025 3.66 − 355

Neostemonine 119.006 3.49 − 318

(+)-N-Methyl tryptophan methyl ester (S) 118.319 3.4 − 343

Stephanthrine 117.947 4.16 − 302

Stephenanthrine 117.947 4.15 − 302

Tetrahydroharmol 117.175 3.31 − 336

Arbutin* 60.167 4.86 − 187

Arbutin*: control; SVM*: support vector machine; MLR*: multiple linear regression; B
These descriptors, which constructed the SVM and MLR
models, were verified by libSVM and Matlab Statistics
Toolbox, respectively. We normalized the description be-
tween [−1,+1] with the SVM training model. The value of
the square correlation coefficient (R2) was used to validate
the model. We used the data from these compounds to
predict the selected candidates and the control. The Bayes
Net Toolbox (BNT), which is a Matlab package for Bayes-
ian network modeling, predicted the pIC50 values. The
predicted models used five-fold cross validation. We chose
ng energy H-bond
quantity

pi quantity Predicted activity

SVM* MLR* BNT*

.189 4 3 4.629 5.837 3.990

.479 2 2 4.694 4.194 5.742

.691 4 1 4.783 4.812 4.090

.47 1 2 4.624 5.896 5.521

.395 2 1 4.628 5.922 5.597

.602 1 2 4.607 4.308 5.614

.524 2 1 4.745 4.999 4.760

.581 1 4 4.625 6.282 5.961

.966 1 4 4.625 6.282 5.961

.938 2 5 4.800 5.653 4.961

.707 5 0 4.871 5.710 4.331

NT*: bayesian network.
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the highest R2of the SVM, MLR, and Bayesian network to
be the predicted activity models.

Molecular dynamics (MD) simulation
The trajectories of MD simulations were illustrated by
the GROningen MAchine for Chemical Simulations
(GROMACS) program (Stockholm, Sweden). Every lig-
and-tyrosinase complex passed through minimization,
heating, equilibration, and production phases. We dem-
onstrated the trajectories of root mean square deviation
(RMSD), gyrate, mean square deviation (MSD), total en-
ergy, root mean square fluctuation (RMSF), and the cen-
tral distance between ligand and protein. Cluster analysis,
database of secondary structure assignment (DSSP),
matrices of smallest distance of residues, and principal
component analysis were also calculated.

Ligand pathway
We used the CAVER software (Brno, Czech Republic) to
find all possible ligand pathways while the ligand is
bound with tyrosinase. The ligand pathway was also
found to compute the possible tunnels inside tyrosinase
to which the ligand bound. The most important parame-
ters were set as the following description. Shell_radius,
which defined the shell probe, was set at a radius of 4.
Figure 4 Scaffold of the top 3 TCM compounds: (A) 5-Hydroxy-L-tryptoph
Shell_depth, which specified the maximal depth of the
surface region, was set at 5. Probe_radius, which identified
the minimum tunnel radius, was set at 0.9 (Chovancova
et al. 2012).

Results
Homology modeling
The sequence alignment between P14679_Human and
the template (3NM8) had an overall identity of 31.8%
and similarity was 50.7% (Figure 1). The Ramachandran
plot of the tyrosinase-modeled structure demonstrates
that 91.3% of residues were in the favored region, 4.7%
were in the allowed region, and 4% were in the outlier
region (Figure 2).

Disorder prediction
The residues of binding sites for the tyrosinase-modeled
structure did not fall in the disordered area, so there was
not any influence on the shape of the binding domains
(Figure 3).

Structure-based virtual screening
Tyrosinase catalyzes two important reactions of hydrox-
ylation and oxidation in the presence of copper atoms.
His180, His202, His211, His363, His367, and His390
an, (B) Merresectine C, (C) Bufotenine, and the control (D) Arbutin.



Figure 5 3D (left) and 2D (right) docking poses of tyrosinase. Green dashed line: H-bond with amino acids main chains; blue dashed line: H-bond
with amino acids side-chains; orange line: π bond; pink dashed line: charge interaction.
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were the key residues that cooperated with the copper
atoms to achieve enzyme activity. The binding sites were
set around the six key residues. Only 46,583 compounds
could dock with the tyrosinase protein. There were 8581
compounds better than the control (arbutin) based on
the Dock score. Table 1 lists the Dock score, LigScore,
binding energy, H-bond quantity, pi bond quantity, and
predicted activity of the top ten TCM compounds
ranked by Dock score. We selected 5-hydroxy-L-tryp-
tophan, merresectine C, and bufotenine as the candi-
dates for further survey. Arbutin, the most commonly
used tyrosinase inhibitor, was chosen as the control
(Figure 4).
The binding amino acids between the ligand and tyro-

sinase protein were investigated. 5-hydroxy-L-trypto-
phan formed an H-bond with Glu203, Lys334, and
Asp356. Merresectine C formed an H-bond with Glu203
and Lys334. Bufotenine formed an H-bond with Glu203,
Lys334, Ala355, and Asp356. The control formed an H-
bond with Glu203, Arg308, Lys334, and Asn364. The H-
bond, pi bond, and charge interaction are also important
Figure 6 Hydrophobic contact of the ligands with tyrosinase docking pose
(D) Arbutin.
binding forces between the ligand and tyrosinase. 5-
hydroxy-L-tryptophan formed a pi bond with His202
and Lys334. It also had a charge interaction with Glu203
and Lys334. Merresectine C formed a pi bond with
His202 and Lys334. It also had a charge interaction with
Asp197 and Glu203. Bufotenine formed a pi bond with
His202. It also had a charge interaction with Asp199 and
Glu203 (Figure 5). Hydrophobic contact is another essential
force between the ligand and tyrosinase. 5-hydroxy-L-
tryptophan had hydrophobic contact with Ile253. Mer-
resectine C had hydrophobic contact with Asp82,
Asp84, Lys191, His248, Asn249, and Ile253. Bufotenine
had hydrophobic contact with Asp84, Phe232, Asn249,
and Val262. The control formed hydrophobic contact
with Phe232 and Ile239 (Figure 6).

Quantitative structure-activity relationship (QSAR) models
We chose the following ten optimum descriptors for con-
structing the ligand-based drug design models: Molecular_-
Solubility, Num_AromaticBonds, Num_AromaticRings,
Num_AtomClasses, Dipole_X, Dipole_Y, Jurs_RASA,
s. (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and



Figure 7 18 training sets and 6 test sets using support vector machine
(SVM), multiple linear regression (MLR) and Bayesian network for predicted
activity. R2 of SVM= 0.8419, MLR= 0.934 and Bayesian = 0.6538.
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Strain_Energy, Shadow_XZfrac, and Shadow_YZfrac. We
constructed SVM and MLR models with these descriptors.
The predictive models were generated by using these
descriptors:
p(IC50) = 7.636 + 0.444 ×Molecular_Solubility + 0.689 ×

Num_AromaticBonds−2.922×Num_AromaticRings−0.004×
Num_AtomClasses + 0.050 ×Dipole_X− 0.107 ×Dipole_Y +
0.405 × Jurs_RASA − 0.00008 × Strain_Energy − 3.092 ×
Shadow_XZfrac − 1.310 × Shadow_YZfrac (1)
The 24 identified compounds were randomly divided

into 18 training sets and six test sets for validation. The
R2 values of the predicted activity for SVM, MLR, and
Bayesian network were 0.8419, 0.934, and 0.6538, re-
spectively (Figure 7).

Molecular dynamics (MD) simulation
The trajectories of protein and ligand RMSD were
drawn to compare the degree of deviation of the top
three compounds and the control. The merresectine C
protein-ligand complex had the lowest average protein
RMSD value. The control protein-ligand complex had
the largest average protein RMSD value. Conversely,
merresectine C had the largest average ligand RMSD
value (Figure 8). We demonstrated the trajectory of pro-
tein gyrate to investigate the average atoms’ distance to
the center of every corresponding protein, which dem-
onstrates the compact degree of every corresponding
protein. The merresectine C protein-ligand complex had
the lowest average protein gyrate value. The bufotenine
protein-ligand complex had the largest average protein
gyrate value. To calculate the deviation of each ligand-
protein complex, the trajectory of protein MSD was
found. The MSD trajectory of 5-hydroxy-L-tryptophan
was exceeded by that of the control at the end of MD
(Figure 9).
The trajectory of total energy was found to assess the

stability of the ligand-protein complex. To compare the
binding stability of the ligand-protein complex, we cal-
culated the average potential and kinetic energies needed
for the ligand to bind to tyrosinase (Table 2). The average
total energy for 5-hydroxy-L-tryptophan, merresectine C,
bufotenine and the control were −640977, −640214, −640
627, and −640355 KJ/mol, respectively (Figure 10). RMSF
was calculated to survey the fluctuation of every amino
acid of the ligand-protein complex. The largest fluctua-
tions of 5-hydroxy-L-tryptophan, merresectine C, bufote-
nine, and the control were near residues 240, 150, 175,
and 80, respectively. There were no prominent influences
from the key binding residues, Glu203 and Lys334
(Figure 11).
We used cluster analysis to investigate the representative

structure of the ligand-protein complex. The represen-
tative structure of the 5-hydroxy-L-tryptophan ligand-
protein complex was cluster 10 from 12.5 to 20 ns. The



Figure 8 Protein and ligand root mean square deviation (RMSD).
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representative structure of the merresectine C ligand-
protein complex was cluster 5 from 1.5 to 19.5 ns. The
representative structure of the bufotenine ligand-protein
complex was cluster 3 from 0.5 to 10.5 ns. The representa-
tive structure of the control ligand-protein complex was
cluster 2 from 0.5 to 20 ns (Figure 12). The distance of the
gravity center between the ligand and tyrosinase was
found to compare the top three candidates and the con-
trol. The control and 5-hydroxy-L-tryptophan had in-
creased distance between the ligand and protein after 12
and 14 ns (Figure 13).
Secondary structure changes were investigated to sur-

vey the structural component changes of the ligand-
protein complex. There were large changes from resi-
due 50 to 150 for the top three candidates and the
control (Figure 14). Matrices of the smallest distance
of residues were created to find the variation of smal-
lest distance for any given residue. There were not
any apparent differences between 5-hydroxy-L-tryp-
tophan, merresectine C, bufotenine, or the control
(Figure 15).
We performed principle component analysis to find

the two eigenvectors (PC1 and PC2) based on the backbone
of 5-hydroxy-L-tryptophan, merresectine C, bufotenine,
and the control ligand-protein complex. There were similar
eigenvectors among 5-hydroxy-L-tryptophan, bufotenine,



Figure 9 (A) Protein Gyrate. (B) Protein mean square deviation (MSD).
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and the control (Figure 16). The eigenvalues (PC1 and
PC2) were comparable with those of principle component
analysis. There were similar eigenvalues of PC1 and PC2
among 5-hydroxy-L-tryptophan, bufotenine, and the con-
trol (Figure 17).
Table 2 Average energy needed for the ligand-protein compl

Average 5-Hydroxy-L- tryptophan

Potential energy −784287

Kinetic energy 143310

Total energy −640977
Ligand pathway
A 3D simulation of the ligand pathway was created to
estimate all possible pathways for the ligand to bind
with tyrosinase. All candidates and the control had dif-
ferent estimated binding pathways. There were 9, 3, 7,
ex (KJ/mol)

Merresectine C Bufotenine Arbutin

−783523 −783857 −783620

143310 143229 143265

−640214 −640627 −640355



Figure 10 Total energy. (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.
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and 4 possible pathways for 5-hydroxy-L-tryptophan, mer-
resectine C, bufotenine, and the control, respectively
(Figure 18). Aside from the binding forces of the three
candidates and the control, the number and pathway of
tunnels were also different.

Discussion
Homology modeling
We chose the human tyrosinase sequence (P14679)and
the Bacillus megaterium (3NM8) template for homology
modeling to simulate the human tyrosinase structure.
3NM8 was the most approximate crystal structure to
human tyrosinase. The high percentage of identity
(31.8%) and similarity (50.7%) of sequence alignment,
and high percentage of residues in the favored (91.3%)
and allowed (4.7%) region implied that the tyrosinase-
modeled structure was reliable.

Structure-based virtual screening
Based on the docking score, binding energy, and the
quantity of important binding forces, we concluded that
5-Hydroxy-L-tryptophan, merresectine C, and bufote-
nine had better binding capacity than that of the control.
All of the top three candidates and the control formed
H-bonds with Glu203 and Lys334. Aside from the H-
bonds, all of the top three candidates formed pi bonds
with His202 and charge interactions with Glu203. These
inhibitors occupied the original space of the copper
atoms. Therefore, Glu203 and Lys334arethe key residues
of the ligand-protein complex. 5-hydroxy-L-tryptophan,
merresectine C, and bufotenine had more stable binding
energy and binding forces than that of the control.

Quantitative structure-activity relationship (QSAR) models
The high R2 values of predicted activity for SVM, MLR,
and Bayesian network indicate that the predicted activity
of any chosen compound is probably similar to its ob-
served activity. The SVM values for 5-hydroxy-L-trypto-
phan, merresectine C, bufotenine, and the control were
4.629, 4.694, 4.783 and 4.871, respectively. The MLR
values were 5.837, 4.194, 4.812, and 5.710, respectively.
The BNT values were 3.990, 5.742, 4.090, and 4.331,
respectively. Integrating the results of these predictive
models, the MLR value of 5-hydroxy-L-tryptophan was
higher than that of the control. The BNT value of mer-
resectine C was higher than that of the control. There-
fore, 5-hydroxy-L-tryptophan and merresectine C might
have better biological activities than that of the control.

Molecular dynamics (MD) simulation
Merresectine C and bufotenine had lower values for pro-
tein RMSD, MSD, and the distance of the gravity center
compared with the control. The total energy result was
consistent with that of protein RMSD, gyrate, and MSD.



Figure 11 Root mean square fluctuation (RMSF). (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.
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Therefore, the binding stability of merresectine C and
bufotenine are probably better than that of the control,
and they could bind with tyrosinase successfully and
stably.
There were no similar RMSF values among 5-hydroxy-

L-tryptophan, merresectine C, bufotenine, and the con-
trol. This finding was consistent with that of the cluster
analysis, which showed different groups of representative
structure for the top three candidates and the control.
This finding implies that the dynamic condition of
tyrosinase bound with each ligand was different. The
principle component analysis yielded a similar finding.
However, all ligands could induce changes in structure
of tyrosinase. Binding of each of the top three candidates



Figure 12 Cluster analysis. (A) 5-Hydroxy-L-tryptophan (−cutoff 0.14 nm), (B) Merresectine C (−cutoff 0.14 nm), (C) Bufotenine, (−cutoff 0.16 nm),
and (D) Arbutin (−cutoff 0.153 nm).
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and the control resulted in large changes from residue
50 to 150 in DSSP figures. There were no apparent dif-
ferences between the top three candidates and the con-
trol in the matrices of smallest residue distances. To find
the individual residue or conformational changes, we
Figure 13 The distance of the gravity center between the ligand and tyro
conducted RMSF, cluster analysis, database of secondary
structure assignment (DSSP), and the matrices of smal-
lest distance of residues. Although the RMSF and cluster
analysis patterns were different, the appearance of DSSP
and the smallest distance of residues were similar.
sinase protein.



Figure 14 Database of secondary structure assignment (DSSP). (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.

Figure 15 Matrices of smallest distancce of residues. (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.
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Figure 16 Principal component analysis (PCA). (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.

Figure 17 Eigenvalues of PC1 and PC2. (A) 5-Hydroxy-L-tryptophan, (B) Merresectine C, (C) Bufotenine, and (D) Arbutin.
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Figure 18 3D simulation of ligand pathway. (A) 5-Hydroxy-L-tryptophan (9 pathways), (B) Merresectine C (3 pathways), (C) Bufotenine(7 pathways),
and (D) Arbutin(4 pathways).

Figure 19 Overall filtering and verifying process.
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Therefore, the three candidates could induce similar
changes in tyrosinase structure, similar to the control,
despite the different changes in individual residues. All
the ligands could therefore potentially inhibit tyrosinase
activity.
According to the docking results, QSAR models, and

MD simulation, merresectine C is the best potential lead
compound for future development of a novel tyrosinase
inhibitor (Figure 19).
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