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Summary
In Drosophila melanogaster, combinatorial activities of four

death genes, head involution defective (hid), reaper (rpr), grim,

and sickle (skl), have been known to play crucial roles in the

developmentally regulated programmed cell death (PCD) of

various tissues. However, different expression patterns of the

death genes also suggest distinct functions played by each.

During early metamorphosis, a great number of larval

neurons unfit for adult life style are removed by PCD.

Among them are eight pairs of corazonin-expressing larval

peptidergic neurons in the ventral nerve cord (vCrz). To

reveal death genes responsible for the PCD of vCrz neurons,

we examined extant and recently available mutations as well

as RNA interference that disrupt functions of single or

multiple death genes. We found grim as a chief proapoptotic

gene and skl and rpr as minor ones. The function of grim is

also required for PCD of the mitotic sibling cells of the

vCrz neuronal precursors (EW3-sib) during embryonic

neurogenesis. An intergenic region between grim and rpr,

which, it has been suggested, may enhance expression of three

death genes in embryonic neuroblasts, appears to play a role

for the vCrz PCD, but not for the EW3-sib cell death. The

death of vCrz neurons and EW3-sib is triggered by ecdysone

and the Notch signaling pathway, respectively, suggesting

distinct regulatory mechanisms of grim expression in a cell-

and developmental stage-specific manner.

� 2013. Published by The Company of Biologists Ltd. This is

an Open Access article distributed under the terms of the

Creative Commons Attribution Non-Commercial Share Alike

License (http://creativecommons.org/licenses/by-nc-sa/3.0).
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Introduction
Genetic dissection of programmed cell death (PCD) was first
performed in C. elegans, in which a defined number of cells (131
out of 1090 cells) were revealed to undergo developmentally

controlled death (Ellis and Horvitz, 1986). These studies
identified several apoptosis regulators, whose interactions
established a molecular paradigm that is more or less
conserved in diverse animals (Danial and Korsmeyer, 2004).

Extensive genetic and biochemical analyses of the PCD including
this species and other genetic model systems such as fruit fly and
mouse have identified more components that are responsible for

the survival or death of cells (Fraser et al., 1999; Hay et al., 2004;
Kornbluth and White, 2005; Steller, 2008; Fuchs and Steller,
2011).

Highly conserved key apoptotic factors are caspases that act as
ultimate executioners of PCD (Hay and Guo, 2006). Activation
status of the caspases is determined by the balance between

proapoptotic and antiapoptotic factors. In mammalian cells,
caspases are activated by cytochrome c (intrinsic pathway) or
activation of death receptors (extrinsic pathway). In Drosophila,

BIR-domain containing antiapoptotic protein, inhibitor of

apoptosis protein 1 (DIAP1) is a key suppressor of the

caspases, thereby promoting cell survival. Paradoxically,
however, basal caspase activity is required to cleave and thus

activate DIAP1, which in turn inhibits caspase activity levels,

resulting in the oscillatory maintenance of the caspase activities

below the threshold level (Ditzel et al., 2008). In a cell fated to
die, death-promoting factors accumulate and regulate negatively

DIAP1, thereby releasing caspases to be activated.

The best-characterized death promoters in D. melanogaster are

reaper (rpr), head involution defective (hid), grim, and sickle

(skl) (Grether et al., 1995; White et al., 1996; Chen et al., 1996;
Christich et al., 2002; Srinivasula et al., 2002; Wing et al., 2002).

A mammalian homolog of the fly proteins is SMAC/DIAPBLO

(Du et al., 2000; Verhagen et al., 2000). The death gene products
antagonize DIAP1 through at least two mechanisms: competitive

displacement of DIAP1 from its complex with caspases and

degradation of DIAP1 (reviewed by Cashio et al., 2005). Three of
them, rpr, hid, and grim, collectively have been referred to as

RHG, are clustered within a small chromosomal region that is
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defined by Df(3L)H99 (referred to as H99) (White et al., 1994).
The more recently identified skl is located near rpr but just

outside the H99. Embryos homozygous for H99 are entirely
devoid of apoptotic cells, suggesting that most, if not all, aspects
of embryonic PCD require the activity of the RHG genes. Of
interest, it is often found that multiple death genes act in a

cooperative or overlapping manner to promote PCD perhaps to
prevent inadvertent cell death due to accidental activation of a
single death gene (e.g. Sandu et al., 2010). However, spatial and

temporal expression patterns of individual death genes are not
identical, suggesting distinct in vivo functions played by each
gene.

PCD, as part of normal animal development, involves
sculpturing structures or segmental boundaries during
embryonic morphogenesis, or deleting entire structures that are
required temporarily for a certain life stage (Fuchs and Steller,

2011). PCD in the central nervous system (CNS) is essential for
the establishment of both juvenile and adult CNS (Truman et al.,
1994; Ishizuya-Oka et al., 2010). During embryonic CNS

development, PCD plays a key role for the removal of
superfluously generated neuronal/glial precursors and post-
mitotic neurons (Hidalgo and ffrench-Constant, 2003; Yeo and

Gautier, 2004). Besides, embryonic neuroblasts (NBs), pioneer
neurons, and midline glial cells are known to undergo apoptosis
once they have no further functions after the embryonic neural

network is established (Sonnenfeld and Jacobs, 1995; Zhou et al.,
1997; Miguel-Aliaga et al., 2008; Tan et al., 2011).

PCD of obsolete cells in the juvenile CNS is also a key event to
sculpt adult CNS. In insects, neural apoptosis takes place mainly

in two distinct developmental periods: the first one during
metamorphosis and the second one shortly after adult emergence
(Kimura and Truman, 1990; Truman, 1990; Robinow et al., 1993;

Awad and Truman, 1997; Draizen et al., 1999; Brodsky et al.,
2000; Choi et al., 2006; Tan et al., 2011; Winbush and Weeks,
2011). In addition to the terminally differentiated neurons,

postembryonic NBs that continue to produce neuronal precursor
cells during larval growth are also removed after they establish
lineages of adult-specific neurons (Bello et al., 2003; Tan et al.,
2011). Formation of sexually dimorphic CNS is partly due to the

sex-specific apoptosis of certain neurons during late pupal
development (Kimura et al., 2005). Dysregulation of apoptosis
results in structural deformities as well as functional aberration of

the CNS, which accentuates the importance of PCD for the CNS
development (Kuida et al., 1998; Tan et al., 2011).

Despite the aforementioned studies, it is not well understood

the molecular mechanisms of the PCD in a post-embryonic CNS.
Peptidergic neurons producing corazonin (Crz) provide a unique
opportunity to investigate PCD mechanisms in two different
stages of Drosophila CNS development. We previously reported

that a subset of larval Crz neurons in the ventral nerve cord (for
short, vCrz neurons) are eliminated during early prepupal CNS
development, and that a pair of dorso-medial Crz neurons in the

protocerebrum during late pupal development (Choi et al., 2005;
Choi et al., 2006; Lee et al., 2008; Lee et al., 2011). The vCrz
neurons are terminally differentiated from their precursor cells

(EW3), which are originally derived from the NB7-3 lineage
during embryonic development. Mitotic sibling cells of the EW3
(EW3-sib) die of apoptosis in the developing embryos; if they

survive, they also differentiate into Crz-producing neurons
(Novotny et al., 2002; Lundell et al., 2003; Karcavich and Doe,
2005; this study).

To elucidate cell death mechanisms of the vCrz neurons and

EW3-sib cells during metamorphosis and embryogenesis,

respectively, we performed comprehensive genetic analyses

employing combinations of extant deficiencies deleting

multiple death genes, mutations specific to a single death

gene and RNA interference. We identified grim as a major

death gene for the PCD of both vCrz neurons and EW3-sib

cells. An intergenic region between rpr and grim that was

recently reported to be important for enhancing expression of

grim, rpr, and skl in embryonic NBs (Tan et al., 2011), is also

necessary for the vCrz neurons but dispensable for the EW3-sib

cell death.

Materials and Methods
Fly strains
Flies were maintained at 25 C̊ in food vials containing cornmeal, agar, yeast flakes,

dextrose and methyl paraben. Canton-S was used as a wild type and yellow white (y

w) or w1118 as genetic controls. The following deficiency stocks were used as trans-
allelic combinations with other mutations: Df(3L)X14, Df(3L)H99, Df(3L)X25,

Df(3L)XR38, Df(3L)ED225, DMM2, and DMM3, for short, X14, H99, X25, XR38,

ED225, MM2 and MM3, respectively (for a brief map of the deletion intervals, see

Fig. 2) (Peterson et al., 2002; Wu et al., 2010; Tan et al., 2011). grimA6C (Wu et al.,

2010) and rpr87 (Moon et al., 2008) were used as null alleles. Another putative grim

mutant (grimMI03811) was obtained from the Bloomington Stock Center (stock no.

36978). UAS transgenic lines bearing miRNA-based short hairpin constructs (UAS-

mirpr, UAS-migrim, UAS-miskl, UAS-miRGH, and UAS-mihid) were generated
(Chen et al., 2007). Target sequences for each miRNA construct are: rpr,

GAAGAAAGATAAACCAACAATG; hid, TAAGATATATGCCGATCTAAAC;

grim, TCATCCTGGTGGAGAGAAAATC; skl, TAAAGGCCACCGTTCAAA-

TACA.

The UAS lines were crossed to a Crz-gal4 driver to knockdown cell death genes
in the Crz neurons (Choi et al., 2008). For transgenic manipulations in the

precursors of vCrz neurons, engrailed (en)-gal4, eagle (eg)-gal4, UAS-NICD, and

UAS-p35 were used (Hay et al., 1994; Lundell et al., 2003). GMR-gal4 (Freeman,

1996), combined each with GMR-rpr, GMR-hid, or GMR-grim, was used to

examine specificity of RNA interference in the compound eyes. The following

alleles were used for studying maternal effect of caspases, droncI24 and dron51

(Chew et al., 2004; Xu et al., 2005): darkCD4 and dark82 (Rodriguez et al., 1999;

Akdemir et al., 2006); dark1 and dark2 (Mills et al., 2006); dcp-1Prev1, iceD1, and

dcp-1Prev1; iceD1 double mutant (Laundrie et al., 2003; Muro et al., 2006); a triple
mutation of three initiator caspases, dreddB118; strica4; droncI24 (Baum et al.,

2007).

Generation of skl null mutations
Mobilization of a P-element, P{wHy}DG39210 carrying w+ y+ markers

(Bloomington stock no. 21776), which is located 86-bp upstream of the skl locus,

was performed. For convenience, we will refer to this allele as sklP. To induce P-
element excision, sklP homozygous females were crossed to y w;; D2-3, Ki (a

genomic source of the P-element transposase) (Robertson et al., 1988). The male

progeny was then individually crossed to y w;; Ly/TM6C Sb Tb virgins. From each

crossing, two male offspring with yellow body color over the TM6C balancer were

further crossed to three y w; Ly/TM6C virgin females. A total of 280 independent

lines was generated and screened for putative skl-deletion mutants by PCR using

genomic DNA purified from eight homozygous pupae from each excision line. First

round of PCR used primers specific to the skl open reading frame (ORF) (f2 primer,
2GAGCGACTCAAATATGGCCATTCC; r1 primer, GGAGCCTTAGTTGGTG-

CTTAAGTTG). The lines that did not yield PCR product were further analyzed by

PCR (skl5p, GTGTGTACGTGACCTTGTCATCGA; r2, TGCACTGGGCCG-

ACCACCTACGAG) to detect deletion between 2-kb upstream and 39 UTR. PCR

products shorter than those expected from wild type were sequenced to define

deletion breakpoints.

Immunohistochemistry
Newly formed white prepupae were collected and aged on wet filter paper in a

Petri dish at 25 C̊. Whole-mount Crz-immunohistochemistry was performed as

described in great detail (Lee et al., 2011). The primary antibodies were detected

by TRITC-conjugated secondary antibodies (Jackson ImmunoResearch) at 1:200

dilution. The samples were cleared and mounted in a medium containing 80%

glycerol, 0.1 M sodium phosphate buffer (pH 7.4), and 2% n-propyl galate. The

fluorescent signals were viewed by Olympus BX61 microscope equipped with

CC12 camera and images were obtained by Olympus Microsuite software, analysis
3.1 version (Soft Imaging System).
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TUNEL assay
Fragmented DNA in the nuclei of dying neurons was detected by using a
commercial kit (Deadend Fluorometric TUNEL system, Promega), as described
previously (Lee et al., 2011). For double-labeling, the tissues processed for the
TUNEL signals were incubated with mouse monoclonal anti-REPO (1/10 dilution)
(Developmental Studies Hybridoma Bank) at 4 C̊ overnight, followed by steps
described for Crz-immunohistochemistry.

Results
Dispensable rpr and hid functions

Previously we showed that vCrz neurons start to display apoptotic
signs and caspase activities at 1 hour after puparium formation
(APF) and they are removed completely by 6–7 hours APF

(Fig. 1A–I) (Lee et al., 2011). In a trans-allelic XR38/H99

combination, which deletes the rpr locus (Fig. 2) (Peterson et al.,
2002), about 80% of vCrz neurons survived at 7 hours APF and they
persisted into adulthood (Fig. 1J,K), suggesting that their death is

strongly blocked. The results have led us to assume that rpr is
essential for developmentally regulated PCD of vCrz neurons.
However, in addition to rpr, XR38/H99 removes one copy of each of

the three other death genes (Fig. 2). Thus an alternative explanation
is that strong PCD defect in XR38/H99 is a combined effect of the
lack of rpr and a half dose of three other proapoptotic genes.

To test whether vCrz PCD requires multiple cell death genes,
first we attempted to confirm the role of rpr only by using an rpr-
specific deletion mutation (rpr87) (Moon et al., 2008). Surprisingly,

all vCrz neurons carried out timely death that was not different
from wild-type one (Fig. 1L). However, rpr87/H99 and rpr87/XR38

mutants displayed mild PCD defects at 7 hours APF, the results that

were similar to those observed with heterozygous controls, H99/+
and XR38/+, respectively (Fig. 1M–P; Table 1). Since the lack of
rpr did not exacerbate PCD defect in the heterozygous backgrounds
for H99 and XR38, rpr seemed to be mostly dispensable. This result

made us disclaim our previous notion on rpr’s essential role for
PCD of vCrz neurons.

Next we examined hid’s function in hid05014 homozygous and

hid05014/X14 hemizygous mutants. Both mutations did not exert
any noticeable effect on normal course of vCrz PCD. Mild PCD

defect in hid05014/H99 was also comparable to that in H99/+

(Table 1). Based on these results, we concluded that PCD

deficiency in XR38/H99 flies is not due to the lack of rpr and hid

but likely due to the reduction of grim and/or skl functions.

To gain evidence for skl’s role, we compared PCD phenotype

between hid05014/H99 and hid05014/ED225. A major difference

between the two combinations is that the latter is heterozygous for

the skl locus. Interestingly hid05014/ED225 yielded survival of more

vCrz neurons than did hid05014/H99 (Table 1). Although the

difference between the two genotypes is modest (unpaired t-test: p-

value50.09), similar levels of difference with greater significance

were observed between H99/+ and ED225/+ (p-value50.001) as well

as between rpr87/H99 and rpr87/ED225 (p-value50.048) (Table 1),

supporting a role for skl in the PCD of vCrz neurons.

RNA-interference of cell death genes

To investigate the cell-autonomous role of each death gene, we

employed RNA interference (RNAi) to knockdown each death

Fig. 1. Time course of vCrz neuronal PCD and its defect in rpr mutants. The neurons were detected by Crz-immunohistochemistry. (A) Wild-type larval Crz
neurons. Two groups of neurons locate in the brain (Br), and another group of 16 vCrz neurons in the ventral nerve cord (VNC). (B–I) Progressive elimination of

the vCrz neurons in wild type. Removal of vCrz neurons is complete by 7 hours APF but overt apoptotic signs are noticeable around 2–3 hours APF.
(J,K) Survival of the vCrz neurons in XR38/H99 mutants at 7 hours APF (J) and in a 7-day-old adult (K). White arrowheads indicate surviving vCrz neurons.
(L) Normal PCD in rpr87/87 at 7 hours APF. (M–P) Mild PCD defect at 7 hours APF in rpr87/H99 and rpr87/XR38 is comparable to H99/+ and XR38/+,
respectively. See also Table 1 for quantitative data. Scale bars: 100 mm.

Fig. 2. Physical map of various deficiencies uncovering death genes. Black
lines indicate approximately deleted area. Diamond-ends indicate defined
breakpoints while arrow-ends signify breakpoints beyond this chromosomal
region. A green bar, an overlapping region between MM3 and XR38, designates
NBRR site. Mutations specific to each death gene are in red. P-element
insertion of hid05014 allele is shown by a triangle.
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gene within the Crz neurons. For this, we generated transgenic

sympUAS lines for hid, grim, and rpr, in which sense and

antisense RNAs are produced simultaneously from the flanking

UAS promoters, yielding double-stranded RNAs (Giordano et al.,

2002). Although these lines were able to rescue small eye

phenotypes induced by ectopic expression of each death gene, we

found significant cross-interference among them (supplementary

material Fig. S1) (see also Y.-J. Choi, Developmental and

neurogenetic studies on the peptidergic nerve system in

Drosophila, PhD thesis, University of Tennessee, 2006).

Since microRNAs (miRNA)-based gene silencing has minimal

cross-interference and more efficient knockdown effect (Chen et

al., 2007; Haley et al., 2010; Ni et al., 2011), we employed this

system. In the compound eyes, mi-grim and mi-rpr showed a

complete rescue of GMR-grim and GMR-rpr-induced cell death,

respectively, and these lines did not display cross-interference

(Fig. 3A).

Intriguingly, expression of mi-grim directed by a single copy

of Crz-gal4 effectively blocked PCD of all vCrz neurons at

7 hours APF, while mi-skl expression did it partially when two

copies of the Crz-gal4 driver were used (Fig. 3B). Consistent

with our genetic data, mi-rpr and mi-hid did not show any anti-

PCD effect even with two copies of the Crz-gal4 transgene

(Fig. 3B). Together, these data strongly support grim and skl as

important cell death genes for PCD of vCrz neurons.

A minor role of skl

To further define the extent of skl’s proapoptotic role, skl-null

mutations were generated by P-element mobilization, as

described in Materials and Methods. Out of 280 excision lines,

four lines (named skle1–e4, respectively) were identified to be null

alleles lacking the entire ORF and its 59 flanking region

(Fig. 4A). All homozygous mutants are viable and fertile

without any noticeable deficit in morphology, development,

Table 1. PCD of vCrz neurons in various dosages of the cell death genes at two developmental time points.

gene dosage vCrz neurons

genotype hid grim rpr skl 7 h APF 16 h APF

wild type 2 2 2 2 0.060.0 (32) 0 (6)
XR38/+ 2 2 1 1 2.261.6 (13) 0 (3)
H99/+ 1 1 1 2 6.762.1 (11)
XR38/X25 1 1 1 1 15.261.0 (6) 10.761.2 (3)
ED225/+ .1 1 1 1 9.661.9 (15)
rpr
rpr87/rpr87 2 2 0 2 0.060.0 (7)
rpr87/XR38 2 2 0 1 1.761.5 (7) 0 (5)
rpr87/H99 1 1 0 2 6.363.3 (10) 0 (2)
rpr87/ED225 .1 1 0 1 8.962.3 (11)
XR38/H99 1 1 0 1 14.361.0 (6) 14.360.6 (3)
hid
hid05014 0 2 2 2 0.060.0 (7)
hid05014/X14 0 2 2 2 0.060.0 (5)
hid05014/H99 0 1 1 2 6.062.8 (8) 0 (2)
hid05014/ED225 .1 1 1 1 9.062.2 (4) 0 (2)
rpr and skl
XR38/ED225 .1 1 0 0 15.360.5 (4) 15 (1)
grim
X25/H99 0 0 1 2 nd
X25/ED225 1 0 1 1 nd

Numbers indicate surviving vCrz neurons per VNC (mean6s.d.).
(n): number of specimen examined in each genotype.
nd: not determined due to lethality.

Fig. 3. miRNA-induced interference of death genes. (A) In the compound
eyes mi-rpr and mi-grim rescued eye defect caused by GMR-rpr and GMR-

grim expression, respectively. Expression of mi-RGH showed effective rescue
against GMR-hid and GMR-grim expression but moderately against GMR-rpr

expression. In contrast, mi-hid was ineffective in rescuing hid-induced cell
death, perhaps because of the positional effect that might interfere with mi-

hid expression. The miRNA shows minimal or no cross-interference with non-
cognate death genes. (B) The numbers of surviving vCrz neurons
(mean6s.d.) due to miRNA expression at 7 hours and 16 hours APF.
Numbers of specimens examined are indicated in parentheses. Expression of

miRNA was driven by one (16) or two copies (26) of the Crz-gal4 transgene.
mi-grim and mi-skl caused strong and mild PCD defect in a dose dependent
manner, respectively. However, mi-hid and mi-rpr did not interfere with
normal PCD. Expression of mi-RGH showed stronger PCD defect than did
mi-grim at 16 hours APF.
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and reproduction, suggesting that skl functions redundantly with

other death gene(s) or is mostly dispensable. The lack of apparent

phenotypes is consistent with skl mutants independently isolated

by another group (Tan et al., 2011).

The skl homozygous mutants showed mild PCD defect,

leaving 3–4 vCrz neurons at 7 hours APF (Fig. 4B–D). Thus,

both genetic knockout and transgenic knockdown data confirm

that skl plays at least a minor role in vCrz neuronal death.

Essential role of grim

Since our foregoing data with mi-grim expression showed the

strongest cell death defect, we attempted to gain supporting

evidence for the grim’s proapoptotic roles. We employed a

recently characterized grim-null allele (grimA6C), which was

generated by FRT-mediated recombination (Wu et al., 2010).

Consistent with mi-grim data, all of the vCrz neurons survived

and appeared normal in the grimA6C/A6C at 7 hours APF (n58)

(Fig. 5A). Comparable PCD defect was also observed in various

grim hemizygous combinations (Fig. 5B–D).

Unexpectedly, we also observed extra Crz-immunoreactive (ir)

neurons located laterally to the vCrz neurons (Fig. 5A; Table 3).

These ectopic Crz-ir neurons, henceforth referred to as vCrz-sib,

are most likely derived from their surviving progenitors

(EW3-sib) that normally undergo apoptosis during

embryogenesis (Novotny et al., 2002; Lundell et al., 2003). We

will address this issue later.

We characterized another putative grim mutant stock

(grimMI03811/TM3, Sb) in which a MiMIC transposable element

disrupts the grim open reading frame (Venken et al., 2011). Unlike

grimA6C allele, no homozygous adult flies were found in this stock.

After we changed the balancer from TM3 to TM6B, Tb, Hu, we

found that homozygotes died mostly as third instar larvae. A small

fraction of larvae became puparia, but they did not develop any

further. However, trans-heterozygous grimA6C/MI03811 developed

into adults as observed with grimA6C homozygotes, suggesting that

the larval lethality of the grimMI03811 be associated with a genetic

background unrelated to grim.

In the larval CNS of grimMI03811 homozygotes and grimA6C/MI03811,

all vCrz neurons and a few ectopic vCrz-sib neurons were detected

(Fig. 5E,F; see also Table 3). At 7 hours APF, PCD of vCrz

neurons was blocked completely in grimA6C/MI03811 mutant

(Fig. 5G), as was found in grimA6C mutant. Taking these results

together provides a compelling evidence for the grim as a principal

death inducer in the vCrz neurons during metamorphosis.

grim requires skl as a supporting proapoptotic factor

Although vCrz neurons continued to survive in grimA6C

homozygous mutants at 7 hours APF (Fig. 5A), we detected

only an average of six Crz-ir neurons at 16 hours APF (Fig. 5Ai)

and occasionally one or two such neurons in 3-day-old adult CNS

(n55) (data not shown). These results from our novel time-

course experiment clearly indicate that slow but progressive cell

death still takes place even in the absence of grim function. Such

delayed PCD could be due to activities of other cell death genes.

In support of this prediction, grimA6C/H99 or grimA6C/ED225

showed more pronounced PCD defect at 16 hours APF than did

grimA6C/A6C or grimA6C/X25 (Fig. 5Bi–Di). Because our

foregoing results indicated skl’s minor role in the vCrz

Fig. 4. Neuronal PCD in skl mutants. (A) A diagram showing break points of
the four skl mutant alleles. Two PCR primers (f2 and r1) were used to screen
the excision lines bearing putative deletion of skl ORF. Primers (f3 and r2) were
used to determine break points. Numbers indicate positions of the break points
relative to the transcription start site (+1). White triangles in skle2 and skle4

indicate additional sequences found in these alleles, and a gray one in skle2, a

deletion of three nucleotides. (B) Mild PCD defect displayed by skl mutant
alleles at 7 hours APF. (C,D) Representative images of surviving vCrz neurons
in homozygous sklP and skle1 alleles. Scale bar: 100 mm.

Fig. 5. Essential role played by grim for PCD of vCrz neurons. Significant
blocking of vCrz neuronal cell death was observed in indicated genotypes at
7 hours (A–D) and 16 hours APF (Ai–Di). Asterisks indicate ectopic Crz-ir
(vCrz-sib) neurons that are derived from their precursor (EW3-sib) cells. (E)
Crz-ir neurons in grimMI03811 homozygous larva. (F,G) Crz-ir neurons in
grimMI03811/A6C trans-heterozygous larva (F) and 7-hour-old puparium (G).

Scale bars: 100 mm.
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neuronal death, we speculate that the delayed death of vCrz

neurons in the absence of grim is likely caused by skl’s activity.

grim is a death inducer of other larval neurons

Since vCrz neurons represent only a subset of larval neurons

dying during metamorphosis, we extended our investigation to

see if grim is required for PCD of other doomed larval neurons.

We performed TUNEL assay with wild-type and grimA6C

homozygous CNSs dissected from 6–8 hours APF, a period

that we previously observed most abundant TUNEL signals (Lee

et al., 2011). We detected 308622 TUNEL-positive cells in the

wild-type VNC (n53) (Fig. 6A,B). Most of them were negative

for REPO-immunoreactivity, a pan-glial marker (n55) (data not

shown), implying that these dying cells are neurons. In grimA6C

homozygotes, TUNEL signals were reduced to 130612 cells

(n53) (Fig. 6C,D). These results indicate that grim is also

important for PCD of many other types of larval neurons during

prepupal development.

Mysteries of XR38/H99

As shown earlier, XR38/H99 CNS has ,14 vCrz neurons (instead

of the expected 16), surviving at 7 hours APF, and all of them

continue to survive into adulthood (Table 1; Fig. 1K). Two

questions arose from this observation. First, why are 2–3 vCrz

neurons undetectable in this genetic background although PCD is

strongly compromised? Close examination of the missing vCrz

neurons revealed that they are invariably lacking in the 6th

abdominal (A6) neuromere (n525) (Fig. 7C,D) and less

frequently in the A5 neuromere (Fig. 7D). A simple

explanation for this is that these posterior vCrz neurons

undergo PCD in this genetic background during

metamorphosis. Surprisingly, however, similarly missing

neurons were observed in the 3rd instar larvae (n516)

(Fig. 7E,F) and even in the first instar larvae (n53) (data not

shown) with 100% penetrance. Thus, the lack of A5 and A6 vCrz

neurons in early larva-hood is likely due to defective embryonic

neurogenesis. The molecular basis for this is unknown.

The second question is ‘why does XR38/H99 show more

severe PCD defect than grimA6C homozygous mutation alone

does, despite the presence of one copy of wild-type grim allele in

XR38/H99?’. Because two main death inducers of vCrz neurons

are grim and skl, PCD phenotype of the XR38/H99 should be

comparable to that of flies heterozygous for grimA6C and skle1

(grimA6C/skle1). It wasn’t, however, as the PCD took place almost

normally in the latter genotypes (Table 2).

Related to the aforementioned question, another puzzling

result was made from X25/XR38 combination. This is comparable

to those of ED225/+ and rpr87/ED225 with respect to a dosage of

cell death genes (Fig. 2). Surprisingly, however, X25/XR38 had

all 16 vCrz neurons remained at 7 hours APF, while ED225/+ or

rpr87/ED225 did only 9–10 neurons (Fig. 7G; Table 1).

Furthermore, the PCD phenotype of X25/XR38 was very

similar to that of grimA6C/XR38 (Fig. 7H). From these

observations we suspected that the grim gene in the XR38

chromosome is functionally abnormal or subnormal. To address

this question, we amplified XR38-grim gene (grimXR38) from

X25/XR38 genomic DNA by PCR; as such grim sequence was

derived exclusively from the XR38 chromosome. As a result, we

found two mutations within the grim ORF, resulting in the

following substitutions: proline 29 to arginine (P29R) and

arginine 53 to glutamine (R53Q) (Fig. 7I). P29R was also

reported by Tan et al. (Tan et al., 2011), but the latter one was

novel. R53Q is in the Gln-rich domain, which was shown to be

important for Grim’s full proapoptotic function in the cell-based

assay (Wu et al., 2010). This result raises the possibility that

grimXR38 is a hypomorphic allele. This result can also explain

Table 2. PCD of vCrz neurons in grim and NBRR mutations.

gene dosage vCrz neurons

genotype grim NBRR rpr skl 7 h APF 16 h APF

grim
grimA6C/+ 1 2 2 2 0 (7)
grimA6C/X14 1 2 2 2 0 (10)
grimA6C/rpr87 1 2 1 2 0 (11)
grimA6C/skle1 1 1 2 1 362.4 (9) 0 (7)
*grimA6C/A6C 0 2 2 2 1660 (8) 560.8 (4)
*grimA6C/X25 0 2 2 2 1660 (9) 7.361.2 (3)
*grimA6C/H99 0 1 1 2 1660 (11) 1660 (4)
*grimA6C/XR38 1 1 1 1 15.260.8 (9) 8.262.8 (5)
*grimA6C/ED225 0 1 1 1 1660.0 (12) 1660 (2)

NBRR
MM2/+ 1 1 1 2 6.263.3 (11) 1.361.1 (7)
*MM2/grimA6C 0 0 1 2 1660.0 (6) 1660.0 (4)
*MM2/XR38 1 0 0 1 13.662.2 (8) 12.662.5 (10)
*MM2/X25 0 1 1 2 1660.0 (7) 16 (3)
*MM2/H99 0 0 0 2 1660.0 (7) 16 (3)
MM2/MM3 1 0 1 2 1361.4 (3) 4.563.5 (3)
MM3/+ 2 1 2 2 0 (9)
MM3/MM3 2 0 2 2 9.560.8 (3) 6 (1)
MM3/XR38 1 0 1 1 5.862.9 (5) 0 (5)
MM3/grimA6C 1 1 2 2 12.262.0 (3) 1.460.9 (5)
MM3/X25 1 1 2 2 10.861.9 (4) 1.761.5 (3)
MM3/H99 1 0 1 2 11.861.6 (10) 7.963.5 (7)

Numbers indicate surviving vCrz neurons per VNC (mean6s.d.).
(n): number of specimen examined in each genotype.
*Extra Crz-immunoreactive neurons (i.e. vCrz-sib) were detected in these genotypes, but only vCrz neurons were counted.
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why both X25/XR38 and grimA6C/XR38 displayed stronger PCD

defect than did ED225/+.

Despite considering hypomorphic grimXR38, it is not still fully

understood why PCD defect of XR38/H99 is greater than that of

grimA6C/XR38 at 16 hours APF. For instance, nearly 50% of vCrz

neurons died in grimA6C/XR38 at 16 hours APF, while all vCrz

neurons in XR38/H99 persisted to adult stage (Tables 1, 2). Such

a discrepancy led us to speculate additional genetic element

missing in the XR38/H99 background.

Role of the neuroblast regulatory region (NBRR) in the PCD of

vCrz neurons

Recently an intergenic region between the rpr and grim loci,

termed the neuroblast regulatory region (NBRR), was proposed

to be a remote enhancer for the optimal expression of rpr, grim,

and skl in the embryonic NBs (Tan et al., 2011) (Fig. 2). This

prompted us to examine whether or not the NBRR is important for

vCrz neuronal death.

Of note, homozygous MM3 prepupae lacking the NBRR

contained 9–10 vCrz neurons detectable at 7 hours APF

(Fig. 8A) and 1–2 at 16 hours APF (Fig. 8Ai), while MM3/+

showed none (Fig. 8D). This result could support the regulatory

role of NBRR, as was proposed for the NB death. However, it is

more complicated than that because the MM3 chromosome also

carries a grim mutation bearing an in-frame deletion of six amino

acid residues (52nd–57th) within the Gln-rich domain of grim

ORF (we confirmed this result with a slight difference, deletion

of the 51st–57th residues) (Fig. 7I). The MM3-grim (hereafter

grimMM3) was shown to have a subnormal proapoptotic activity

as determined by a cell-based assay (Wu et al., 2010). Thus the

hypomorphic property of the grimMM3 allele could be a cause of

the partial PCD defect seen in MM3 homozygotes. Consistent

with this notion, slightly more vCrz neurons survived in MM3/

grimA6C and MM3/X25 than in MM3/MM3 (Fig. 8B,C; Table 2).

Therefore, the results from MM3 alone are not sufficient to

support the regulatory role of the NBRR for the expression of

proapoptotic genes within the vCrz neurons.

We looked into another deficiency, MM2 carrying a deletion

from grim to rpr locus (Fig. 2). MM2 heterozygote flies (grim+/2,

Table 3. PCD of EW3-sib cells, as determined by vCrz-sib

neurons in the larval CNS.

genotype EW3-sib cells (n)

grimA6C/+ 060 (15)
grimA6C/A6C 10.862.0 (10)
grimA6C/X25 9.861.4 (13)
grimA6C/MM3 261.4 (5)
grimA6C/MM2 9.561.8 (8)
grimA6C/XR38 0.660.7 (11)
grimA6C/H99 9.360.6 (3)
grimA6C/ED225 8.861.5
grimMI/MI 3.661.1 (5)
grimA6C/MI 6.862.6 (5)
grimL/L, rpr87/87 11.062.9 (11)
grimL/+, rpr87/+ 0.260.6 (14)
MM2/+ 060 (8)
X25/MM2 1061.3 (8)
MM2/XR38 0.560.6 (6)
XR38/H99 0.460.8 (18)

Numbers indicate surviving EW3-sib cells per VNC (mean6s.d.).
(n): number of specimen examined in each genotype.

Fig. 6. Reduced TUNEL signals in the grim mutant. (A,B) Abundant
TUNEL signals are seen in the abdominal ganglia from both ventral and dorsal
sides of wild type at 7 hours APF. (C,D) Significant reduction of the signals in
grimA6C/A6C. Scale bar: 100 mm.

Fig. 7. Absence of vCrz neurons in the 5th–6th abdominal neuromeres

(A5 and A6) in XR38/H99. (A) A diagram illustrating the position of vCrz
neurons in each neuromere of a wild-type larval VNC (T, thoracic; A,
abdominal). (B) Wild-type vCrz neurons. (C,D) XR38/H99 prepupal VNC at

7 hours APF lacks 2 or 3 vCrz neurons in the A5 and A6 neuromeres, as
indicted by red arrowheads. (E,F) XR38/H99 larva lacking the same vCrz
neurons as in prepupa. (G,H) Most of vCrz neurons survived at 7 hours APF in
X25/XR38 and grimA6C/XR38. (I) DNA sequence of the grimXR38 allele revealed
P29R and R53Q substitutions. Residues in the brackets indicate in-frame
deletion found in grimMM3 allele. GH stands for Grim Helix (Claverı́a et al.,
2002). Scale bar: 100 mm.
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NBRR+/2, rpr+/2) showed PCD defect similar to those of MM3/

grimA6C or MM3/X25 (both grimMM3/2, NBRR+/2) (Fig. 9A,Ai). In

addition, grimA6C/MM2 and X25/MM2 genotypes (both grim2/2,

NBRR+/2, rpr+/2) produced more severe anti-PCD phenotype

particularly at 16 hours APF than did grim-null mutation alone

(Fig. 9B,C,Bi,Ci). These results could be explained by either

synergistic or additive effect by grim and NBRR, in which the latter

might enhance expression of grim, rpr and skl as proposed for the

PCD of embryonic NBs (Tan et al., 2011).

Essential role of grim for embryonic PCD of the precursors of

vCrz-sibling cells

Although a single vCrz neuron exists per hemi-segment from T2

to A6 in the wild-type larval VNC, there are two progenitor cells

in the developing embryonic CNS. Third asymmetric division of

the NB7-3 gives rise to a GMC-3, which divides once to produce

two sister cells, EW3 and EW3-sib; EW3 differentiates

terminally into a vCrz neuron while EW3-sib dies of apoptosis

(Novotny et al., 2002; Lundell et al., 2003). However, the

mechanisms underlying PCD of the EW3-sib are little known.

Since EW3-sib cells, if they survive, also differentiate into

Crz-ir neurons (vCrz-sib), we used the larval vCrz-sib neurons as

a direct indicator of the surviving EW3-sib cells. To our intrigue,

we observed Crz-ir doublets in many hemi-segments of grim

mutants (Fig. 5) and other grim-null genetic combinations

(Figs 9, 10). These results suggest that grim plays an essential

role in the PCD of EW3-sib cells during embryogenesis. To

distinguish maternal versus zygotic role of grim, we compared

Fig. 8. Role of NBRR for PCD of vCrz neurons (A–D). Crz-
immunohistochemistry was done to detect surviving vCrz neurons at 7 hours

APF (upper panels) and 16 hours APF (lower panels) for the indicated
genotypes. Scale bar: 100 mm.

Fig. 9. PCD of vCrz neurons requires both grim and NBRR (A–Di). Crz-
immunohistochemistry was done to detect surviving vCrz neurons at 7 hours
APF (upper panels) and 16 hours APF (lower panels) for the indicated
genotypes. Scale bars: 100 mm.

Fig. 10. Maternal and zygotic effects of grim, dark and caspases for PCD of

EW3-sib cells as determined by the number of ectopic Crz-ir (vCrz-sib)

neurons in the larval VNC. (A,B) grim-null larvae derived from grim

heterozygote (X25/+) and homozygote (grimA6C/A6C) mothers displayed similar

number of vCrz-sib neurons. (C) Expression of p35 by en-gal4 induced survival
of 11 EW3-sib cells. (D) Maternal provision of a half dose of dronc was
sufficient for PCD of all EW3-sib cells. (E) Both zygotic and maternal loss of
dcp-1 did not show extra vCrz neurons. Zygotic loss of drice did not enhance
the survival of EW3-sib cells either. (F–J) Both maternal and zygotic
contributions of dark were required for the PCD of EW3-sib cells. An asterisk
in (H) indicates a vCrz-sib neuron. XX indicates maternal genotype; XY,

paternal genotype; F1, progeny genotype. Numbers of surviving vCrz-sib
neurons were given as mean6s.d. for the number of specimen (n). Scale bar:
100 mm.
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the numbers of vCrz-sib neurons in the grim-null larvae that were
derived from either a X25/+ or grimA6C/A6C females. Regardless
of maternal contribution, mean numbers of surviving cells were
about the same, implying an importance of zygotic grim

expression (Fig. 10A,B). Additional loss or reduction of other
death genes besides grim, such as in a grim, rpr double mutation,
did not increase EW3-sib cell survival (Table 3). These results

strongly suggest that grim is the sole proapoptotic factor for the
lineage-regulated PCD of EW3-sib.

Maternal role of caspases

engrailed (en) is persistently expressed in NB7-3 lineage
(Novotny et al., 2002). When P35, a universal inhibitor of
caspases, was ectopically expressed by an en-gal4 driver, we
found an average of 11 vCrz-sib neurons in late larval CNSs

(Fig. 10C). This result suggests that EW3-sib cells undergo
apoptosis in a caspase-dependent manner. Surprisingly, however,
we did not find any vCrz-sib neurons in dronc-null mutants

(Fig. 10D), double mutants of dcp-1; drice, (Fig. 10E) or triple
initiator mutants of dredd, strica, and dronc (n56) (data not
shown). A likely possibility is that maternally provided caspase

function is sufficient to induce EW3-sib PCD.

As an alternative approach to identify the role of DRONC for

EW3-sib cell death, we investigated DARK, a fly homolog of
vertebrate Apaf1 that is required for DRONC activation (Rodriguez
et al., 1999; Akdemir et al., 2006). Hypomorphic homozygous
darkCD4 mutant larvae derived from its homozygous stock had an

average of two vCrz-sib neurons (Fig. 10F). When zygotic dark

expression was reduced further in a darkCD4/82 combination that was
derived from a crossing between darkCD4/CD4 virgins and dark82/+

males, significantly more vCrz-sib neurons were found (Fig. 10G).
The data support a role for DRONC in the embryonic apoptosis of
EW3-sib cells, since DRONC is activated by DARK.

To understand the maternal effect of dark, we examined PCD
of EW3-sib cells in dark82/CD4 larvae derived from dark82/+

mother. In this mutant, we detected only one or two vCrz-sib
neurons (Fig. 10H), which is in stark contrast to the results of the
darkCD4/82 larvae from darkCD4/CD4 mother (Fig. 10G). The
difference between the two cases is the maternal contribution of

dark products, which is expected to be greater from a dark82/+

female than from a darkCD4/CD4 one.

Further we examined dark1 and dark2 alleles, both of which
are null alleles due to nonsense mutations (Mills et al., 2006).
They produce homozygous larval escapers that die during pupal

development, while dark82 is a deletion mutation and is
homozygous embryonic lethal. Both dark1/1 and dark2/2 larvae
contained consistently more extra vCrz neurons than did dark82/

CD4 larvae, despite similar maternal contribution of dark gene
product in all three cases (compare Fig. 10I,J with Fig. 10H). The
difference is that dark82/CD4 larvae have slightly more zygotic
dark expression compared to none in dark1/1 and dark2/2 larvae,

because of hypomorphic nature of the darkCD4 allele. In
summary, the numbers of surviving vCrz-sib cells are inversely
proportional to combined amounts of dark expression provided

both zygotically and maternally, indicating that dark gene
products from both origins act additively for PCD of EW3-sib
cells.

Developmental window for Notch-activated PCD of EW3-sibs

Selective death between EW3 and its sibling cell was shown to
require the Notch (N)/Numb signaling pathway. During the

mitotic division of the GMC-3, Numb is asymmetrically inherited

by one of them, EW3, which differentiates into vCrz neuron,

whereas Numb-negative EW3-sib cells undergo apoptosis due to

N activation (Lundell et al., 2003). Consistent with this report,

expression of a constitutively active form of N (NICD) by using an

eagle-gal4 (i.e. expression in the EW3 and EW3-sib cells) to

bypass Numb’s inhibitory activity, resulted in the complete lack

of Crz-ir neurons in the larval VNC (Fig. 11A). These

observations support the proapoptotic role of N in the EW3-sib

cells during embryonic CNS development.

Since the death of EW3-sib cells requires grim, N is likely to

be an upstream activator of grim expression. Interestingly,

however, Crz-gal4 driven NICD expression (i.e. after

differentiation of EW3 into vCrz neurons) did not trigger

precocious death of vCrz neurons in larva (Fig. 11B) or during

metamorphosis (data not shown). This implies that the N-

mediated death of the EW3-sib cells can take place only prior to

their terminal differentiation into Crz-ir neurons.

Previously we have shown that ecdysone signaling at the end

of larval growth is the developmental cue for the vCrz PCD, as

genetic and transgenic disruption of ecdysone receptor (EcR) B1

and B2 isoforms blocks the PCD (Choi et al., 2006). Thus it is

reasonable to state that ecdysone signaling sets the course leading

to grim expression in the vCrz neurons, although the underlying

mechanisms are unknown. However, such ecdysone-induced

grim is unlikely to be the case for EW3-sib cell death, because

EW3-sib cells underwent PCD normally in the CNS devoid of

EcR functions (Fig. 11C,D). These data suggest that differential

upstream regulators are involved in the expression of grim in a

Fig. 11. Effect of Notch and ecdysone signaling on PCD of EW3-sib cells.

(A) NICD expression driven by an eg-gal4 induced killing of both EW3 and
EW3-sib cells, as no Crz-ir neurons were present in the VNC (n58). Note that
Crz-ir neurons were normal in the brain (arrowhead). (B) Expression of NICD by

a Crz-gal4 driver did not kill vCrz neurons (n514). (C,D) Lack of vCrz-sib
neurons in the absence of (C) both EcR-B1 and EcR-B2 isoforms (ecr31/99) or
(D) EcR-A isoform (ecr112/M554fs). These results suggest that the PCD of EW3-
sib cells does not involve ecdysone signaling. Scale bar: 100 mm.
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manner specific to the cell types and developmental status, as
illustrated in Fig. 12.

Discussion
Multiple cell death genes are required to ensure the death of
vCrz neurons during metamorphosis

Although major cell death genes found in Drosophila have been

extensively characterized for their biochemical functions, in cell-
based assays, and in transgenic animals, their in vivo roles during
development have been characterized only in a few cell types.

Interestingly, differential requirements of the cell death factors
have been found for the PCD of distinct cell types. For instances,
synergistic activities of the rpr and grim are required for the PCD

of embryonic neuroblasts (Tan et al., 2011); rpr and hid for the
salivary glands (Jiang et al., 2000); hid for the extra inter-
ommatidial cells in the developing eye imaginal discs (Yu et al.,
2002); grim for the microchaete glial cells (Wu et al., 2010) and

for the precursor cells of the presumptive sensory neurons and
socket cells in the posterior wing margin (Rovani et al., 2012).

Very little is known about the roles of cell death genes in the
doomed post-mitotic neurons within the CNS. Based on the
observations with XR38/H99, we presumed that rpr is essential
for the PCD of vCrz neurons (Choi et al., 2006). Similar

arguments were made for the PCD of RP2 larval motor neurons
during metamorphosis (Winbush and Weeks, 2011). Surprisingly,
however, our current studies using rpr-specific mutations suggest

that the survival of vCrz neurons in XR38/H99 flies is unlikely
due to the loss of rpr function.

Multiple lines of evidence we presented here clearly support

grim as the major cell-autonomous proapoptotic factor. Mild
PCD defect in the skl mutants also suggest that skl plays at least a
minor role. Although our genetic data do not support rpr’s

proapoptotic role, we could not completely exclude it for the

following reasons. First, rpr expression was observed in the
doomed vCrz neurons (Choi et al., 2006). Secondly, mi-RGH

expression completely blocked PCD of vCrz neurons at 16 hours
APF, whereas grim-null mutation or mi-grim did not. rpr might
play a role with skl for PCD of vCrz neurons particularly when

grim function lacks.

What is the significance of belated function played by skl and
possibly rpr? We propose that when grim function is

inadvertently disrupted, elimination of unwanted larval neurons
is ensured by alternative death triggers. Such a fail-safe
mechanism could be important for sculpturing of the adult

CNS from its larval predecessor, as accidental survival of larval
doomed neurons might interfere with the formation of proper
neural circuit during metamorphosis (Buss et al., 2006).

Lineage-regulated PCD of neuronal precursor cells
during embryogenesis

Unequal Numb distribution during mitosis determines Notch (N)
activities, which direct differential specification of the sister cells
in various neuronal lineages (e.g. Spana and Doe, 1996; Tio et al.,

2011). In the NB7-3 lineage, daughter cells of the GMC-1 also
take distinct fates, one interneuron (EW1) and the other motor
neuron (GW), depending on the inheritance of Numb. In contrast,

Numb-N determines the ‘death fate’ of a daughter cell derived
from the GMC-2 and GMC-3 (Higashijima et al., 1996; Dittrich
et al., 1997; Lundell and Hirsh, 1998; Isshiki et al., 2001;
Novotny et al., 2002; Lundell et al., 2003) (see also Fig. 12).

Thus Numb-N signaling is important not only for the fate-
determination of developing neurons, but also for the regulation
of cell numbers generated from a certain neuronal lineage. N-

induced apoptosis is also observed in the developing CNS of
mammals (Yang et al., 2004), suggesting a conserved role of N
for the apoptosis-associated CNS development.

Little is known about the mechanisms underlying N-induced
PCD in the nervous system. Because of the transcriptional
regulatory functions of the N, it is likely that N signaling involves

the expression of proapoptotic genes such as Bax and Noxa (Yang
et al., 2004). Since grim is responsible for the PCD of EW3-sib
cells, grim expression is expected to be a downstream target of

the N signaling. However, the upregulation of grim expression by
the N signaling appears to be developmentally restricted to the
neuronal precursor cells, as ectopic expression of an activated N
by the Crz-gal4 did not kill terminally differentiated vCrz

neurons. It is likely that only the precursor cells are competent to
be responsive to N signal and such competence is lost prior to
their final differentiation into functional neurons. It is notable

that N-induced apoptosis is also restricted to the neural precursor
cells in mammals as well (Yang et al., 2004). In developing
Drosophila retina, N activates hid via antagonizing EGFR-

mediated survival signal (Yu et al., 2002). Thus, there seems to
be diverse mechanisms underlying N-mediated PCD in different
cellular context.

Another interesting finding is that major death factors, grim,
dark, and caspases, responsible for PCD of the EW3-sib cells, are
differentially regulated. Zygotic expression of grim is essential

while maternally provided caspases (Dronc and DrIce) are
sufficient to drive PCD. In contrast, dark function has to be
provided zygotically as well as maternally. These genetic data

overall indicate that embryonic cells are preloaded with the death
executioners (caspases), which is consistent with a view of ‘death
by default’ (Raff, 1992; Raff et al., 1993).

Fig. 12. Schematic illustration showing death genes acting on PCD in the

corazonergic lineage during development.
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Differential regulation of grim expression

Although grim is an essential proapoptotic factor for both vCrz

neurons and EW3-sib cells, N signaling is responsible for PCD in

EW3-sib cells, while ecdysone signaling is responsible for PCD

in vCrz neurons (Fig. 12). These results suggest that grim also
expression can be regulated by various upstream factors, which

determine cell- and stage-specific expression. Such diverse

regulatory mechanisms are not unique to grim, as rpr is also

regulated in a complicated manner. Depending on the tissue
types, transcription of rpr is activated by p53 in response to DNA

damage (Brodsky et al., 2000), by ecdysone receptor (EcR) for

metamorphosis-associated death of the salivary glands (Jiang et

al., 2000), and by a Hox gene product, Deformed, for head
morphogenesis during embryonic development (Lohmann et al.,

2002). These upstream factors have been shown to activate rpr

through direct binding to distinct 59 upstream regions. It will be

interesting to determine whether 59 proximal region of the grim

also contains various cis regulatory elements that respond to

distinct upstream signals.

In addition to the 59 upstream region, a remote enhancer NBRR

is important for the optimal expression of multiple death genes in

embryonic NBs (Tan et al., 2011) and grim in developing pupa

(Wu et al., 2010). Although our genetic data also suggest a

functional connection between NBRR and grim to some extent,
further studies are necessary to confirm it in the vCrz neurons. In

contrast, NBRR is not necessary for the PCD of EW3-sib cells,

suggesting that N-induced PCD does not require NBRR for grim

expression, while EcR-mediated PCD does so. Investigations on
how grim is regulated in response to various death signals will be

important to elucidate distinct molecular mechanisms of

apoptosis between neuronal precursors and terminally

differentiated neurons.
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Fig. S1. UAS-double strand RNA (dsRNA) constructs. Specific regions (+55
to +559 for rpr; +311 to +1166 for hid; +2 to +850 for grim. +1 indicates the
transcription start site) were amplified by PCR and inserted into pSymp-UAST-
w vector at Xho I/EcoR I sites. The vector allows simultaneous transcription of

the insert in both directions in the presence of Gal4, yielding complementary
RNA strands. After confirmation of the insert by sequencing, white genomic
insert was removed by EcoR I digestion. The final constructs were injected into
y w embryos for germline transformation. Results: (A) To validate the
efficiency and target-specificity of the UAS-RNAi, we tested whether each
RNAi suppresses rough eye phenotype caused by an ectopic expression of

respective cell death gene, as indicated. (B) A diagram depicting cross-
interference of the RNAi. The eye defect caused by rpr overexpression was
rescued by hidRNAi and rprRNAi but not by grimRNAi, while grim-induced eye
phenotype was rescued by all three RNAi. A dotted line indicates a partial
rescue effect than solid lines. (C–E) Overexpression of RNAi caused mild
rescue of vCrz PCD. Scale bar: 100 mm.
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