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Being able to correctly predict the future and to adjust own actions accordingly can
offer a great survival advantage. In fact, this could be the main reason why brains
evolved. Consciousness, the most mysterious feature of brain activity, also seems to
be related to predicting the future and detecting surprise: a mismatch between actual
and predicted situation. Similarly at a single neuron level, predicting future activity and
adapting synaptic inputs accordingly was shown to be the best strategy to maximize the
metabolic energy for a neuron. Following on these ideas, here we examined if surprise
minimization by single neurons could be a basis for consciousness. First, we showed in
simulations that as a neural network learns a new task, then the surprise within neurons
(defined as the difference between actual and expected activity) changes similarly to
the consciousness of skills in humans. Moreover, implementing adaptation of neuronal
activity to minimize surprise at fast time scales (tens of milliseconds) resulted in improved
network performance. This improvement is likely because adapting activity based on the
internal predictive model allows each neuron to make a more “educated” response to
stimuli. Based on those results, we propose that the neuronal predictive adaptation
to minimize surprise could be a basic building block of conscious processing. Such
adaptation allows neurons to exchange information about own predictions and thus to
build more complex predictive models. To be precise, we provide an equation to quantify
consciousness as the amount of surprise minus the size of the adaptation error. Since
neuronal adaptation can be studied experimentally, this can allow testing directly our
hypothesis. Specifically, we postulate that any substance affecting neuronal adaptation
will also affect consciousness. Interestingly, our predictive adaptation hypothesis is
consistent with multiple ideas presented previously in diverse theories of consciousness,
such as global workspace theory, integrated information, attention schema theory, and
predictive processing framework. In summary, we present a theoretical, computational,
and experimental support for the hypothesis that neuronal adaptation is a possible
biological mechanism of conscious processing, and we discuss how this could provide
a step toward a unified theory of consciousness.

Keywords: brain-inspired artificial neuronal networks, neuronal adaptation, theory of consciousness, biological
learning algorithms, anesthesia
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INTRODUCTION

“How does the brain work? Gather enough philosophers,
psychologists, and neuroscientists together (ideally with a few
mathematicians and clinicians added to the mix), and I guarantee
that a group will rapidly form to advocate for one answer in
particular: that the brain is a prediction machine” (Seth, 2020).
Predictive processing was also suggested to be one of the most
promising approaches to understand consciousness (Yufik and
Friston, 2016; Hohwy and Seth, 2020). Nevertheless, it is still
unclear how predictive processing could be implemented in the
brain (Lillicrap et al., 2020), as most of the proposed algorithms
require a precise network configuration (Rao and Ballard, 2005;
Bastos et al., 2012; Whittington and Bogacz, 2017), which could
be difficult to achieve, considering variability in neuronal circuits
(y Cajal, 1911).

To address this problem, we proposed that single neurons can
internally calculate predictions, which eliminates requirement of
precise neuronal circuits (Luczak et al., 2022). Biological neurons
have a variety of intracellular processes suitable for implementing
predictions (Gutfreund et al., 1995; Stuart and Sakmann, 1995;
Koch et al., 1996; Larkum et al., 1999; Ha and Cheong, 2017).
The most likely candidate for realizing predictive neuronal
mechanism appears to be calcium signaling (Bittner et al., 2017).
For instance, when a neuron is activated, it leads to a higher level
of somatic calcium lasting for tens of ms (Ali and Kwan, 2019). As
neuron activity is correlated with its past activity within tens of
ms (Harris et al., 2003; Luczak et al., 2004), thus, lasting increase
in calcium concentration may serve as a simple predictive signal
that a higher level of follow up activity is expected. Notably, basic
properties of neurons are highly conserved throughout evolution
(Kandel et al., 2000; Gomez et al., 2001; Roberts and Glanzman,
2003), therefore a single neuron with a predictive mechanism
could provide an elementary unit to build predictive brains for
diverse groups of animals.

This idea is further supported by a theoretical derivation
showing that the predictive learning rule provides an optimal
strategy for maximizing metabolic energy of a neuron. The details
of derivation are described in a study (Luczak et al., 2022) and a
summary is depicted in Figure 1. Shortly, Eb represents energy
received from blood vessels in the form of glucose and oxygen,
which is a non-linear function of local neuronal population
activity, including the considered neuron j activity (xj) (Devor
et al., 2003; Sokoloff, 2008). The Eele represents the energy
consumed by a neuron for electrical activity, which is mostly a
function of the presynaptic activity (xi) and respective synaptic
weights (wij) (Harris et al., 2012). A neuron also consumes
energy on housekeeping functions, which could be represented
by a constant Eh. As described in a study (Luczak et al.,
2022), this formulation shows that to maximize energy balance,
a neuron has to minimize its electrical activity (be active as
little as possible), but at the same time, it should maximize its
impact on other neurons’ activities to increase blood supply (be
active as much as possible). Thus, weights must be adjusted to
strike a balance between two opposing demands: maximizing the
neuron’s downstream impact and minimizing its own activity
(cost). This energy objective of a cell could be paraphrased as the
“lazy neuron principle: maximum impact with minimum activity.”
We can calculate such required changes in synaptic weights (1w)
that will maximize neuron’s energy (Ej) by using gradient ascent
method [for derivation see Supplementary Material or (Luczak
et al., 2022)]. As a result, we found that maximizing future energy
balance by a neuron leads to a predictive learning rule, where a
neuron adjusts its synaptic weights to minimize surprise [i.e., the
difference between actual (xj) and predicted activity (x̃j)].

Interestingly, this derived learning rule was shown to be
a generalization of Hebbian-based rules and other biologically
inspired learning algorithms, such as predictive coding and
temporal difference learning (Luczak et al., 2022). For example,
when x̃j = 0 in our predictive learning rule (i.e., when a neuron

FIGURE 1 | Maximizing neuron metabolic energy leads to predictive synaptic learning rule (see Supplementary Material for derivation details).
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FIGURE 2 | (A) Simplified schematic of our recurrent network architecture. For visualization, only a small subset of neurons is shown. (B) Illustration of neuron activity
in response to a stimulus. Initially the network receives only the input signal (bottom blue trace), but after 8 steps, the output signal is also presented (a.k.a. clamped
phase; bottom black trace). The red dot represents steady-state activity which was predicted from initial activity (in shaded region). The dashed line shows activity of
the same neuron in response to the same stimulus, if the output would not be clamped (xF ; a.k.a. free phase), which neuron “wants” to predict. Green insert:
synaptic weights (w) are adjusted in proportion (∝) to the difference between steady-state activity in clamped phase (x) and predicted activity (x̃) [adopted from
Luczak et al. (2022)].

does not make any prediction), then we obtain Hebb’s rule:
1wij = αxixj, a.k.a. “cells that fire together, wire together”(Hebb,
1949). Moreover, our model belongs to the category of energy-
based models, for which it was shown that synaptic update
rules are consistent with spike-timing-dependent plasticity
(Bengio et al., 2017). Thus, this predictive learning rule may
provide a theoretical connection between multiple brain-inspired
algorithms and may offer a step toward development of a unified
theory of neuronal learning.

The goal of this paper is to show that the properties ascribed
to consciousness could be explained in terms of predictive
learning within single neurons. For that, first, we will implement
a predictive learning rule in an artificial neural network, and
then we will use those simulation results together with biological
evidence to propose a predictive neuronal adaptation theory
of consciousness.

METHODS

Implementation of a Predictive Learning
Rule in a Neural Network
To study how properties of predictive learning rule may relate to
consciousness processes, we created a recurrent neural network.
It had 420 input units, 50 hidden units, and 10 output units as
illustrated in Figure 2A. The network was trained on a hand-
written digit recognition task MNIST (LeCun et al., 1998), with
21 × 20 pixels from center of each image given as input to
the network. The details of network training are described in a
study (Luczak et al., 2022). First, network is presented with only
an input signal and the activity starts propagating throughout
the network until it converges to a steady-state, when the
neurons’ activity stops changing, as depicted in Figure 2B. This
is repeated for 1,600 randomly chosen stimuli. During this phase,
we also trained a linear model to predict the steady-state activity.
Specifically, for each individual neuron, the activity during the

five initial time steps (x(1), . . . ,x(5)) was used to predict its steady-
state activity at time step 20: x(20), such that: x(20)≈x̃ = λ(1) ∗

x(1),+ · · · + λ(5) ∗ x(5) + b, where x̃ denotes predicted activity,
λ and b correspond to coefficients and offset terms of the least-
squared model, and the terms in brackets correspond to time
steps (Figure 2B). Next, a new set of 400 stimuli was used,
where from step 8, the network output was clamped at values
corresponding to image class (teaching signal). For example, if
the image of number 5 was presented, then the value of the 5th
output neuron was set to “1,” and the values of the other 9 output
neurons was set to “0,” and network was allowed to settle to the
steady-state. This steady-state was then compared with predicted
steady-state activity, which was calculated using the above least-
squared model. Subsequently, for each neuron, the weights were
updated based on the difference between the actual (xj) and its
predicted activity (x̃j) in proportion to each input contribution
(xi), as prescribed by the predictive learning rule in Figure 1
(Matlab code for a sample network with our predictive learning
rule is provided in Supplementary Material).

RESULTS

Neuronal Surprise Reproduces Stages of
Skill Consciousness
The network using predictive learning rule showed a typical
learning curve, with rapid improvement in performance in the
first few training epochs, and with plateauing performance during
later training epochs (Figure 3A). Notably, this shape of learning
curve is also typical for skill-learning in humans, where, initially
at the novice level, there are fast improvements, and it takes
exponentially more time to improve skills at, for example, elite
athlete level (Newell and Rosenbloom, 1981). However, what is
new and interesting here, is how a surprise (i.e., the difference
between actual and predicted activity) evolved during network
training (Figure 3B) and how it compares to the stages of “skill
consciousness,” as explained below.
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FIGURE 3 | Neuronal surprise in network with predictive learning rule. (A) Learning curve showing accuracy of the network across learning epochs. Colors indicate
conceivable extents of stages of “conscious competence” shown in panel (C). (B) Change in neuronal surprise (|actual – predicted activity|) averaged over all
neurons (see main text for details). (C) Diagram of the four stages of “conscious competence” during skill learning. (D) Neuronal surprise (proxy of skill consci.) vs
accuracy (a.k.a. competence) during network learning. This is replotting data from panels (A) vs (B), where each point corresponds to a single time epoch. Note that
although for example, “unconscious competence” (marked in green) spans over 150 epochs in panels (A) and (B), in panel (C) those points are “compressed” as
there is little change in accuracy, and in surprise during those epochs.

It was observed that learning involves the four stages of
“conscious competence” (Broadwell, 1969; Das and Biswas,
2018; Figure 3C): (1) Unconscious incompetence – where
individual does not know what he/she doesn’t know, and,
thus, that individual is not aware of his/her own knowledge
deficiencies (e.g., foreigner may not know about certain local
traffic regulations); (2) Conscious incompetence – where the
individual recognizes his/her own lack of knowledge or skills
but does not have those skills (e.g., a car passenger who does
not know how to drive); (3) Conscious competence – where
the individual develops skills but using it requires conscious
effort (e.g., beginner car driver); (4) Unconscious competence
- where due to extensive practice, the individual can perform
learned tasks on “autopilot” (e.g., driving car on the same
route every day).

Here we illustrate how the above stages of conscious
competence could be recapitulated by the network with our
predictive learning rule. We used the neuronal surprise as a
proxy measure of consciousness, which is motivated by previous
theoretical (Friston, 2018; Waade et al., 2020) and experimental
work (Babiloni et al., 2006; Del Cul et al., 2007), which will be
discussed in later sections. We calculated the surprise for each
neuron j as: < |xj − x̃j|>, where |. . .| denotes absolute value,
and < . . . > denotes average across all 400 images presented in a
single training epoch. The neuronal surprise was defined as mean
surprise across all of neurons. To better illustrate the network
behavior, we also plotted accuracy (a.k.a. competence) vs surprise
(a proxy of consciousness) (Figure 3D; model details and code
to reproduce presented figures are included in Supplementary
Material). Initially, when the network was presented with an

input image, the neurons in the hidden layer could almost
perfectly predict what will be the steady-state activity after the
output units are clamped (Figure 3B, first few epochs). This
is because the network starts with random connections and
the signal coming from 10 output units is relatively week in
comparison to the signal coming to the hidden layer from a much
larger number of input units: 420. Thus, the steady-state activity,
which neurons learn to predict when only the input image is
presented, is not much different from the steady-state activity
when input image is presented together with clamped outputs.
This is like the “unconscious incompetence” stage, as the network
is almost completely “not aware” of the teaching (clamped) signal
(Figure 3D, blue line). However, as the activity of the output
neurons is mostly correlated with any discrepancy between the
actual and the predicted activity in hidden layer neurons, thus,
the synaptic weights from output neurons are most strongly
modified. Consequently, as the learning progresses, the hidden
neurons are more and more affected by the output units, and their
surprise: the discrepancy between actual and predicted activity,
increases. This is analogous to the “conscious incompetence,”
where the network becomes “aware” of the clamped teaching
signal, but the network has not yet learned how to classify images
correctly (Figure 3D, light blue). In result, as magnitude of
surprise |xj − x̃j| increases, then other synaptic weights also start
changing more, as prescribed by the predictive learning rule in
Figure 1. Those synaptic updates made the activity driven by
the input image, closer to the desired activity as represented
by the clamped output units. This could be characterized as
“conscious competence,” where the surprise signal allows the
network to learn and to become more competent on that task
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FIGURE 4 | Adaptation in neurons and in our model. (A) Cartoon illustration of typical neuronal adaptation in response to constant stimuli. Note that after the initial
increase, neuronal activity moves closer toward the activity level without stimulus. (B) Similarly, in our model, adaptation shifts neuronal activity toward activity level
without clamp (predicted activity). Insert: We propose to define a single-neuron correlate of consciousness (sNCC) as neuronal adaptation. Arrows denote that
activity adapts toward predicted activity, which approximates activity without a clamp.

(Figure 3D, yellow line). Finally, as network learns to predict the
image class with high accuracy, then the surprise (the difference
between predicted and clamped teaching signal) is diminishing,
which is analogous to an expert who achieved “unconscious
competence” (Figure 3D, green line). This, that the neuronal
surprise recapitulates the stages of conscious competence, by first
increasing and then decreasing during learning, was a general
phenomenon across different datasets and across diverse network
architectures (Supplementary Figure 1).

Surprise Reduction by Neuronal
Adaptation
Derivation of the predictive learning rule in Figure 1 shows
that the best strategy for a cell to maximize metabolic energy is
by adjusting its synaptic weights to minimize surprise: |x− x̃|.
However, this change in surprise does not need to take minutes or
hours, as typically required for structural synaptic modification
to occur (Xu et al., 2009). Neurons have adaptation mechanisms,
which could serve to reduce surprise at a much faster time scale
of tens of ms (Whitmire and Stanley, 2016).

Neural adaptation is a ubiquitous phenomenon that can
be observed in neurons in the periphery, as well as in the
central nervous system; in vertebrates, as well as in invertebrates
(Whitmire and Stanley, 2016; Benda, 2021). Neuronal adaptation
can be defined as the change in activity in response to the
same stimulus. The stimulus can be a current injection into a
single neuron or a sensory input like sound, light, or whisker
stimulation. Usually, neuron activity adapts in exponential-
like fashion, with rapid adaptation at the beginning, and then
later plateauing at a steady-state value (Figure 4A). Typically,
neuronal adaptation is shown as the decrease in activity in
response to excitatory stimuli. However, neurons can also adapt
by increasing its spiking ability when inhibitory stimulus is
presented; for example, an injection of constant hyperpolarizing
current (Aizenman and Linden, 1999). Thus, adaptation could be
seen as change in neurons activity toward a typical or expected
(predicted) level (x̃).

To investigate effect of adaptation on neuronal processing,
we implemented a brain-inspired adaptation mechanism in the
units in our network. For this, during the clamped phase from
time step 8, the activity of each neuron was nudged toward the
predicted state (Figure 4B). Specifically, the activity of neuron j
at time step t was calculated as: xj,t = a ∗ x̃+ (1− a) ∗

∑
i(wi,j ∗

xi,t−1) , where 0 ≤ a ≤ 1 is a parameter denoting strength of
adaptation. For example, for a = 0, the adaptation is equal to
zero, and the network activity is the same as in original network
described in Figure 2. To update synaptic weights, we used the
same learning rule as in Figure 1: 1wi,j = xi(xj − x̃j), but here
xj represents clamped activity with added adaptation, which can
also be denoted as xA. Interestingly, networks with implemented
adaptation achieved better accuracy than the same networks
without adaptation (Supplementary Information). This could
be due to the fact that if an activity in the clamped phase is
much different from an expected activity without the clamp, then
learning may deteriorate as those two network states could be
in different modes of the energy function (Scellier and Bengio,
2017). Adaptation may reduce this problem by bringing clamped
state closer to expected. To give an analogy, if part of a car
is occluded by a tree, then, purely by sensory information, we
cannot say what is behind that tree. However, based on our
internal model of the world, we know what shape a car is, and,
thus, we can assume that the rest of the car is likely behind
the tree. Similarly, neuronal adaptation may allow a neuron to
integrate the input information with predictions from its internal
model, and then adjust its activity based on this combined
information leading to a more appropriate response.

HYPOTHESIS AND THEORY

Predictive Adaptation as a Signature of
Consciousness
It is largely accepted that consciousness is a gradual phenomenon
(Francken et al., 2021). It was also suggested that even
a single cell may have a minimum level of consciousness,
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based on the complexity of behavior and complexity of
information-processing within each cell (Reber, 2016; Baluška
and Reber, 2019). For example, every single cell contains large
biochemical networks, which were shown to make decisions
and to perform computations comparable to electrical logic
circuits (Supplementary Figure 2; McAdams and Shapiro,
1995). This allows for highly adaptive behavior, including
sensing and navigating toward food, avoiding a variety of
hazards, and coping with varying environments (Kaiser, 2013;
Boisseau et al., 2016). For instance, single-celled organisms
were shown to be able to “solve” mazes (Tero et al., 2010),
to “memorize” the geometry of its swimming area (Kunita
et al., 2016), and to learn to ignore irritating stimulus if
the cell’s response to it was ineffective (Tang and Marshall,
2018). Moreover, single-celled microorganisms were shown to
predict environmental changes, and to appropriately adapt
their behavior in advance (Tagkopoulos et al., 2008; Mitchell
et al., 2009). Those complex adaptive behaviors were proposed
to resemble cognitive behavior in more complex animals
(Lyon, 2015). This likely requires organism to build some
sort of internal predictive model of their own place in the
environment, which could be considered as a basic requirement
for consciousness.

The results presented in Figure 3 suggest that the level of
consciousness could be related to the amount of surprise. This
is also supported by results from human EEG studies, where the
neuronal signature of surprise: P300, closely reflects conscious
perception (Del Cul et al., 2007; Dehaene and Changeux, 2011).
Here, we propose that in a neuron, adaptation could be seen
similarly to P300, as a measure of surprise, and thus, it could
provide an estimate of the level of “conscious cellular perception.”
Specifically, as described above, surprise could be defined as a
difference between actual (x) and predicted activity (x̃). Because
adaptation changes neurons’ activity toward a predicted activity
level, thus, the size of adaptation (|x− xA|) is directly related
to the size of surprise: (|x− x̃|). Therefore, we propose to
define the single-neuron correlate of consciousness (sNCC)
as the magnitude of neuronal adaptation sNCC = |x− xA|,
(Figure 4B). Based on this, we hypothesize that single-cell

predictive adaptation is a minimal and sufficient mechanism for
conscious experience.

Generalized Definition of Consciousness
as a Process of Surprise Minimization
First, we will explain the main ideas using a simplified example,
then later, we will present how it can be generalized. Let us
have a two-dimensional environment, where at each location P,
there is a certain amount of food. There is also an organism that
wants to go to a location with the highest amount of food. That
organism does not know exactly how much food there is at any
given location, but based on past experience, the organism has an
internal model of the environment to help with predictions. For
instance, let us assume that the maximum concentration of food
(m) is at point Pm, but the smell of food comes from the direction
of point: Ps, where s stands for sensory evidence (Figure 5).
However, the concentration of food in the past was highest in the
North direction. The internal model combines this information
and predicts the highest probability of food in the North East
direction at point Pp, where p stands for predicted. Based on
this, the organism adapts and moves toward Pp to location PA,
where A stands for adaptation. When the organism arrives to
PA location, then it can compare the actual amount of food at
that location with the predicted one, and update the internal
model accordingly. Thus, by combining sensory information and
internal model predictions, our organism was able to adapt its
behavior more appropriately.

In the above-described case, we could say that our organism
was quite conscious of its environment, as it made close
to optimal decision. We can quantify it by measuring how
close to optimal location an organism moved: d(PA, Pm), as
compared if it would move in reflex-like fashion to location
that is purely determined by sensory stimulus: d(Ps, Pm), where
d(.,.) denotes a distance between 2 points. Specifically, we
can define organism consciousness of environment as Ce =

d (Ps, Pm) − d (PA, Pm), (Figure 5, insert). It is worth noting
that if an organism has a good model of external environment
to correctly predict location with maximum food, then: Pp ≈

FIGURE 5 | Insert: Consciousness (Ce) is defined here as a surprise: distance d(,) between obtained sensory information (Ps) and expected information. However, if
system cannot appropriately adapt based on that information, then conscious perception is reduced (adaptation error). Thus, Consciousness is a function of surprise
and ability of organism to adapt to minimize that surprise. Expected information is denoted by Pp and it is calculated by internal predictive model, which based on
partially available data tries to approximate actual state of the environment (Pm). Schematic on the left illustrates concept of Ce for sample organism living in 2D
environment (see main text for details).
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Pm, and thus, the first term in Ce : d (Ps, Pm) ≈ d
(
Ps, Pp

)
,

where this distance d (Ps, Pp) between sensory evidence (Ps) and
model prediction (Pp) is a description of surprise. The second
term in Ce : − d (PA, Pm), describes how far organism is
from location with maximum food/energy (Pm) after it made
adaptation (PA). This could be seen as an error term, which could
arise if predictive model is incorrect or if organism is unable to
move exactly to the predicted location. Hence, according to the
above definition of Ce, consciousness is equivalent to surprise, if
error term is 0, which would be the case for an organism to able
to perfectly adapt.

Although, we used here a two-dimensional environment as an
example, this can be generalized to a high-dimensional sensory
space. Let us consider a simple organism which can sense
concentration of 10 substances in a deep ocean. As organism
swims, it changes its position in 3D space, but more importantly,
concentration of 10 substances indicating location of food and
predators also changed with each movement. Thus, 3D space
translates to 10D sensory space, which is more relevant to
that organism behavior. Therefore, distances d in Ce = d (Ps,
Pm) − d (PA, Pm), may be more appropriately calculated in
sensory space of that organism, instead of the standard 3D spatial
coordinates. For example, we implicitly used idea of sensory space
in case of neurons shown in Figures 3, 4. Neuron senses its
local environment through variety of channels located especially
in synapses. Activity of a neuron affects other neurons, which
through feedback loops change synaptic inputs to that neuron,
and thus, its sensory environment. Because neuron gets energy
from blood vessels, which dilation is controlled by coordinated
activity of local neurons, therefore, neuron may “want” to move
in the sensory space corresponding to activity patterns resulting
in the most local blood flow. Therefore, change in neuron activity
is equivalent to a movement in a chemical sensory space, where
different locations in that space correspond to different amount of
energy obtained by a neuron. For that, the word “environment”
in Ce refers to this highly dimensional sensory space rather than
that of the typical 3D space.

This generalization to sensory space also allows to see
notions introduced earlier in Figures 3, 4 as special cases of
environmental consciousness Ce. For example, when organism
has the perfect model of external environment, then it can
correctly predict the location with maximum food, thus, Pp = Pm,
as we have explained before. However, if that organism can also
move exactly to predicted location such that: PA = Pp, then, also
PA = Pm. In such case, an adaptation error d(PA, Pm) becomes
0, and thus, Ce = d (Ps, Pm). Considering the above case that
Pm = PA, Ce can also be expressed as Ce = d (Ps, PA), which is
a distance by how much an organism moved or adapted. Thus, in
case of the neuron described in Figure 4, Ce = d (Ps, PA) ≈
d |x, xA| = |x− xA| = sNCC. Similarly, as mentioned earlier,
Ce becomes equivalent to surprise if organism perfectly adapts
(PA = Pp = Pm). In such case, adaptation error is zero, and
we can write Ce = d

(
Ps, Pp

)
≈ |x− x̃|, which is the distance

between the stimulus-evoked activity and the model prediction,
which we used to quantify the skill consciousness in Figure 3.
Thus, Ce is a function of surprise and ability of organism to adapt
to minimize that surprise.

Note that surprise and adaptation could be considered
as contributing to Ce on different timescales, with synaptic
changes gradually minimizing surprise over a long period of
time, and with neuronal adaptation changing neuronal firing
rapidly within 10–100 ms. When an organism is learning
a new skill, then activity driven by bottom-up signals is
different from activity provided by top-down teaching signals,
which results in a higher surprise term. However, if neurons
cannot adapt their activity accordingly (e.g., when biochemical
processes mediating adaptation within a neuron are blocked),
then adaptation error will be as large as the surprise term,
resulting in Ce = 0 and, thus, in no conscious experience.
Therefore, the surprise term could be interpreted as “potential
consciousness,” meaning the maximum possible consciousness
to a given stimulus. Synaptic strength gradually changes over
a period of learning, resulting in slow changes in “potential
consciousness.” However, when a stimulus is presented, and
neurons rapidly adapt their activity toward the predicted
level, it reduces the adaptation error term and results in
Ce > 0, and, thus, in conscious perception within a fraction of
a second.

Hypothesis Validation
A hypothesis, by definition, should generate testable predictions.
Our main hypothesis is that the neuronal adaptation is a
neuronal correlate of consciousness. This implies that neurons
and, thus, brains, without adaptation cannot be conscious.
Therefore, our hypothesis predicts that any mechanism which
affects neuronal adaptation will also affect consciousness.
This prediction was shown to be correct for a diverse
group of neurochemicals involved in sleep and anesthesia,
which also alter the neuronal adaptation. For instance,
levels of multiple neuromodulators in the brain such as
serotonin, noradrenaline, and acetylcholine are significantly
different between waking and sleeping in REM or non-REM
stages (España and Scammell, 2011). Whole-cell voltage-
clamp recordings in vitro in the pyramidal neurons have
demonstrated that all those neuromodulators also affect
neuronal adaptation (Satake et al., 2008). Similar results
were obtained when testing various substances used for
anesthesia, such as urethane (Sceniak and MacIver, 2006),
pentobarbital (Wehr and Zador, 2005), and ketamine
(Rennaker et al., 2007). Moreover, it was shown that a large
variety of anesthetics, including butanol, ethanol, ketamine,
lidocaine, and methohexital are blocking calcium-activated
potassium channels, which mediate neuronal adaptation
(Dreixler et al., 2000). Interestingly, considering a broad
spectrum of molecular and cellular mechanisms affected by
different anesthetic compounds, there remains significant
uncertainty of what is the single mechanism underlying
anesthesia (Armstrong et al., 2018). Our theory suggests
that what all anesthetics could have in common is the
ability to disturb neuronal adaptation. Thus, our theory
clearly provides testable predictions, which could either
be invalidated or validated by using pharmacological and
electrophysiological methods (see also “Limitation” section for
more discussion on this topic).
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Predictive Adaptation as a Step Toward a
Unified Theory of Consciousness
Important consequence of a neuron adapting its activity toward a
predicted level is that it allows neurons to exchange information
about its predictions. Thus, neuron output activity is not
exclusively driven by its synaptic inputs, but it is also a function
of its internal predictive model. Below, we will briefly describe
a few of the most prominent studies, as well as the theories of
consciousness [for in-depth reviews see Francken et al. (2021)
and Seth (2021)]. We will particularly focus on outlining the
differences and similarities to our theory of predictive adaptation,
and how it may provide a theoretical basis for connecting diverse
theories of consciousness.

Connection to Optical Illusions
Exchanging predictions among neurons may explain multiple
phenomena linked to conscious perception, such as optical
illusions. For example, let us consider a neuron tuned to
detect horizontal lines. Such neuron may learn that even
when feed-forward inputs are not exactly consistent with a
line (e.g., due to partial occlusion), then later on, it usually
receives a top-down signal indicating detection of a line due
to combining information from other parts of the image by
higher cortical areas. Thus, in the case of an image with illusory
contours, this neuron may receive less activation from feed-
forward inputs, as parts of the lines are missing. However,
based on experience with occluded objects, that neuron may
predict that it will soon receive top-down signals indicating
a line, thus, in expectation it will increase its activity toward
predicted levels. Consequently, other neurons receiving this
predictive information are more likely to interpret it as a line,
resulting in positive feedback loops and coherent perception
of a line.

Similar explanation could also be applied in case of ambiguous
images like the Rubin vase (face) optical illusion. If a set of
neurons in the association cortex receives inputs suggesting an
image of a face, then they will increase their activity accordingly
toward that “believe,” triggering a global activity pattern giving a
single perception of a face.

Connection to Global Neuronal Workspace Theory
As described above, a large-scale neuronal convergence to a
single “believe” is very similar to a theory of global neuronal
workspace (GNW) (Baars, 2002; Dehaene and Changeux, 2011).
Briefly, GNW states that an organism is conscious of something,
only when many different parts of the brain have access to
that information. Additionally, if that information is contained
only in the specific sensory or motor area, then the organism
is unconscious of that something. In our theory, consciousness
is on a continuous scale. However, if an activity is different
from what is expected across the many parts of the brain, then
our measure of Ce will also be larger as compared to a single
brain area, and because the brain is a highly non-linear system,
Ce could be orders of magnitude larger when the difference
between expected and predicted signal is exchanged in feedback
loops across the entire brain. Thus, if the brain during waking
has close to maximum Ce, and low Ce during, for example,

sleep, with intermediate values of Ce existing shortly during
transition between those states, then this could reconcile the
apparent difference between both theories. It is worth noting
also that according to the GNW theory, a key signature of
information accessing consciousness is the P300 component,
which as mentioned earlier reflects surprise (Donchin, 1981; Mars
et al., 2008). This is similar to our theory where Ce is defined in
terms of surprise (Figure 5). Therefore, taken all together, GNW
may be seen as a special case in our theory, where Ce is discretized
to have only two values.

Connection to Integrated Information Theory
Our theory is also consistent with the main ideas of integrated
information theory (IIT). The IIT quantifies consciousness as
the amount of information generated by an integrated complex
of elements above and beyond the information generated by
its individual parts, which is denoted as Phi (Tononi, 2015;
Tononi and Koch, 2015). Similarly, in our case, if two cells can
communicate, then this will allow each of them to make better
predictions and, thus, to increase combined Ce, by reducing error
term: d (PA, Pm). For instance, if cell #1, just by chance, has more
receptors to detect substance s1, and cell #2 has slightly more
receptors for substance s2, then by communicating predictions
to each other, both cells will be able to better detect food, which
secretes s1 and s2 [i.e., the wisdom of crowds (Friedman et al.,
2001)]. This simplified example can be directly extended to
neurons, where each has unique pattern of connections, thus,
partly providing novel information to other neurons. However,
there is one important difference between Phi and Ce. While Phi
can be computed based purely on connectivity pattern, Ce also
depends on stimulus. If stimulus is unexpected, then surprise
term d (Ps, Pm) will increase, and thus, even without any change
in network architecture, organism will be more conscious of
that stimulus. However, on average, elements with more complex
connectivity patterns, which have higher integrated information
Phi, will also have higher Ce, as more information sources will be
available for each element to improve predictions, thus, reducing
error term in Ce.

Connection to Attention Schema Theory
It was also proposed that consciousness requires building an
internal model of incoming information. For example, the brain
constructs a simplified model of the body to help monitor and
control movements, and similarly, at more abstract level, it may
construct an internal model of attention, which could form a basis
for consciousness (Graziano and Kastner, 2011; Graziano and
Webb, 2015). In our theory, an internal model is a crucial part
of defining the consciousness. Although our predictive model is
at the single-cell level, communication between neurons could
allow to form more complex models at the network level. Note
that due to neuronal adaptation toward predicted activity, each
neuron sends information to others, reflecting its internal model
predictions. Thus, neurons in higher areas build their internal
models based on combining information from other neuron
models. This suggests that higher-order models, like the model of
attention proposed by Graziano, could be a direct consequence
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of building the brain from elements with internal models as
described by our theory.

Connection to Predictive Processing
Our theory is closely related to the predictive processing
framework. This theoretical framework posits that the brain’s
overall function is to minimize the long-term average prediction
error (Hohwy and Seth, 2020). It also proposes that to accomplish
this process, the brain needs to have a generative model of its
internal and external environment, and continually update this
model based on prediction error (Friston, 2005, 2010; Friston
et al., 2017). The precursor of the predictive processing idea
could be traced back to a 19th century scholar named Hermann
von Helmholtz (Von Helmholtz, 1867). He suggested that the
brain fills in some missing information to make a better sense
of its surrounding environment. As in the earlier example of
a car behind a tree, the brain fills in the occluded parts to
provide the most likely picture of the surrounding world. Over
the recent years, predictive processing has gained significant
experimental support [see for review Walsh et al. (2020)].
There were also proposed predictive computational models
of vision, illustrating how top-down processing can enhance
bottom-up information (McClelland and Rumelhart, 1981; Rao
and Ballard, 2005). An important theoretical advancement was
made, when it was shown that predictive processing can be
understood as Bayesian inference to infer the causes of sensory
signals (Friston, 2003, 2005). This provided a mathematically
precise characterization of the predictive processing framework,
which was further generalized in the form of the free energy
principle (Friston, 2010). Our theory is fully consistent with
this framework. However, our work provides three novel and
important contributions to predictive processing:

(1) We derived mathematically that the predictive processing
maximizes metabolic energy of a neuron (Figure 1), which
provides biologically bound theoretical basis for predictive
processing framework.

(2) Based on the above theoretical considerations and based on
computational simulations, we showed that a single neuron
could be the basic element for building diverse predictive
networks (Figures 2, 3). This offers a solution to how
predictive processing could be implemented in the brain
without the need for precisely designed neuronal circuits
or special “error units.”

(3) Most importantly, we showed that predictive neuronal
adaptation could be the mechanism for conscious
processing (Figure 4) and based on this, we proposed a
quantitative definition of consciousness (Figure 5).

LIMITATIONS

While the present study offers a novel theoretical model of
consciousness derived from basic principles of maximizing
metabolic energy, this also comes with caveats that should be
considered. In the absence of a generally accepted definition and
measure of consciousness, all theories of consciousness, including
ours, are unfortunately more speculative than typical theories in
mostly other areas of science. For instance, to date, no theory

has convincingly demonstrated yet how neuronal mechanisms
can generate a specific conscious experience. Similarly, with our
theory, it has yet to be shown that connecting billions of adaptive
neurons could result in subjective feelings of “self,” which is
typically considered as consciousness. Here, as a step toward
addressing this problem, we described how single-neuron-level
predictive processes could be related to consciousness of skills at
the organism level (Figure 3). However, the caveat here is that
“skills consciousness” (as well as “consciousness”) does not have a
well-defined measure, thus, changes in skill consciousness during
learning are only described in loose qualitative terms. This needs
to be more rigorously measured in the future to allow for more
quantitative comparison to our model.

The related problem in theories of consciousness is the
difficulty in proving causal mechanisms of consciousness. For
example, in our definition of consciousness, the first term
represents “surprise” (Figure 5), and as we described earlier,
there is strong a experimental evidence relating surprise (e.g.,
P300) to conscious perception in humans. However, the caveat
is that it is also possible that surprise could be correlated with
consciousness without causing it, thus, experiencing surprise
and acting on it may not be sufficient to create consciousness.
Similarly, we described experimental evidence showing that a
diverse group of neurochemicals involved in sleep and anesthesia
also affects neuronal adaptation. However, this is also only
a correlation, and to prove that neuronal adaptation causes
consciousness, experiments controlling multiple confounding
factors, and selective blockage of adaptation would be needed to
provide a more conclusive answer.

One interesting feature of our definition of consciousness is its
simplicity and scalability: the same simple equation can describe
consciousness at the single-cell level as well as at the whole
organism level. However, this could be taken as an argument
against our theory, as the claim of consciousness in the single cell
or in a robot could be considered as a “far cry” from the typically
understood notion of consciousness. This is a valid objection.
To address this semantic problem, we introduced a broader
term, “consciousness of environment” (Ce; Figure 5). What we
are proposing in this manuscript is that the consciousness of
environment is on a continuous scale, and the consciousness that
we are experiencing as humans is just an extreme case of the same
process. To give an analogy, the celestial movement of planets was
considered to be governed by different laws than earthly objects,
but now we understand that the same gravitational laws could be
used to describe the movement of objects at both scales, which
we suggest could be similar with consciousness. Unfortunately,
we are still missing experimental means to precisely measure
consciousness, which makes theories of consciousness more
difficult to verify, and thus, more speculative.

Moreover, surprise minimalization could also be achieved
by other means than the intracellular predictive mechanism
proposed here. For instance, multiple predictive coding networks
have been developed, with specially designed neuronal circuits
including “error units,” which allow for comparing expected
and actual activity (Rao and Ballard, 2005; Bastos et al., 2012;
Whittington and Bogacz, 2017; Sacramento et al., 2018). Such
networks can be trained using other biological learning rules,
like spike-time-depended plasticity [STDP; (Bi and Poo, 2001)]
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or some variation of Hebbian learning [e.g., BCM (Bienenstock
et al., 1982)]. Thus, it is possible that consciousness in neuronal
system may be created by predictive mechanisms implemented
only at the network level. One problem with predictive coding
only at the circuit level is that it requires precise connectivity,
which could be difficult to achieve, considering the complexity
and variability of neuronal dendritic trees. Here, deriving from
the basic principle of metabolic energy maximization, we suggest
that predictive neurons could provide an elementary unit from
which a variety of predictive circuits could be built, thus solving
the above implementation problem. Therefore, in addition to
intracellular predictions, neurons may form predictive circuits,
giving rise to enhanced predictive abilities that increase the level
of consciousness in an animal, as discussed above in relation to
attention schema theory. Those network-level interactions may
lead to a rapid and exponential-like increase in Ce. However,
contrary to many other theories of consciousness, we suggest that
this increase in Ce will not result in qualitative change, and that
consciousness from single-celled organisms to humans could be
described on a continuous scale, as the same adaptive process of
surprise minimization.
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