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Abstract

Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall
connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking
patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques,
and then to stratify patients. We explore a biologically intuitive discretization technique which codes genes as up- or down-
regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes
than can be achieved by positive and negative correlation. We find a close agreement between our results and the template
gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes ‘‘microarray’’ data using
known relationships which are successfully identified by our method. We are able to split positive co-regulation into up-
together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases
these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two
studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based
computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by
losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS. The method is
illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are
able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the
patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic - identifying sets of co-
regulated and anti-regulated genes and the samples or patients in which this relationship occurs.
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Introduction

The prevalent reductionist and historically successful approach to

biology has largely depended on analytical methods focusing on

single genes or proteins to infer interaction partners. In many model

systems the paradigm has been to perturb or mutate a single gene and

observe what happens; pull-down or yeast two-hybrid experiments

have the same aim, connecting target proteins to those which they

bind to, while many in vitro studies have shown that perturbation of a

single gene is usually associated with concerted changes in many

genes. Numerical methods have attempted to look for larger groups

of genes which are inferred to be co-regulated using ‘‘guilt-by-

association’’ arguments [1]. A more ambitious approach has been to

use observational microarray experiments to infer which genes are

driving the observed expression patterns [2–4].

We suggest that in a group of unrelated individuals multiple

polymorphisms are one cause of modulation of the expression of

many genes, dramatically extending the single gene-perturbation

paradigm. Consequentially, most expressed genes in any tissue will

either be directly affected by polymorphisms or will be perturbed

by the primary affected genes. Additional causes of expression

perturbation include the presence or absence of alternative

haplotypes, operating in cis or trans, to affect transcription [5,6];

copy number variation reflected in the abundance of transcripts

[7]; in cancer studies, mutations, loss-of-heterozygozity [8], gene-

translocations [9], amplification [10] and epigenetic effects [11] all

add to the natural genetic heterogeneity. Furthermore it is likely

that microRNAs will display the same variability as other

biological molecules, giving rise to concerted abundance changes

[12]. In addition to genome differences, microarrays of normal
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lymphocytes from randomly selected subjects reveal effects due to

time of collection, age, sex and nutrition [13]. The end result of

this heterogeneity is that gene-expression is substantially different

in every individual, regardless of disease; despite this, a single tissue

maintains a recognizable phenotype; the ‘‘system’’ state is

regulated, so we expect the same control processes to be used in

many samples. Consequently we would expect many changes to be

correlated in large studies of unrelated individuals. If this

argument is correct, it predicts that many relationships would

occur repeatedly, far more often than would be expected by

chance. This argument is consistent with the idea of bistability,

revealed by network analysis, predicting sets of genes that are co-

ordinately up- or down-regulated [14].

It is the aim of most microarray studies to identify patterns of

expression, common to several samples [15,16]. If we restrict

ourselves to examining relationships which have passed some

‘‘relevance’’ test and ignore details of what is happening in

individual subjects or patients we simplify the analysis and increase

the opportunities to discover large-scale patterns. We set out to

find if correlation between gene transcripts exceeds expectation

and if this information can identify known and plausible new

transcriptional relationships. A less-easily evaluated goal is to

identify sets of genes which are strongly co-expressed, but without

any obvious shared control; these can either be identified from

global patterns or by studying a targeted subset which share some

biological role. This approach has been discussed recently by

Quigley and Balmain who attempt to use expression correlation-

networks to augment genome–wide association studies (GWAS)

and used this methodology to compare human-cancer with mouse

genetic studies [17]; the stratification of patients, suggested from

this approach, is simplified by our discretized-data.

We describe an unsupervised network construction method,

based on analyzing the relative frequency of co-expression of two

genes following discretization. Unlike Chuang et al [18], who use

prior pathway knowledge to examine the plausibility of a

pathway’s involvement, all assessment of biological interpretation

in our methods is retrospective; we first construct a network, then

examine its structure to identify highly-connected sub-graphs and

take these groups of genes to look for common biological roles.

Analyses generating unsupervised networks allows an objective

assessment of how improbable their size is, free of prejudice on

what the relevant pathways are, or indeed if they have been

identified. We discuss the relative merits of this approach with a

standard correlation analysis.

Validation of networks with biological results is a difficult area

and this has been attempted, to some extent, by simulating

microarray-like data using some form of numerical modelling

[19,20], but it is generally accepted that ‘‘assessments of methods

performances remains a challenge… systematic validation is

crucial, since it shows strengths and weakness of the methods’’

[19]. We attempt to identify potential co-expressed genes, from the

definitions, used to define the model used by SynTReN [20] to

build their synthetic data and to compare these with our calculated

networks. Most of the expected relationships in this system are due

to indirect effects, that is path-lengths of 2 or more. It is important

to consider these transitive relationships as they explain many of

the inferred co-expressions; these would otherwise be considered

as false-positives, although they are expected consequences of the

relationships used to model the system.

Many network identification methods have been proposed

[3,21,22] with the aim of finding causal relationships; our

approach has a different aim, to identify co-expression-cliques

based on a simple discretization table; this table is not merely a

step in the algorithm but can be subsequently revisited to reveal

the samples in which a gene-cluster is switched on, to associate

patterns discovered from network analysis with relevant subjects.

From a clique we expect to find some samples with most of the

genes uniformly switched off or on and this is easily revealed by

summing the discretized values for all these probe-sets.

Results

Practical considerations used in building and evaluating
gene-expression networks

We simplify microarray analysis by converting the real values in

raw data into 3 discrete values: 21 is down, 0 is around the mean

value and +1 is up (see Experimental Procedures). This simple

concept summarizes many biologists’ informal view of gene-

expression, often discussing only direction of change – up or down.

This gives a discretized matrix, from which we calculate three

possible relationships: mm (minus:minus, down-together), pp
(plus:plus, up-together) and pm (plus:minus, up-down). These

relationships can be formatted as pair-lists: pp, mm and pm to

compare networks from different datasets; in the case of pm gene1

is up and gene2 is down. Gene pair-lists are crucial to the practical

network interrogation; to identify co-regulation for a signaling

pathway its genes are first arranged in all pair-wise combinations,

which are then used to detect observed gene-pairs from a set of

biological samples.

Three datasets are used in this study: first, the San Antonio

Family Heart Study (SAFHS) [23] has produced genome-wide

transcriptional profiles of lymphocyte samples from 1,240

participants; second, 166 subjects from mixed European- and

Asian-derived populations by Cheung and Spielman [24] were

used to establish Epstein Barr virus immortalised lymphoblastoid

cells which were grown in cell-culture and the transcripts then

analysed; third Decode study GSE7965 with peripheral blood

samples from 1021 subjects [25]. SAFHS used Illumina chips

while Cheung and Spielman used Affymetrix Focus chips. We

compare networks from these two datasets and the large size of the

SAFHS allowed us to subdivide it into two independent subsets of

620 individuals. The use of different microarray technology

between Cheung and Spielman data and SAFHS further reduces

the possibility of technical artefacts and emphasises the wide

applicability of our methodology.

Validating the identification of correct relations
The simulation package SynTReN [20] builds microarray-like

data files based on a set of known transcriptional interactions

(between E coli genes in our test). Synthetic data from this program

have been used to validate network discovery methods for

microarrays [26]. Comparisons between the relationships used to

define the SynTReN data generation and the recovered networks

have been numeric, without apparent consideration of the type of

interaction. We have used a network approach to infer transitive

relations for positive gene-interactions to estimate sensitivity and,

more tentatively, specificity of our approach. Three interactions

are defined for E coli: ac (positive interaction), du (dual-action) and

re (repressor). Two of these are consistent with our defined

interactions: ac is equivalent to pp or mm, while re is our pm.

We do not infer a causal link from our relations. If we simply ask

for our relations to detect the original definitions, then our method

does well, correctly identifying between 70 and 95% of the correct

type of relationships and less than 10% of the incorrect (Table 1).

However specificity is less certain as the original gene-definitions

account for less than 10% of the edges in our predicted networks.

This comparison does not take into account transitive relations

(Figure 1); if gene1 is connected to gene2 by ac; and gene1 to

Discretization to Build Expression Networks
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gene3 by ac; this implies that gene2 and gene3 will also have a

positive relationship (Figure 1a); these are readily calculated by

using the ac definitions to build an adjacency matrix, squaring this

gives the nodes (genes) connected by path-length 2. Figure 1 (b–e)
shows other expected transitive relationships. As this analysis is only

relevant for ac (our pp and mm), we now have an extended

target which matches between 30 and 80% of the number of

gene-pairs in our analysis. About 75% of, ac defined, path-length

2 pairs are found in our mm and pp networks, but only 2% or

fewer in the pm pairs. Significantly these calculated path-length

2 connected-pairs, together with the direct ac definitions, now

account for between about 30 and 67% of all our mm and pp
edges. If we sum path lengths 1–3 relationships, for cluster 4

(Figure 2), the predicted and observed are in approximate

agreement. As we do not claim that this approach predicts all

expected gene-pairs, this seems a good validation of the detected

pp and mm using the SynTReN system, but a formal

identification of all expected relationships, even in this synthetic

system, is impossible as several conflicting definitions are used to

build the model for the data synthesis. In Figure 2, we have

supplemented this analysis by including re as 21 and ac as +1 in an

adjacency matrix to calculate possible transitive relationships and

compare this to the calculated pp network, from two independent

SynTReN generations of 200 samples; only common gene-pairs are

accepted. The two networks, generated in these fundamentally

different ways, are very similar. It is clear that the path-lengths of

greater than 2 can explain why the observed networks have more

highly connected sub-graphs for two clusters (c2 and c3).

The detected network size increases along with number of

samples (Table 1) suggesting that using larger numbers of samples

infers more and more relationships or is now detecting noise, most

of which we cannot predict from the E coli gene-definitions. This

suggests that best practice for the method is to use some form of

random sampling followed by selecting only pairs that occur in

more than one sampling (Table 2) as this should specifically

remove pairs due to low variance genes, which have no E coli

definitions and are presumably only affected in the SynTReN

simulation by added noise. This argument depends on random

numbers being generated with different values during each

simulation, This appears not to be the case (see below).

Estimation of false relations
We detect some du and re pairs in our pp and mm networks;

however, these are mostly defined as ac-connected by paths of

length 2, so are correct pp and mm pairs by this criterion. This

argument suggests that almost all the apparently false E coli

definitions are in fact correct. This still leaves the extra

relationships, not defined by the E coli model to explain. If we

assume that ‘‘correct’’ or true relationships are those that are

Table 1. Estimation of consistent identification of the E coli
transcriptional classification.

ac
S97

du
S11

re
S 41

ac path length 2
S = 837

ac & re
+1 21

100 samples
pp (S= 1082)
mm (S= 1054)
pm (S= 1169)

80 (82%)
89 (92%)
0

4
5
4

2
3
29 (71%)

575 (69%)
620 (74%)
0

715
750
38

23
20
316

200 samples
pp (S= 1668)
mm (S= 1373)
pm (S= 2152)

88 (90%)
92 (95%)
0

5
5
6

2
2
33 (89%)

638 (76%)
653 (78%)
10 (1%)

841
837
40

25
23
345

300 samples
pp (S= 1972)
mm (S= 1605)
pm (S= 2870)

93 (96%)
92 (95%)
0

5
5
6

3
3
36 (87%)

652 (78%)
667 (80%)
12 (1%)

871
864
43

29
25
361

400 samples
pp (S= 2315)
mm (S= 1938)
pm (S= 3605)

93 (96%)
93 (96%)
0

5
5
6

3
3
36 (87%)

662 (79%)
671 (80%)
15 (2%)

883
873
44

28
26
368

26200
pp (S= 1253)
mm (S= 1114)
pm (S= 2172)

91 (95%)
87 (90%)
0

5
5
6

3
3
32 (78%)

630 (75%)
640 (76%)
6 (1%)

857
801
41

28
21
337

We assess the correctness of our identified gene-pairs with the E coli activation
(ac) and repression (re) relationships used by SynTReN to build the networks.
This is equivalent to a check on specificity. We additionally wished to identify
gene-pairs which were highly likely to occur, based on the ac definitions, but
including transitive relations, that is - all the genes that are connected by an ac
network path-length of 2. This 2-path network is not a full prediction of all
observed relations in the data-file as it does not include the du and re pairs. We
calculated the sum of the E coli definition adjacency matrices for ac (+1) and re
(21) for path-length 1, 2 and 3 and again compared this network with our
identified pairs. The results with correlation analysis are almost the same as
those found by discretization.
doi:10.1371/journal.pone.0018634.t001

Figure 1. Predicted transitive relations in a SynTReN model
network. The definitions used by SynTReN to model synthetic data ac
(positive-regulation) and re (repression) are illustrated with the effector
on the left. The targets with transitive relations, either positive or
negative are shown connected with a dotted edge. Five simple motifs
are illustrated, but scope for more complexity exists when these
relationships overlap. Positive co-expression is predicted by either ac or
re definitions, but the two targets have to be connected to the same
effector by the same relationship for this to be true (a & b). Negative co-
expression needs some form of asymmetry, as shown in c–e. The
success of our predictions depends on how the simulation is set up; we
used 100 genes with known relations and 100 background genes, in the
comparisons shown in Table 1, but decreasing the number of
background genes increases the complexity of the expected transitive
relationships.
doi:10.1371/journal.pone.0018634.g001
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directly or indirectly (transitive relationships), defined by the E coli

transcription model, used in the SynTReN simulation, we can

count the network relations which do not fit this criterion.

However this is likely to overestimate the ‘‘incorrect’’ pairs as we

find about 15% of the pairs in mm and pp relations come from

this group but less than 2% in pm networks. It is likely that these

undefined genes form relationships by their relative invariance in

the model as noted in the original SynTReN paper [20]. In a

simulation data file, if genes with less than half of the modal

variance were selected, 77 out of 78 genes are undefined. Almost

all these are designated as background genes by SynTReN and

given the prefix ‘‘bgr_’’. It is difficult to set an optimal cut-off for

excluding genes by low variance with the SynTReN data and this

is likely to be much more of a problem with real data. Our

inability to exclude all the bgr_ genes may not be a failure of our

algorithm as comparison of bgr_ containing gene-pairs between

two runs of SynTReN shows an extremely non-random result.

The correlation between the r values, linking these genes, between

two the runs is 0.98, so it appears that background modelling in

SynTReN is non-random. This also explains our inability to

exclude FALSE relationships by comparing multiple simulated

data-sets. We find that these genes contribute about 15% of our

co-expressed relationships, consistent with this relative invariance.

However the undefined genes do not appear in any cluster

Figure 2. Comparison of pp identified gene-pairs with transitive path-length 2 pairs from E coli transcriptional definitions. An
adjacency matrix was constructed, where the E coli definitions ac was set to 1 and re set to 21; du relationships were set to 0 and are therefore
ignored in this analysis. This adjacency matrix, A, was squared (A.A) which reveals paths of length 2; in this qualitative analysis no allowance is made
for loss of relationships due to positive and negative values summing to zero. This E coli definition derived matrix is the upper-triangle in the diagram
and the gray squares are positive and black are negative. The lower-triangle is the pp matrix calculated from the SynTReN simulated data for 100
samples.
doi:10.1371/journal.pone.0018634.g002

Table 2. The use of independent studies to increase
specificity in network determination.

ac du re Low-variance pairs

Subset 1 pp
mm
pm

1547
1343
2083

92
90
0

5
5
6

3
3
33

14
12
8

Subset 2 pp
mm
pm

1621
1391
2099

92
89
0

5
5
6

3
3
34

9
10
5

Subset 1 AND 2 pp
mm
pm

1253
1114
1364

91
87
0

5
5
6

3
3
32

4
5
0

SynTReN was used to build a synthetic dataset of 400 samples, these were
randomly subdivided into two subsets of 200 each. The discretization-based co-
expression networks were calculated for each and the shared edges used to
give a third network. The 10% of the genes with the lowest variance were
selected and the possible gene-pairs for those determined, all of these genes
were not defined by ac, du or re relationships. The low-variance based gene-
pairs detected are preferentially discarded by this procedure, suggesting that
this is one reasonable technique for discarding false relationships.
doi:10.1371/journal.pone.0018634.t002
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identified by spectral analysis [27] in our mm, pp or pm
networks (not shown), so their inclusion in the network does not

interfere with our aim to identify significant patterns of co-

expression, which we believe is an essential prerequisite to discover

reliable patterns in our networks. The pm analysis has not been

formally analysed in the same way, but it appears that a

combination of transitive ac relationships, together with a small

number of negative re relationships do account for a substantial

number of the relationships found. It is clear from Figure 2 that

clusters c1 and c3 are expected to have a pm relationship, from

the re path-length 2 links between the two; in fact pm
relationships between the 3 clusters in the pp network account

for about 50% of all the pm pairs.

We have compared our approach with those methods

summarized by Pihur et al [26] and they show the same effect of

increasing the fdr as we find by using larger number of samples –

the number of detected edges increase. In their case they are

lowering their confidence limit, in ours, using larger number of

samples paradoxically increases the number of edges which we

cannot justify theoretically. This suggests that less plausible edges

are being added, our structural approach to the ‘‘correct’’

theoretical network supports this. Most path-lengths 1 and 2

relationships are detected early and it is clear that longer paths

explain the ‘‘filling out’’ of clusters c2 and c3 (Figure 2).

Consistently Detected Relationships
The SynTReN simulated data for 400 samples was randomly

partitioned into 2 equal matrices and the network analysis carried

out on both subsets. Around 20% of the edges were discarded

when the two subsets were compared, however using the E coli

definitions as our standard only 1 or 2 of these relationships are

lost, these includes the du and re relations detected by the pp and

mm pairs. All these networks were also compared to the genes

with lowest variance in the simulated data, which we suggest as

candidates for incorrect relationships, in the pp and mm pairs

these were substantially reduced in the networks identified by the

intersection of the 2 subsets (50–65%) and completely lost with the

pm intersection (Table 2).

Effect of Noise
The activating (ac), dual (du) and repressive (re) relationships

give one measure of correct inference by our program or a reverse-

engineering approach, such as Aracne. Using this criterion both

do very well and only begin to fail to detect TRUE pairs at high

noise levels (bio-noise of 0.35–0.5), data not shown; however both

programs are strongly affected by noise and identify many

relationships that only appear to be affected by noise. SynTReN

conveniently prefixs these genes with ‘‘bgr_’’; as well as these

FALSE relationships many additional gene-pairs are detected at

high noise levels, whose connections must be considered as

dubious. It is possible to filter out many of these FALSE and

suspect pairs at lower noise levels (0.1–0.3) by excluding genes of

low variance; this does not work at higher noise levels. Both our

program and ARACNE can reduce this problem by decreasing

the probability cut-off used, however this has the undesirable effect

of losing TRUE relationships. While we were developing our

discretization approach we were also using correlation to

determine probable positive and negative relationships and were

aware of very great similarities in the resulting networks – the main

difference was that discretization could subdivide both positive and

negative correlations into pp, mm, pm and mp pairs. We used

positive and negative correlation identified pairs to try to filter out

FALSE gene-pairs; correlation analysis with a value of r as low as

0.1, equivalent to a p-value for two-tailed testing of 0.32, removes

around 80% of pairs containing ‘‘bgr_’’ in both low- and high-

noise cases. This also holds for Aracne. When noise is high this

filtering loses from 10 to 25% of the TRUE relationships at the

highest value of r tested (0.3, equivalent to p-value of 0.0024); the

signal to noise improves dramatically. As we do not have a definite

number of TRUE relationships we choose to compare our known

repressive and activation definitions with the ‘‘bgr_’’ pairs, this

information is shown in Table 3. Two main conclusions come

from these results – first, the correlation filter removes very few of

the TRUE relations, even when filtering at the highest r value;

second, the bgr_ pairs are significantly removed, even at r of 0.1.

Although correlation has weak interpretative power, compared

with discretization, it offers a powerful improvement to the

method and carries the benefit of well-understood probability

inference. The remaining ‘‘bgr_’’ pairs do not pose a problem to

identifying cliques of co-regulated regulated genes, as we aim to

do, for biomarker identification; the ‘‘bgr_’’ pairs are poorly

connected and are clearly separated, by eigen- or SVD-reordering,

from genes involved in real modelled simulation.

Analysing real observational data is less clear as noise is

unknown and many samples may not show a relationship

important for other individuals – in cancer studies an activated

oncogene may condition the controls operating in a subset of

patients. Our analytical settings, based on SynTReN simulations,

must therefore only be considered as guidelines for real data, but

show that it is easy to greatly improve network inference by this

simple technique.

Validating biological relationships in the networks
Any new method should detect previously identified informa-

tion which we can generate using published analyses. We used a

Table 3. Effectiveness of correlation network as a filter.

Bio-noise r for filter Network ac re bgr__

0.1 0 pm 4 36 5707

pp 94 7 3095

mm 94 8 1758

0.1 pm 1 36 1240

pp 90 7 632

mm 91 8 410

0.3 pm 1 36 20

pp 90 4 16

mm 91 4 11

0.5 0 pm 12 37 15101

pp 91 13 7213

mm 91 13 7148

0.1 pm 1 35 3086

pp 89 3 1394

mm 90 3 1466

0.3 pm 0 27 141

pp 84 3 87

mm 84 3 86

The discretization analysis was performed at two levels of ‘‘bio-noise’’ 0.1 and
0.5. Positive correlation was used as a filter to remove edges not present by
correlation from pp and mm networks. Negative correlation at the three r levels
was required for pm edges to be retained. With 0.1 noise, correlation removes
almost no TRUE edges while removing most of the FALSE (bgr_) pairs.
doi:10.1371/journal.pone.0018634.t003
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set of genes identified in the Cheung and Spielman [20] data as

differentially expressed between European and Asian subjects.

These were divided into two groups European-up (Eu) and

European-down (Ed) and these separate lists used to build gene-

pair lists, Eu : Ed. The gene-pair list has all possible combinations

of the genes in Eu, in column 1, with the genes in Ed, in column

2; we expect the relationships to be in the opposite sense in Asian

subjects. While we expect these relationships to occur commonly

in the data we do not expect all genes to be uniformly up-regulated

in one population or down in the other and in the original paper

there is a spread of variances to support this view. In our analysis

we would expect to find these pairs predominantly in our pm or in

the negatively correlated networks as they would be predicted to

behave in the opposite way in both European and Asian subjects.

We looked for the 258,096 possible Eu : Ed pairs in networks built

by discretization (Z = 0.4) and by correlation at nominally similar

significance cut-off (P,0.005). Only the Cheung and Spielman

data revealed significant differences between the expected match

in the pm network (60%) and pp or mm (2%); similar results are

found using correlation (Table 4). With discretization mm and

pp (negative control) only 2.5% of the pairs were found but pm
matched 55%; correlation (correlation coefficient = 0.29, n = 166)

did less well with positive correlation matching 1.7% and negative

correlation only 25%. These comparisons show that the expected

gene-pairs, from the published data, are found with reasonable

sensitivity, 60% or 39% for discretization and correlation

respectively. The lack of matches to the mm and pp pair lists,

2%, shows that good specificity within the same dataset is found by

both methods. When matches to the same Eu : Ed gene pair-list

are looked for in the SAFHS or Decode the specificity is lost

(Table 4), this is the expected result, as the original patterns were

due to differences between the European and Asian subjects in the

Cheung and Spielman data, which would not be expected to be

found within the Mexican-American or Icelandic populations.

Numerical assessment of networks
The reproducibility of networks identified by discretization was

examined by comparing the gene-pair lists for two randomly

selected subsets of SAFHS. The Z-score cut-off was set at a low

value (Z = 0.4), allowing small, but detectable, changes in gene-

expression to be evaluated; as a result the networks contain many

edges. The mm and pp networks were found to share many edges

(106106, 66%) both within and between the randomly-selected

subsets, see Table 5; genes which are down-together are also

often up-together. The pm networks from the subsets showed a

similar level of shared edges (236106, 72%) (Table 5). However

comparing mm or pp to pm finds almost no shared edges

(16103, 0.001%), suggesting a highly specific exclusion of pm
relationships from mm or pp even in independent sample subsets.

It could be supposed that what we are seeing in our networks is

strongly influenced by ‘‘noise’’. In an attempt to address this, the

gene-sample discretized matrix was randomized and the network

calculation repeated, to estimate the number of edges or network

size we expect by chance association. Randomization gives

networks of only 5% of the normal size, with Z = 0.4 (Table 6);

when the cut-off is increased to Z = 1.6, the randomized data gave

a network size of about 1% of the normal size (data not shown). As

a further test, multiple randomization runs (n = 100) were used to

estimate the probability that observed network size could be due to

chance; using the t-test to assess the chance of constructing a

network of the observed size, due to random effects, finds P of

approximately zero (t = 210730.284 for Z = 1.6 and

t = 272926.2102 for Z = 0.4). Edge-by-edge comparison of true

with randomized networks is very revealing; when mm or pp
networks were compared to their randomized counterparts the

number of shared edges is about 1% of the true network size. When

mm or pp networks were compared to the randomized pm
networks the number of edges in common is now about 2-fold

higher, showing that the normal lack of shared edges is lost

(Table 6). The extremely low coincidence of edges between pm
and (mm or pp) implies that the networks do contain very specific

Table 4. Assessment of predicted pm relationships from European versus Chinese and Japanese data.

pp mm pm +ve corr 2ve corr

Cheung 5 053 (2%) 4 911 (2%) 155 326 (60%) 5 880 (2%) 101 862 (39%)

SAFS 36 342 (14%) 40 268 (16%) 45 439 (18%) 40 248 (14%) 42 054 (16%)

Decode (all) 33 921 (13%) 34 831 (14%) 47 699 (18%) 46 272 (18%) 48 574 (19%)

Decode (male) 3 601 (1%) 3 595 (1%) 5 397 (2%) 48 950 (19%) 51 212 (20%)

Decode (female) 5 980 (2%) 5 952 (2%) 9 010 (3%) 38 034 (15%) 39 730 (15%)

Genes with significantly different expression between Asian and European subjects were identified by Spielman et al [20] and we divided these into two groups -
European-up (Eu) and European-down (Ed), using the average expression for Europeans minus the average expression for Asian (Chinese and Japanese). These two
probe-lists were used to make a pair-list of all possible combinations of Eu : Ed, and filtered to only contain the probes which appear in our final discretized data
(Z = 0.4). For comparisons with the non-Affymetrix data (SAFHS and Decode) this Affymetrix probe pair-list was converted into a gene symbol pair-list. The comparisons
show the number of common unique pairs between the networks and the Eu : Ed pair-list.
doi:10.1371/journal.pone.0018634.t004

Table 5. Comparison of discretized networks from 2 subsets
of SAFHS subjects.

Comparison of 2 randomly selected independent subsets of SAFHS
(620 and 619 subjects) (edges 6103)

mmB pmA pmB ppA ppB

mmA (15523) 10787 0.1 1.4 9864 9656

mmB (16548) 1.2 0.01 9819 10483

pmA (21093) 14400 0.045 1.0

pmB (22119) 0.8 0.003

ppA (16071) 10653

ppB (16723)

‘‘Duplicate’’ information is discarded in these comparisons; reasons for
duplication include multiple probesets for single genes and in the pm networks
relationships going in both directions. Networks were constructed by the
discretizion (Z = 0.4) or correlation methods from two randomly selected
sample subsets of the SAFHS dataset. The number of edges in each of the
networks is given in brackets (6103).
doi:10.1371/journal.pone.0018634.t005
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information; this is reinforced by the same comparison between

two sample subsets (Table 5). We find however that comparing

common mm and pp pairs between subsets A and B does not give

an enhanced intersection, perhaps giving extra credence to the two

network types carrying different information. This is not true in

SynTReN modelled data where we find structures indicating

symmetry.

The networks are robust to different microarray
technologies

These two studies differed in two important respects: first,

they used different microarray technologies and second, the

SAFHS study directly measured the RNA from isolated cells

[23], while Cheung and Spielman used immortalized lympho-

blastoid cells, subsequently grown in tissue culture to minimize

environmental effects [24]. For all these reasons we expect the

shared patterns of gene-expression to be low but we looked for

any specificity indicating that the technique could pick out

meaningful shared biological patterns. Network comparison

within single datasets showed high specificity: within the Cheung

and Spielman data like the SAFHS mm and pp networks share

many edges, while the pm network has few shared edges with

either mm or pp (Table 7). When the Cheung and Spielman

mm, pp and pm are each compared with all three (mm, pp
and pm) networks from SAFHS they always find more pairs in

common with the homologous networks. So it is clear that

specific effects are found despite the biological and technical

differences between immortalized lymphoblastoid cells, grown in

tissue culture, and assayed with Illumina microarrays and white

blood cells directly isolated from blood and analyzed using

Affymetrix Focus GenechipsH.

Does discretization have any advantage over correlation?
If the discretization approach is to have any merit, over

correlation, it should identify asymmetrical relationships. The

connectivity of two transcription factors RUNX1 and RUNX3

changes dramatically in the SAFHS pm (Z = 0.4) network; when

they are up-regulated RUNX1 is connected to 927 genes and

RUNX3 to 1584, when down RUNX1 has 3874 partners and

RUNX3 only 988. The RUNX genes are known to be important in

normal haemopoiesis [28] and RUNX3 has been found to suppress

CD4 in T-cell differentiation [29], which we also observe here as a

pm relationship in the SAFHS, along with the suggested links

between RUNX3 and the proteolytic enzymes granzyme and

perforin found in effector T-cells (not shown).

Identifying gene-pairs with symmetrical behaviour, however,

does give insight into network structure. We evaluated the

reciprocal nature of the relationships by counting shared edges

in mm and pp networks, from separate, randomly-selected

sample subsets (Tables 5). Over 60% of the edges were shared

between the networks, suggesting that it is common to find the

same pair of genes both up and down-regulated together. The

gene-pairs that passed this test are more highly conserved between

the two sample subsets with the overlap between the mm:pp
intersections being around 73%, about 10% higher than for the

single mm or pp networks (not shown). In pm networks, also

about 60% of the gene-pairs exist in both up-down senses

(pm:mp); here again a slightly higher level, about 70%, were

found between these reciprocal-pair networks from the two sample

subsets, so the up-down pairs, which are found in both senses, are

found more reproducibly (data not shown). Not one common pair

existed between the mm:pp and pm:mp intersection networks,

even between the separate subsets, where random effects might

have been predicted to give some common pairs. This dramat-

ically illustrates the specificity of the determined relationships and

implies that the networks have a consistent structure. We do not

propose this is a good method for discarding ‘‘unreliable’’

relationships as we believe that many crucial control effects will

be asymmetric.

Using the SAFHS data, we compared the networks derived

using our discretized data followed by selection against a Monte

Carlo calculated cut-off with correlation analysis. For the

correlation-coefficient cut-off of +0.1032 about 60% of the edges

are also found in our mm and pp networks (Z = 0.4), but only 2%

in common with the pm networks. This result is reversed with

correlations of less than 20.1032, with mm and pp only

matching 2% of the edges but pm now sharing about 65% of

the edges, see Table 8, showing that the relationships identified

by the two methods are consistent.

Identification of a bi-phasic network for central metabolic
pathways

We wished to illustrate network analysis with genes relevant to

metabolic syndrome. Genes for the energy metabolic pathways

glycolysis, tri-carboxylic acid cycle (TCA), fatty acid synthesis and

Table 6. Discretized networks carry consistent information.

Effect of randomization on specific information in networks
(Cheung and Spielman, Z = 0.4) (edges 6103)

pm pp

Randomized
mm
(80)

Randomized
pm
(79)

Randomized
pp
(159)

mm (2177) 18 1466 15 30 15

pm (2875) 18 21 40 21

pp (2180) 15 30 15

Networks were constructed from discretized (Z = 0.4) data for all the Cheung
and Spielman subjects, with the total number of edges shown in brackets. The
left-hand 2 columns show the number of shared edges for un-shuffled
discretized gene-sample data, while the right-hand 3 columns give the result of
the comparison between the un-shuffled and shuffled gene-sample networks.
Randomization was carried out for each row of the gene-sample discretized
table using the R-package function ‘‘sample’’.
doi:10.1371/journal.pone.0018634.t006

Table 7. Discretized networks carry consistent information.

Comparison of networks from Cheung and Spielman (C) and SAFHS
(S) (6103)

pmC ppC mmS pmS ppS

mmC (2177) 18 1466 482 297 448

pmC (2875) 18 386 614 349

ppC (2180) 464 277 432

mmS (23368) 872 16697

pmS (24571) 848

ppS (31006)

The networks were derived from discretized data (Z = 0.4) for both the SAFHS
(S) and the Cheung and Spielman (C). For comparison purposes the platform
specific identifiers were converted to gene-names and any resulting probe-set
redundancy eliminated. Only the gene-names represented on both the Illumina
and Affymetrix chips were used in this comparison. The numbers for
comparisons between the different datasets are shown in bold.
doi:10.1371/journal.pone.0018634.t007
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degradation were identified from KEGG pathways [30]. A pair-list

was built of all combinations of these genes. Matching pairs in our

pp network for the Decode blood samples [25] were identified and

these were formatted in an adjacency matrix. The TCA cycle is

central to energy metabolism and here we were surprised to find

that its genes are not uniformly transcriptionally regulated

(Figure 3a). Our initial observation was made only with the

genes coding for TCA cycle proteins, but we extended the analysis

to include other energy pathways to find if the patterns observed

with the TCA cycle fitted into a more extensive scheme. Separate

analyses were performed on male and female data and about 80%

(Figure 3d) of the gene-pairs were found in both. The networks

were reordered using spectral analysis [16], using the R-function

‘‘eigen’’, and similar patterns found for both sexes (Figure 3a,b).

These gene-orderings were compared (Figure 3c) and found to be

very similar in male and female, however some crucial genes seem

to show differences. These pathways are central to metabolic

control and the patterns we observe in two independent data-sets

(male and female) reflect this.

Discussion

A central aim of our approach is to identify positive and

negative interactions, achieved by a discretized data-file (21,0,1),

which can be used for further analyses. We have used discretized

data-files to combine data from a large study of oral cancer [15],

gathered by two Affymetrix chip types (133Plus2 and 133a/b);

other attempts to normalize and combine the data failed to

overcome the differences between the two chip types. This result

encouraged us to examine network analysis from the same starting

point. An essential part of bio-discovery is to be able to map gene-

clusters onto samples where they are over or under expressed. The

discretized gene-sample data can be reordered using spectral

analysis [16], but if a gene-cluster really behaves co-ordinately the

samples can be grouped simply by selecting these genes from this

file and summing the columns, to reveal the mean number of

genes ‘‘off’’ or ‘‘on’’ in every sample. This ability to change the

level of analysis is crucial to begin to understand possible biological

associations with the patterns observed in the networks. Simple

statistical tests, like Chi-square, can be used to evaluate defined

gene patterns (on- or off-together, or off-on) with sets of single

nucleotide polymorphisms (SNPs) or with sex or some disease or

lifestyle factor.

The use of SynTReN simulated data allows us to examine the

mapping between the E coli relationships, used to build the data

files, and our determined relationships. The most simplistic

comparison is the comparison between our network pair-lists

and the E coli definitions; as we have two classes of networks (pp
and mm) and pm, we expect a difference in the types of

relationship found. These comparisons are shown in Table 1.

Both pp and mm networks mainly identify the positive ac
definitions while pm identifies mostly the repressive re. More

predicted pairs, defined by transitive relationships from the E coli

gene-interactions, give a much better match to our calculated

networks. Networks based on correlation analysis allow us to select

gene-pairs which are significant by both methods, discarding many

FALSE relationships from SynTReN data, but reveal some highly

reproducible FALSE pairings, presumably due to consistent

generation of ‘‘random’’ numbers. This makes SynTReN

unsuitable to evaluate the use of multiple sampling to discard

non-significant gene-pairs.

A systems biology approach suggests that many compensatory

changes in gene-expression will be found in random samples of

any human population. Some variability is due to genetic [6] or

environmental [13], including dietary effects. Here we do not

explore the cause of variability but test the idea that if

compensatory changes occur regularly they should lead to many

more correlations between genes being observed than would occur

by chance. We chose two methods of detecting positive and

negative co-expression – correlation and discretization, with co-

occurrence assessed by Monte Carlo (MC) sampling. The two

approaches agree, finding millions of gene-pairs in common and

few positive co-expression relationships matching negative co-

expression by the other method. The consistency of the detected

patterns was further confirmed by the same patterns being

frequently identified in two randomly-selected samples (620

subjects in each) from the SAFHS; multiple sampling of this

dataset results in a convergence to a core set of gene-pairs which

are present in all independent runs, these form about 50% of the

network discovered by a single analysis, but comparison of 2 sets of

shared pairs, each from 2 random samplings, showed about 80%

shared pairs. The relationships capable of being described by our

discretization method add biologically relevant information not

available by correlation analysis. Two genes may be up-regulated

together under the control of one transcriptional factor, but in the

absence of that factor they might be independently controlled; if

that were true our expectation would link the genes only in the

‘‘up-together’’ (pp) network. Considerations of the presence or

lack of symmetry therefore add to our analytical toolbox. With

correlation analysis two genes have three possible relationships –

positive or negative correlation or no significant link.

Table 8. Discretized and correlation networks share many relationships.

Comparison of discretization and correlation networks (edges 6103)

Correlation.0.1032
(12900)

Correlation,20.1032
(20000)

Discretization networks Only in discretized Both Only in correlation Only in discretized Both Only in correlation

mm (10300) 2600 7600 5300 1000 300 19700

pp (10300) 2500 8800 4100 1000 300 19700

pm (12800) 12500 350 12500 4500 8300 4500

Tabular Venn-diagrams show the shared information between networks constructed using discretization and correlation methods; both methods were applied to the
two subsets of the SAFHS. The networks from each subset, for each method, were compared and only the gene-pairs found in both subsets were used for the
comparison. The comparison between discretized and correlation networks is described in Methods. All duplicate gene-pairs, resulting from multiple probes, were
eliminated – leaving only one gene-pair for each relationship; here the direction of the pm relations is ignored. The size of each resulting network is included, in
brackets.
doi:10.1371/journal.pone.0018634.t008
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Biological consistency was explored by comparing two inde-

pendent studies of peripheral white-blood cell derived samples.

Despite the differences in generating the data, along with the

microarrays being carried out on different platforms, hundreds of

thousands of gene-pairs were found in common in the two data-

sets.

The discretization method was examined by the size (number of

edges) of a co-expression network from actual data and from a

randomly shuffled discretized matrix (Figure 3b). The shuffled

matrix reveals the number of gene-pairs that are likely to be due to

chance, given the true variability of each gene. The discovered

networks were over 20-fold larger and shown to have a

significance of P approximately zero, by t-test. All these criteria

demonstrate that co-regulation is observable and is at least partly

revealed in our networks. We demonstrate that the genes of central

metabolic pathways can be used to interrogate the co-expression

networks and to reveal previously unreported details. Spectral

analysis reveals a clear division of this network into 2 sets of nodes

and the genes which show the biggest difference in the networks

for males and females contain some plausible pivot genes for

metabolic control (PPARA, CPT1A, CPT2, PRKCA and ACACA).

Despite these differences between the male and female networks

the similarities are significant, about 80% of the edges are shared.

From the bio-discovery viewpoint it is important to take a set of

genes of known relevance and to find out how they are controlled

in a large observational study, then to be able to analyze observed

patterns and find out how they are affected by known biometrics

or treatment regimes.

We speculate that these networks, which we have shown to

contain many more edges than would occur by chance, may

represent patterns of co-regulation which may include possible

molecular regulatory partners without implying that there are

direct causal links, however we are aware that in at least some

cases the molecular interaction argument is not correct. The

Cheung and Spielman data are likely to be free of heterogeneity of

growth and nutrition but the immortalization procedure carries a

risk of fixing differences at the time of establishing the cell-lines.

Detecting common patterns of transcription between the two

datasets is a strong indication that some of the patterns we observe

are conserved despite environmental and other differences.

Generations of biochemists have viewed the TCA cycle almost

as dogma; here we show a clear difference in two subsets of the

genes on the two sides of the cycle schema. SDH(B,C,D), FH and

MDH1 appear to be strongly co-regulated and are negatively co-

regulated with ACO(1,2), IDH3(A,B) and OGDH; which in turn

are more weakly co-regulated. This is consistent with the many

other metabolic roles these enzymes play apart from their place in

the TCA cycle. The ability to focus on a set of genes with an

apparently well-understood role is an important aspect of being

able to easily dissect and focus on small parts of an otherwise

humanly unknowable network.

Regulatory links may be revealed by our networks, but

biological experimentation is essential to confirm this, so our

networks provide detailed information in a well-ordered manner,

allowing a rational design of perturbation experiments. The

second advantage of a network approach is to rapidly gain an

overview of the patterns of expression relevant to any biologically

defined process. Here, by simply defining the genes involved in

energy metabolism, we were able to find co-expression patterns in

white-blood cell derived samples – the biological drivers for the

patterns are then open to investigation. Using such patterns

together with the discretized gene-sample matrix it is simple to

look for association between a set of genes being switched on with

patient biometrics or treatment.

Conclusions
Discretization with our co-expression analyses successfully

identifies most of the defined relationships used to construct the

SynTReN synthetic ‘‘microarray data’’. It also detects many

transitive relationships which are constrained to exist by the

presence of common activators or repressors. The co-expression

analysis, compared with correlation analysis, identifies many

shared gene-gene relationships in observational microarrays, even

when the platform for carrying out the mRNA analysis is different.

The co-expression of metabolic-related genes in males and females

is shown to be largely similar, but find a number of differences in

known control genes. The results indicate that the described

method can be used to identify real relationships, suggesting that

the discretized data is a useful adjunct to reveal patterns in gene-

expression data.

Methods

Genes with unexpectedly high or low values, compared to their

mean values, are classed as 1 or 21 respectively, using the method

of Quackenbush [31], where each sample is compared to the mean

of all samples in the dataset. This discretized matrix is used to

derive two matrices, P and M, holding the positive and negative

information in all positive forms. The transpose of these matrices

(P’ and M’) are then used to calculate the inner-products, P.P’,
M.M’ and P.M’; these matrices record the sum of all samples in

which each gene-pair is recorded. The scores are evaluated against

a calculated expectation (P = 0.005), by Monte Carlo sampling

[32]. The inner-products (P.P’, M.M’ and P.M’) are adjacency

matrices and record the number of samples in which the accepted

gene-pairs are found. For computational purposes, the adjacency

Figure 3. Co-expression networks for fatty acid, tri-carboxylic acid cycle, glycolysis and related genes in peripheral blood cells. The
patterns of co-regulation of TCA-cycle genes by correlation and discretization are summarised (a). The correlation cut-off was set at 60.1032, which
gives approximately equal probability of accepting a gene-pair (P = 0.005) as the discretization method (quantile = 0.995). The top row shows positive
co-regulation and the next row negative co-regulation. For illustrative purposes the pm graph is simplified by removing directionality from the edges.
Although some of the details are different, both methods show strong co-regulation of SDH(B,C,D), FH and MDH1 and a weaker co-regulation of
ACO(1,2), IDH3(A,B) and OGDH. With both methods this second group is more clearly delineated by its negative relationships to the first group. The
networks (b, c) were produced using the pp discretization method and the genes were selected using genes for three areas of metabolism using
KEGG pathways [27]. Analyses were carried out, in data from GSE7965, separately for male (b) and female (c) subjects. The network was analysed
using the ‘‘eigen’’ function from the R-package, the first eigen-vector was used to reorder the nodes. The rank of the genes from the first eigen-vector
for each sex was compared (c) and over 80% of the genes lie within 10 positions of their order in the opposite sex. The genes showing the largest
difference between male and female are ACADL (beta-oxidation of fatty acids), CPT2 (transport of long chain fatty acids into mitochondria), PPARA
(transcription control of fatty acid and carbohydrate metabolism), CPT1A (transport of long chain fatty acids into mitochondria) and ACACA (fatty acid
synthesis). (d) Comparison of gene-pairs between male and female networks, over 80% of the pairs are common. The maximum number of edges in
this network is 5151 gene-pairs. The order of genes in (b) is shown in (e); the prominent cluster near the origin are genes 1:40 and the more diffuse
cluster from about 55 to the end. The TCA genes in cluster 1 (OGDH, IDH3A, ACO2) and cluster 2 (SDHA, SDHC, FH, SDHD, SDHB) show that many of the
relationships, found for the TCA cycle genes for both sexes, fit into a wider pattern of gene for the separate sexes.
doi:10.1371/journal.pone.0018634.g003
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matrices for P.P’ and M.M’ are stored in the upper-triangular

form with each gene-pair represented only once and diagonal

entries are set to zero. P.M’ stores the up-down relationships and

is asymmetric. To represent the relationships identified by the

discretization method we use the following terminology: genes

mm (minus:minus, down-together), pp (plus:plus, up-together)

and pm (plus:minus, up-down). The adjacency matrices are

converted into pair-lists: pp, mm and pm which are used to

compare networks from different datasets; in the case of pm gene1

is up and gene2 is down.

We wished to filter out relationships that were likely to be due to

chance, given the density, or number of 1’s for each gene. Using

Monte Carlo sampling methods [32] we estimated the distribution

of scores for randomized vectors of all possible densities, by

permuting the order of each and then recording the number of

times 1’s occur for both vectors at each position. The test was

repeated 1000 times for every pair of vectors and the values which

exceeded 99.5% of the random scores (calculated by the R-

package [33] function quantile [34]) were accepted. We estimated

the false positive rate by randomizing the order of each gene

vector in the discretized gene-sample matrix, then constructing the

matrices – this gives around 5% of the edges found with un-

shuffled data.

To examine detailed information, the matrices were converted

to edges (gene-pairs) including the number of samples where the

relationship was found (Figure 2). Two graphs can be compared

to find the number of edges in common (intersection). In the pp or

mm graphs the order of the nodes is not significant, but in the pm
graph we use the convention where node-1 of each pair is p and

node-2 is m. The ordered pm structure allows evaluation of pairs

for both pRm and mrp relationships; so the pm matrices are

square and asymmetric with directed edges.

Lower Z-score cut-offs give better detection sensitivity to the E

coli definitions (Table 9), but the lowest value we used was Z = 0.4,

as we want to build our networks using observable changes in

gene-expression.

The analysis described was carried out on three datasets:

GSE5859 immortalized lymphoblastoid cells [24] referred to

here as the ‘‘Cheung and Spielman’’ data, downloaded from the

Gene Expression Omnibus repository (http://www.ncbi.nih.

gov/geo), the San Antonio Family Heart Study (SAFHS),

TABM305 [23], downloaded from ArrayExpress (http://www.

ebi.ac.uk/microarray-as/ae/) and the Decode study, GSE7965

[25], from GEO; these were chosen as they represented large

independent studies derived from white blood cells. The SAFHS

was very large (1239 samples used here) and enabled random

subdivision (groups of 620 and 619) to compare independent sets

of samples from the same source.

R-scripts and perl programs, to carry out the analyses described, are

available on-line (http://sourceforge.net/projects/gene-expression/).

We have compared networks from discretization and correla-

tion analysis and have tried to use approximately equal probability

cut-offs for both methods, with P approximately 0.005; for

discretization this is set by the co-occurrence score distribution

from the Monte Carlo sampling, and correlation by t-test using the

formula: t~
rffiffiffiffiffiffiffiffiffiffi
1-r2

N-2

� �q where r is the Pearson correlation coefficient,

and N is the number of observations.
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