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Abstract: In patients that are admitted to intensive care units (ICUs), the clinical outcome of severe
infections depends on several factors, as well as the early administration of chemotherapies and
comorbidities. Antimicrobials may be used in off-label regimens to maximize the probability of
therapeutic concentrations within infected tissues and to prevent the selection of resistant clones.
Interestingly, the literature clearly shows that the rate of tissue penetration is variable among an-
tibacterial drugs, and the correlation between plasma and tissue concentrations may be inconstant.
The present review harvests data about tissue penetration of antibacterial drugs in ICU patients,
limiting the search to those drugs that mainly act as protein synthesis inhibitors and disrupting DNA
structure and function. As expected, fluoroquinolones, macrolides, linezolid, and tigecycline have an
excellent diffusion into epithelial lining fluid. That high penetration is fundamental for the therapy
of ventilator and healthcare-associated pneumonia. Some drugs also display a high penetration rate
within cerebrospinal fluid, while other agents diffuse into the skin and soft tissues. Further studies
are needed to improve our knowledge about drug tissue penetration, especially in the presence of
factors that may affect drug pharmacokinetics.

Keywords: antibacterial; penetration; critically ill patient; intensive care unit; fluoroquinolones;
macrolides; tetracyclines; aminoglycosides; linezolid

1. Introduction

Patients that are admitted to intensive care units (ICUs) have a variable risk of death
depending on their health status, the severity of the disease, and the presence of comorbidi-
ties [1]. Notably, hospital admittance may be associated with the onset of new infections [2],
as well as healthcare-associated pneumonia (HAP) and ventilator-associated pneumonia
(VAP). Those infections often develop in ICU patients [3], and the COVID-19 pandemic has
exacerbated that situation [4]. Furthermore, the rapid spreading of less sensitive bacterial
strains or multidrug-resistant clones can worsen the clinical and microbiological outcomes
of severely ill patients [5].

Some strategies can maximize the efficacy of antimicrobial drugs in ICU patients. For
example, off-label doses of tigecycline improve the survival rate of patients, and they reduce
the risk of mutant clone selection [6], despite treatment-associated toxicities increase [7].
Moreover, non-standard dosages can counteract the alterations of drug pharmacokinetics in
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ICU patients [8]. Sometimes those strategies fail to improve the outcome of chemotherapy.
Ciprofloxacin in septic patients with augmented renal clearance may reach plasma (and
tissue) concentrations that are lower than expected [9], the patients do not promptly
recover from the infection, and the prolonged hospital stay may augment the risk of new-
onset microbial diseases [10]. Furthermore, altered organ functions may influence the
pharmacokinetics of other drugs in a variable manner [11,12].

Therapeutic drug monitoring (TDM) plays a pivotal role in the management of in-
fections [13], so ICU bundles for antimicrobial stewardship include TDM protocols [14].
However, the correlation between plasma and tissue concentrations of drugs is variable
and makes dose adjustment based on TDM findings challenging. Therefore, the tissue pen-
etration rate of antimicrobials may guide the choice of the most appropriate chemotherapy.

The present work collected evidence about the tissue penetration rate of antimicrobials
that were administered to ICU patients at the prescribed doses. The review evaluates
drugs targeting protein synthesis, bacterial DNA, and folate pathways, as well as the main
antitubercular drugs.

2. Results

The literature search found 697 articles about tissue penetration of antibacterial drugs
in ICU patients, of which 103 were included based on the inclusion/exclusion criteria
(Figure 1). The following sections describe the tissue penetration rate of antibacterial
drugs inhibiting protein synthesis and DNA function, taking the corresponding plasma
concentrations as a reference. The review also presents the administered doses and phar-
macokinetic/pharmacodynamic (PK/PD) parameter values.
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2.1. Fluoroquinolones

Fluoroquinolones are bactericidal drugs with a concentration-dependent killing. The
ratio between the area under the curve (AUC) of plasma concentrations and the MIC
(AUC/MIC) is predictive of drug efficacy with threshold values ≥ 100 [15,16]. Even the
maximum plasma concentration (Cmax)/MIC ratio may predict treatment efficacy, and the
threshold value is approximately 10.

Ciprofloxacin penetration in brain tissue was evaluated in 14 patients who underwent
surgical excision of tumors [17]. A total of 60 minutes after a single dose of 200 mg i.v., the
mean tissue/plasma ratio of ciprofloxacin was 0.88X (SD, 0.99X) in the brain (Table 1), a
value that was lower than that which was calculated for subcutaneous fat (1.34–1.40X) and
dura mater (2.26X), but higher than that which was obtained in skull bone (0.68–0.75X).

Table 1. Tissue/plasma ratio values for fluoroquinolones. For each drug, the different daily doses
that were administered to ICU patients are listed in the table.

Drugs Ciprofloxacin Levofloxacin Moxifloxacin Ofloxacin

Daily doses −400 mg q8h
−500 mg q8h
−500 mg q12h

−500 mg
−400 mg −400 mg q12h

CNS 1.9X
0.88 ± 0.99X A (1 h) 0.5X

CSF <0.1X 0.71X
0.16–0.71X B 0.5–0.8X 0.73–0.76X

Lung 3.1X 0.3–0.7X
0.1–0.8X

ELF 1.9X 1.12–2X 0.88–6.95X

Alveolar
cells >10X 18.5X 24.5X

Bronchial
secretions 1.16X 1.55X C 0.80–0.89X

2.07X C

Bone 0.68–0.75X
0.35X D–0.7X E

(1.5 h)
0.4X

0.4–0.6X
1X F 0.7X

Skin 1.44X

Fat 1.40X

References [17–23] [19,20,22,24–27] [19,22,27–30] [31]

Notes: A, mean ± standard deviation values; B, minimum-maximum values across the selected references; C,
spongious bone; D, cortical bone; E, gut; F, synovial fluid. Abbreviations: CNS, central nervous system; CSF,
cerebrospinal fluid; ELF, epithelial lining fluid; q8h and q12h, every 8 and 12 h, respectively.

Ciprofloxacin has a longer half-life (t1/2) in liquor than in plasma [32], and its pen-
etration rate into the cerebrospinal fluid (CSF) depends on the meningeal inflammation.
Indeed, among 23 patients with purulent meningitis and 3 with ventriculitis, ciprofloxacin
0.2 g every 24 h (q24h) achieved tissue/plasma ratios of 0.26–1.59X and 0.14–0.78X in the
presence or absence of meningeal inflammation, respectively [33]. Of note, the actual mean
maximum CSF concentrations ranged between 0.49 and 0.56 mg/L 2–4 h after dosing.
Furthermore, in 4 out of the 23 patients, multiple ventricular CSF samples were collected
by external ventricular drainage (EVD), and the peak concentrations were 0.25–0.45 mg/L
2–6 h post-dosing. In another study, ciprofloxacin 0.2 g every 12 h (q12h) achieved CSF
concentrations of 0.073–0.106 mg/L and 0.089–0.260 mg/L in the presence and absence of
meningeal inflammation, respectively [34]. Although ciprofloxacin has a lower penetration
rate in CSF with respect to other fluoroquinolones, those concentrations exceeded the MIC
values of most Gram-aerobic bacilli. Some studies investigated higher dosage regimens.
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In particular, ciprofloxacin 0.4 g every 8 h (q8h) led to “hypothesized” CSF concentrations
of approximately 0.9 mg/L [35], which could be more effective. Furthermore, the mean
CSF/plasma AUC ratio was 0.26X in 16 patients that were affected by tuberculous menin-
gitis who received ciprofloxacin 0.75 g q12h resulted in a mean CSF/plasma AUC ratio of
0.26X [21].

A single i.v. dose of ofloxacin 0.2 g in 10 cancer patients yielded peak CSF concentra-
tions of 0.4–1.0 mg/L 2–4 h post-dose, with concentrations >0.1 mg/L for 24 h [36]. Another
study demonstrated that doses of 0.2 g q12h diffused into CSF with a mean AUC ratio of
0.76X and 0.73X in 22 patients with meningitis and ventriculitis, respectively [31]. When
the meningeal inflammation resolved, the mean CSF/plasma ratio ranged between 0.30
and 1.34X. As reported for ciprofloxacin, the mean terminal half-life (t1/2) in CSF (10.2 h)
was longer than in plasma (7.1 h). Both clinical trials adopted a lumbar puncture (LPD) to
collect CSF. On the contrary, an EVD was used to harvest CSF samples in six patients with
occlusive hydrocephalus [37]. Interestingly, ofloxacin 0.4 g achieved a mean CSF/plasma
ratio of 0.65X (range 0.59–0.81X), and the peak concentration in CSF ranged from 1.0 up to
2.85 mg/L. Therefore, the authors concluded that high doses of ofloxacin could be effective
only against the most susceptible bacterial strains (i.e., MIC ≤ 0.1 mg/L) according to a
Cmax/MIC target value of ≥10.

A similar CSF penetration rate was calculated for levofloxacin 0.5 g q12h in 10 patients
with EVD [38], because the AUC and Cmax ratios accounted for 0.71X and 0.47X, respectively.
According to the PK/PD thresholds for Cmax/MIC (12.2) and AUC/MIC (125 h), MIC
values ≤ 0.5 mg/L could predict a positive outcome of chemotherapy. At the same dose
of 0.5 g q12h, levofloxacin achieved a mean CSF/plasma AUC ratio of 0.74X (range,
0.58–1.03X) in 15 patients with tuberculous meningitis [21]. In that study, the CSF was
sampled through an LPD.

Moxifloxacin 0.4 g as a single i.v. dose achieved mean maximum concentrations in
CSF of 4.07 mg/L 4–6 h post-dose [39]. In tuberculous meningitis, moxifloxacin 0.4–0.8 g
q24h resulted in median CSF/plasma AUC ratios of 0.82–0.71X [40]. The AUC ratio was in
the range of 0.85–1.75X when unbound CSF and plasma concentrations were considered.
Finally, PK/PD analysis in patients with tuberculous meningitis revealed that optimal
outcomes (i.e., survival, death/disability, time to death) were better related to AUC/MIC
ratios in CSF [21,41].

Overall, fluoroquinolones have an optimal diffusion into the respiratory tract, espe-
cially in epithelial lining fluid (ELF) and alveolar cells, and they are prescribed to treat
severe infections of the lower respiratory tract (LRTI) [19]. Ciprofloxacin 0.2 g i.v. achieved
tissue/plasma ratios that were higher than 2X for the entire sampling time interval (i.e., 5 h
post-dose) in bronchial mucosa, lung parenchyma, and pleura in 20 cancer patients [42].
In particular, the mean concentrations in these tissues were always greater than 1.3, 2.1,
and 0.9 mg/L, respectively. Higher doses of ciprofloxacin (i.e., 0.4 g q8h) achieved a mean
bronchial secretion/plasma AUC ratio of 1.16X in 25 mechanically ventilated patients that
were suffering from severe chronic obstructive pulmonary disease [23]. The data showed
that the Cmax/MIC ratio was ≥10 in all patients for MIC values ≤ 0.5 mg/L, but drug
exposure could be inadequate for higher MIC values (i.e., >0.5 mg/L).

Further studies investigated tissue penetration of fluoroquinolones after oral doses. Single
doses of ciprofloxacin 0.5 g and levofloxacin 0.5 g accumulated in alveolar macrophages (AM)
up to 10X [43,44]. In healthy volunteers (HV) at the steady state, oral levofloxacin 0.5–0.75 g
achieved tissue/plasma ratios that were greater than 2X in ELF and 10X in AM 24 h
post-dose [45]. The different penetration rates between ciprofloxacin and levofloxacin
could depend on their bioavailability (78% and 100%, respectively) [46]. Furthermore,
the high diffusion of levofloxacin 0.5 g i.v. q12h or q24h in LRT has been confirmed
in 24 ICU patients with community-acquired pneumonia (CAP) [24]. In particular, the
median AUC values in ELF were 151 (range, 137–174) and 208 (range, 203–236) hxmg/L
for the q12h and the q24h schedule, respectively, with actual AUC/MIC values greater
than 172 h in 23 out of 24 patients. Of note, those values in the ELF exceeded the PK/PD



Antibiotics 2022, 11, 1193 5 of 21

thresholds that were predictive of outcome for MIC >1 mg/L. Finally, 15 uninfected cancer
patients and 18 patients with acute exacerbations of chronic bronchitis received 5 oral doses
of levofloxacin 0.75 g q24h [47]. Notably, tissue inflammation caused an increased ELF
volume that significantly diminished levofloxacin concentrations. In particular, nearly 60%
of patients with chronic bronchitis did not reach an ELF/unbound plasma ratio of 1X. For
this reason, the authors suggested a careful evaluation of levofloxacin tissue penetration in
the presence of inflammation.

A single oral dose of moxifloxacin 0.4 g in 17 HV achieved tissue/serum ratios greater
than 5X in ELF and 1.5X in bronchial mucosa up to 24 h post dose [48], while the ratio
ranged from 18X up to 70X in AM [49]. In lung parenchyma, the tissue/plasma ratio was
always higher than 2X up to 36 h after multiple i.v. or oral doses of 0.4 g q24h. As previously
discussed for levofloxacin, moxifloxacin displays an altered diffusion in inflamed tissues.
Indeed, multiple i.v. doses of 0.4 g q24h achieved a mean penetration rate in the bronchial
secretion of 0.99X (range, 0.35–1.53X) and 0.80X (range, 0.17–1.37X) of patients that were
admitted to a general ward and ICU, respectively [29]. Although that difference was not
statistically significant, the pharmacokinetic variability associated with the infection could
impair the attainment of PK/PD target values.

Lastly, patients that were affected by chronic bronchitis received single and multiple
oral doses of ofloxacin 0.2 g q12h [50]. The penetration rate in bronchial mucosa was at
least 1X and up to 9X 2 h after the last dose. Interestingly, the high penetration of oral
ofloxacin 0.2 g q12h was confirmed in ELF (4.9X) and AC (>5X), whereas the penetration
rate did not differ in healthy and pathological lung tissues [51]. Therefore, the penetra-
tion rate of ofloxacin allowed a long-lasting antimicrobial activity against most potential
respiratory bacteria.

Fluoroquinolones do attain high tissue/plasma ratios also in bone. A single dose
of ciprofloxacin 0.2 g did achieve tissue/plasma ratios of 0.44–0.75X in skull bone [17],
whereas multiple doses yielded a higher penetration rate. Indeed, ciprofloxacin 0.75 g
q12h followed by an i.v. infusion of 0.4 g had mean peak concentrations of 8.8 mg/L
1–3 h after the last dose in the sternal bone [52]. Those bone concentrations corresponded
to tissue/plasma ratios of 2X or greater. Furthermore, a single i.v. levofloxacin 0.5 g i.v.
achieved mean tissue/plasma ratios of 1.2X, 1.0X, and 0.5X in synovia, cancellous, and
cortical bone, respectively [53]. Of note, the tissue concentrations were higher than the
breakpoint values for susceptible bacteria. In 16 orthopedic patients with severe forelimb
ischemia, levofloxacin 0.5 g q24h achieved a bone/plasma ratio of 0.28–0.44X 1 h after the
last dose [26], showing that drug penetration was not influenced by the degree of ischemia.
Finally, sternal bone concentrations of ofloxacin 0.2 g q12h were stable up to 10 h after the
last dose, with actual mean values of 2.56–2.79 µg/g [54].

The diffusion of fluoroquinolones into the interstitial fluid (ISF) of subcutis and muscle
of has not been investigated in ICU patients. On the contrary, some interesting data have
been obtained in HV using the microdialysis technique. A single i.v. dose of ciprofloxacin
0.4 g did generate a mean tissue/plasma AUC ratio of 0.68X and 0.38X in muscle and
subcutis, respectively [55]. Furthermore, the mean AUC ratios were 0.93X, 0.46X, and 1.46X
in capillary, saliva, and blister fluid, respectively. The highest value in blister fluid was
likely due to the greater penetration of ciprofloxacin into inflamed tissues. Of note, the
mean actual Cmax values accounted for 4.34, 1.24, 1.18, and 1.40 mg/L in plasma, muscle,
subcutis, and blister, respectively. A single oral dose of ciprofloxacin 0.5 g resulted in mean
tissue/plasma ratios ranging from 0.55X [56] up to 1.44X [55].

Levofloxacin has a greater tissue penetration rate than ciprofloxacin. In 21 orthopedic
patients, a single i.v. dose of levofloxacin 0.5 g had median concentrations of 7.95 mg/L,
5.14 µg/g, and 7.94 µg/g in plasma, cancellous bone, and muscle, respectively, 40–210 min
after dosing [57]. More interestingly, the drug displayed an increased penetration into
inflamed tissues. Indeed, levofloxacin achieved effective concentrations in granulomatous
tissue (11.45 µg/g), wounds (19.51 µg/g), and skin (19.89 µg/g) [57]. Similar findings
were obtained in skin samples of 11 HV receiving oral levofloxacin 0.75 g q24h [58]. The
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tissue/plasma ratio increased over time from 1.47X up to 4.68X, with a mean AUC ratio
of 1.97X. The mean actual Cmax value was 11.87 µg/g of tissue 6 h after the last dose, for
a Cmax tissue/plasma ratio of 1.37X. Finally, 10 diabetic patients with foot ulcers were
treated with oral levofloxacin 0.5 g q24h [59]. In agreement with other studies, the median
levofloxacin concentrations were 9.84 mg/kg in wound tissues and 2.42 mg/L in plasma.

After a single i.v. or oral doses of moxifloxacin 0.4 g in 12 HV, the penetration rate
was 0.55X in muscle and 0.38X in subcutaneous adipose tissue [60]. Notably, those ratios
increased up to 0.86X and 0.81X, respectively, when the unbound fraction of plasma concen-
trations was considered. As observed for ciprofloxacin [55], the penetration of moxifloxacin
in some tissues (i.e., muscle and adipose tissue) achieved the equilibrium with plasma
earlier than in other compartments (i.e., blister fluid). The measured Cmax values were
3.7, 1.2, 1.0, and 1.7 mg/L (or µg/g) in plasma, muscle, subcutis, and blister, respectively.
In 8 HV a single dose of moxifloxacin 0.4 g had a high penetration (approximately 1X)
into the inflamed tissues regardless of the oral or i.v. route of administration, with mean
time-to-peak (Tmax) values of 2.43 h [61]. Therefore, moxifloxacin achieved bactericidal
concentrations in the ISF. Similar results (1.03–1.20X) were observed for a single oral dose
of ofloxacin 0.3 g in 8 HV [62].

Overall, fluoroquinolones have a high diffusion into peripheral compartments, and
the penetration rate could be partly influenced by the inflammation [63] and illness severity.
For example, a significant correlation was found between the volume of distribution of
levofloxacin and the sickness severity [64]. On the contrary, minor differences in drug PK
were observed in patients with severe sepsis or intra-abdominal infections [12]. Those
findings support an appropriate choice of antimicrobial chemotherapy that may decrease
the risk of selecting resistant bacterial clones in ICU patients [65].

2.2. Aminoglycosides

The concentration-dependent killing of aminoglycosides is predicted by both Cmax/MIC
and AUC/MIC ratios, with efficacy threshold values accounting for ≥8 and ≥30–50,
respectively [66]. More recently, Bland and colleagues suggest that higher AUC/MIC target
values (i.e., 80–100) should be considered in ICU patients, especially in the presence of
severe illness, immuno-compromised hosts, and high bacterial burden [66].

Data about CSF penetration of aminoglycosides are available in newborns and children,
using an LPD for CSF sampling. In 44 neonates who received amikacin (15.5–20 mg/kg every
42–24 h), the CSF/plasma AUC ratio was approximately 0.1X (Table 2) [67]. In agreement
with those results, the CSF/plasma Cmax ratio accounted for 0.08X in 16 children (age,
7 months–8 years) [68]. Therefore, the CSF penetration of amikacin is similar to that of
beta-lactams [22].

In bronchial secretion, amikacin 1 g q24h and 0.5 g q12h achieved mean tissue/serum
AUC ratios of 0.46X and 0.66X on day 1 and 0.57X and 0.81X on day 3, respectively [69].
Of note, the once-daily schedule resulted in higher mean Cmax/MIC values, with peak
concentrations of 13.6 mg/L 3 h post-dosing. Amikacin penetration in ELF allowed bac-
tericidal concentrations against less sensitive bacterial strains. However, another study
measured amikacin ELF/plasma penetration rate 2 h post-dose in 8 VAP patients (mean
adjusted body weight, 70 kg) who received a mean dose of 20 mg/kg q24h [70]. The
median ELF concentration was 3.6 mg/L (interquartile range, IQR, 2.1–13.4 mg/L) with a
mean (median) ELF/plasma ratio of 0.10X (0.07X) and 0.18X (0.09X) 1 and 2 h after dose,
respectively. That penetration rate was too low to treat infections that were sustained by
the less sensitive bacterial strains.

In the case of tobramycin 7–10 mg/kg, work by Boselli and coworkers estimated
the ELF distribution of the drug in 8 VAP patients [71]. The samples (serum and bron-
choalveolar lavage, BAL) were collected 30 min after the end of the 0.5 h infusion, and the
BAL/serum ratio was 0.12X. The authors considered the penetration rate of tobramycin
7–10 mg/kg ineffective in treating LRTI. It is interesting to note that other studies found a
higher tobramycin diffusion into ELF. A total of 16 pneumonia patients received tobramycin
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q8h at doses that were optimized to achieve peaks and through plasma concentrations
of 8 mg/L and <2 mg/L, respectively [72]. The ELF/serum ratio was 0.30X-1.56X up to
8 h after dosing, while the mean ELF concentrations ranged from 2.33 up to 0.77 mg/L.
Therefore, high tobramycin doses were required to obtain effective ELF concentrations. An
ELF/serum ratio of 1.40X-1.60X was obtained in 10 ICU patients who received tobramycin
0.3 g by intramuscular injection [73]. Finally, gentamycin 0.24 g q24h had an ELF pene-
tration rate that was similar to tobramycin. Indeed, the ELF/serum ratio accounted for
0.30–1.14X in 24 VAP patients [74].

It is worth noting that changes in the patients’ clinical conditions may significantly
influence aminoglycoside pharmacokinetics. For example, gentamycin pharmacokinetics
changed in 40 ICU patients that were affected by severe Gram-infections [75]. Moreover,
burn injuries altered the pharmacokinetics of amikacin [76] and tobramycin [77]. Those
changes require higher individualized doses [78–81] and, more importantly, may influence
the tissue penetration of drugs.

Table 2. The tissue/plasma ratio values for aminoglycosides, clarithromycin, and azithromycin. For
each drug, the different daily doses that were administered to ICU patients are listed in the table.

Drugs Gentamycin Amikacin Tobramycin Clarithromycin Azithromycin

Daily doses −5 mg/kg i.v.
−240 mg

−15 mg/kg i.v.
−7.5 mg/kg q12h

−20 mg/kg

−5 mg/kg i.v.
−300 mg i.m. −500 mg q12h −500 mg/day × 3 days

CSF 0.1X >50X A

Lung 0.4X >60X

ELF 0.3–1.14X B 0.09X 0.12X–1.6X >7X/>40X C

Bronchial
secretion 0.46–0.57X

Bone 0.17–0.5X 0.5X 0.7X

Synovial fluid >1X >1X

Skin >1X

References [27,28,74] [22,27,28,67,69,70] [27,71] [20] [82–86]

Notes: A, brain; B, minimum-maximum values across the selected references; C, alveolar macrophages. Abbrevia-
tions: CSF, cerebrospinal fluid; ELF, epithelial lining fluid; q12h, every 12 h.

2.3. Macrolides and Azalides

Macrolides and azalides have a concentration-dependent bacterial killing that can
be predicted by the AUC/MIC and Cmax/MIC ratios [15], with target values of >30 and
>8, respectively.

Azithromycin 0.5 g penetrates the brain at tissue/plasma ratios ≥50X up to 96 h after
the administration of a single oral dose [82] (Table 2).

Several studies described the high azithromycin penetration in LRT. In particular,
ELF/plasma AUC ratios after single doses of 0.5 g and 1.0 g were 2.96X and 5.27X, re-
spectively. Higher AUC ratios were observed in the lung parenchyma at both dose levels
(i.e., 64.35X and 97.73X, respectively) [84]. In 24 cancer patients who received a single
dose of azithromycin 0.5 g, the tissue/plasma ratio was >40X in the lung parenchyma
and AM [87]. Those results confirmed the high penetration of azithromycin into the in-
fection sites in experimental models of pneumonia [88] and drug accumulation within
white blood cells [86]. Furthermore, single and repeated doses of azithromycin had a
preferential distribution in AM (>100X), with a progressive increase up to 24–120 h after
the last dose [89–91].
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In agreement with those results, clarithromycin has excellent penetration in the lungs.
In 10 patients, oral clarithromycin 0.5 g q12h reached high tissue/serum ratios in the
bronchial mucosa (>4X), ELF (>4X), and AM (>100X), approximately 4.25 h after dosing [92].
In HV who received single or multiple doses, the ELF penetration rate of oral clarithromycin
0.5 g was >10X 4–6 h after dosing [89,90,93], while the AM/serum ratio was >100X, with
concentrations detectable up to 24 h after a single dose of 0.5 g [89]. Clarithromycin 0.2 g
did generate BAL/serum AUC ratios of 3.5X in 5 HV, with Tmax values of 5.2 h in BAL [94].
Interestingly, the presence (3.8–7.1X) or absence (3.0–17.8X) of Mycobacterium avium complex
(MAC) lesions did not significantly influence clarithromycin penetration into BAL [95].
Therefore, doses of 0.8 g/day are adequate to impede the intrapulmonary spreading of
MAC [95].

Erythromycin 0.25 g q6h p.o. was detectable in ELF (mean concentration, 0.8 mg/L
4 h post-dosing) and in AC (0.1–0.8 mg/L 8–12 h post-dosing) [93].

A POP/PK study developed a PK model to predict tissue distribution of azithromycin
0.5 g q24h for 3 days in 6 HV [96]. Azithromycin had a high volume of distribution and
it accumulated within polymorphonuclear leukocytes. In particular, intracellular concen-
trations were higher than the MIC values of pathogens that were responsible for skin
infections (i.e., S. aureus, MIC 2 mg/L). Therefore, azithromycin was effective against skin
infections despite the low unbound concentrations of the drug in both muscle and sub-
cutis [97]. Another study enrolling six HV confirmed those findings [86], with penetration
ratios in leukocytes varying from 145X on day 1 up to 1800X 7 days after the last dose [86].

A limited number of studies investigated bone penetration of macrolides and azalides.
Azithromycin seems to have a high penetration rate in bone (up to 6.3X) [20].

2.4. Other Antibacterial Drugs
2.4.1. Linezolid

A target AUC/MIC ratio of 80–120 and a T > MIC value ≥ 85% are predictive of
linezolid efficacy [98]. Both parameters may forecast antimicrobial activity in the presence
of factors influencing linezolid pharmacokinetics [11,99].

Linezolid does penetrate the CSF, where it rapidly achieves tissue/plasma ratios equal
to 0.7–0.9X regardless of the meningeal inflammation (Table 3) [22,100–103]. In particular,
the CSF/plasma ratio was approaching 1X 2 h after dosing [102], while CSF minimum
concentrations exceeded the MIC values for sensitive pathogens. However, the large vari-
ability in CSF concentrations may explain why PK/PD parameters T > MIC or AUC/MIC
were not higher than the recommended threshold values in some patients [101,103–105].
Furthermore, bacterial species that were less sensitive to linezolid (i.e., MIC ≥4 mg/L)
which reduced the probability of target attainment [102,105]. The findings suggest higher
doses of linezolid are required (i.e., 0.6 g q8h).

Linezolid promptly diffused into the ELF that was collected from 16 VAP patients [106].
The ELF/plasma ratio was 1X for both peak and through concentrations, being effective
against most bacterial strains with MIC values of 2–4 mg/L. In 12 VAP patients, the admin-
istration of linezolid according to a loading dose (0.6 g) followed by a continuous infusion
(1.2 g/day) was associated with a median ELF/plasma ratio of 1X (IQR, 0.8–1.1X) [107].
Notably, continuous infusions of linezolid may reduce the interindividual variability in
ELF concentrations [106]. Indeed, in 22 critically obese patients, a loading dose (0.6 g) fol-
lowed by a continuous infusion (1.2 g) produced an ELF/plasma ratio of 1.06X, which was
higher than that (0.80X) which was obtained with standard treatment (i.e., 0.6 g q12h) [108].
However, the alternative regimen could have a reduced efficacy in the presence of bacterial
strains with MIC values ≥ 4 mg/L.

Linezolid yielded tissue/plasma ratios of 0.23X in the bone [20], and higher values
(0.4–0.75X) were obtained in orthopedic patients approximately 0.5–1.5 h after dosing.
Moreover, in nine patients with spinal TBC, a single oral dose of 0.6 g led to a median
pathological bone/plasma ratio of 0.48X (range, 0.30–0.67X) [109]. Oral linezolid 0.6 g
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q12h had a mean tissue/serum ratio of 0.46X (range, 0.18–0.71X) 1–12 h after dosing in six
orthopedic patients with diabetic foot infections [110].

Table 3. The tissue/plasma ratio values of linezolid, doxycycline, and tigecycline. For each drug, the
different daily doses that were administered to ICU patients are listed in the table.

Drugs Linezolid Doxycycline Tigecycline

Daily doses −0.6 g q12h −0.1 g q12h −0.1 g LD, 0.05 g q12h
−100 mg

CNS 0.5X (24 h)

CSF 0.5–0.9X A 0.26X 0.2X

ELF 0.97X (IQR
0.8–1.08X) 1.7X

Bone 0.3–0.7X 0.7X 0.41–2X

Skin 0.75X 0.47X (2 h)

References [100–113] [114] [115,116]

Notes: A, minimum-maximum values across the selected references. Abbreviations: CNS, central nervous system;
CSF, cerebrospinal fluid; ELF, epithelial lining fluid; IQR, interquartile range; q12h, every 12 h.

The diffusion of linezolid into the skin achieved therapeutic concentrations [111]
without being influenced by blood perfusion and ischemia [26]. In 12 patients with sepsis
or septic shock, the microdialysis sampling allowed the measurement of unbound ISF
concentrations of linezolid [112]. The median tissue/serum AUC ratios accounted for 0.9X
(range, 0.2–1.2X) and 1.0X (0.2–1.4X) in the subcutis and the muscle, respectively [112].
However, the f T > MIC value of subcutis and muscle was below 40% in four and two
out of nine patients, respectively, suggesting that “the large range of the calculated data was
remarkable”. Furthermore, the ISF/serum ratios of approximately 1X were obtained in
patients with septic shock (n = 16) or severe sepsis (n = 8), regardless of the illness severity.
Those ratios were similar to those that were calculated in HV [113].

The variable activity of the ABCB1 transmembrane transporter and drug-drug inter-
actions could explain the PK variability of linezolid among patients [117,118]. The role of
these factors in ICU patients is still under evaluation.

2.4.2. Tetracyclines and Glycilglycine

Tetracyclines and tigecycline have concentration-dependent killing, and the AUC/MIC
parameter predicts their efficacy. In particular, the AUC/MIC target values for tigecycline
ranged between ≥1 (for VAP and bone infections) up to ≥18 (for complicated skin and
skin-structures infections) [119].

Doxycycline displays a reduced CSF penetration rate (approximately 0.2X) [114], while
ISF penetration accounted for approximately 0.5X [115].

Similar mean CSF/plasma AUC ratios (0.1X) were obtained for tigecycline [116]. In
patients that were undergoing elective surgery, a single i.v. dose of 0.1 g extensively
distributed in the lung parenchyma (tissue/serum ratios, 2.4–11.2X) and colon (2.3–11.9X)
up to 24 h after dosing [116]. In HV receiving standard doses, tigecycline achieved mean
tissue/serum AUC ratios of 1.7X in ELF and 20.8X in AC [120]. That high penetration in
LRT sustains the use of tigecycline as second-line, long-lasting chemotherapy for HAP and
VAP [121].

Of note, tigecycline doses are often doubled to increase the probability of a cure for ICU
patients [122]. However, those high doses did not decrease the pharmacokinetic variability
among 37 adult ICU patients [123]. Therefore, Borsuk-De Moor and colleagues suggested an
individual dose adjustment. Finally, the unbound plasma fraction of tigecycline decreases
at higher concentrations [124].

High tissue/serum ratios were measured in the gallbladder (>34X) and bile (>600X)
thanks to the biliary excretion of tigecycline [125], while the penetration rates were 0.4–2X
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in the bone and 0.6–0.9X in synovial fluid after a single dose of 100 mg [116]. Multiple
doses of tigecycline had a high penetration rate into healthy and infected tissues, with an
unbound ISF/serum AUC ratio of 1X [126]. Overall, those data confirm the penetration of
tigecycline in the LRT and soft tissues, especially after multiple doses.

2.4.3. Clindamycin

The AUC/MIC predicts the antibacterial activity of clindamycin [127]. Of note, bioas-
say techniques were used to measure drug concentrations in all the studies except for
one [26].

In 10 AIDS patients, clindamycin 1.2 g achieved tissue/plasma ratios <0.02X in CSF
that was collected by LPD 1.5 or 2.5 h after dosing [128].

After a single i.v. dose, clindamycin 0.6 g rapidly diffused in the muscle and oral
mucosa of 31 patients who underwent maxillofacial surgery [129], and the drug was
detectable up to 8 h post-dosing. Lower concentrations were measured in bone, skin,
and adipose tissues [129], but they were higher than the MIC values of the most common
pathogens. On the contrary, in 29 subjects with decubitus ulcers, the tissue/plasma ratios
were 1X for both bone and skin 0.5–1.5 h after dosing [130]. In lower limb ischemia, the
different rates of perfusion influenced the penetration of clindamycin 0.6 g q8h in muscle
(0.4–0.5X), bone (0.2–0.3X), and skin (0.2–0.4X) [26].

Finally, in 15 children, clindamycin 10 mg/kg (≈0.3 g) did penetrate inflamed ap-
pendices and peritoneal fluid, achieving concentrations that were approximately equal to
those that were measured in plasma [131].

2.4.4. Metronidazole

The AUC/MIC ratio may predict the antibacterial activity of metronidazole, with
threshold values ≥ 70 for B. fragilis [132,133].

Metronidazole diffuses into CSF [134]. Indeed, metronidazole 0.5 g q8h reached a
mean CSF/unbound serum AUC ratio of 0.87X in four traumatic patients with an EVD [135].
Notably, metronidazole 0.5 g q8h reached a mean ISF/unbound serum AUC ratio of 1.02X
in the brain parenchyma [136].

Tissue concentrations of metronidazole 1.5 g were 3.3–41.7 µg/g in the peritoneum
and 6.7–43.1 µg/g in the colon wall up to 36 h after dosing [137]. The concomitant mean
plasma concentrations decreased from 39.9 ± 17.1 mg/L at the end of the infusion up to
2.6 ± 1.1 mg/L 36 h after dosing. Those findings suggested that metronidazole could exert
an effective prophylactic activity in abdominal surgery.

A single i.v. dose of metronidazole 0.5 g yielded a mean ISF/serum AUC ratio of
0.88X in the muscle of six septic patients [138]. A following simulated in vitro kinetics
demonstrated a rapid bactericidal effect against two B. fragilis strains (MIC values, 0.125 and
1 mg/L). In the skin, the mean ISF/plasma AUC ratio was 0.67X after the oral administra-
tion of metronidazole 2 g [139]. In six rheumatology inpatients, the synovial fluid/serum
ratio of oral metronidazole 0.4 g q8h was 1X 3 h after the first dose [140]. Interestingly,
synovial concentrations remained higher than 3.6 mg/L up to 36 h after dosing, and they
were similar to the breakpoint of B. fragilis (i.e., 4 mg/L).

2.4.5. Rifampin, Isoniazid, and Chloramphenicol

The AUC/MIC ratio is associated with the antibacterial activity of rifampin, isoniazid,
and pyrazinamide [141,142]. Moreover, the T > MIC index predicts the antibacterial effects
of chloramphenicol [143].

All antitubercular agents penetrate CSF except for rifampin. Indeed, rifampin diffused
into CSF with a penetration rate of 0.22–0.3X [22]. In 237 patients with tuberculous meningi-
tis, the median CSF/plasma AUC ratio accounted for 0.07X regardless of the rifampin dose
(10 or 20 mg/kg/day) [144]. Consequently, the probability of attaining AUC0–24 h/MIC
values > 297 in the CSF was very low for M. tuberculosis strains with MIC ≥ 0.5 mg/L [145].
In agreement with those results, another study enrolling 30 patients with tuberculosis
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demonstrated a low serum-to-CSF passage at intensified doses [146]. Indeed, the highest
CSF concentration of rifampin correlated with plasma Cmax value, but the CSF/plasma
Cmax ratio was always <0.1X [147]. Moreover, all of the patients except two had rifampin
CSF concentrations that were lower than the MIC values of susceptible bacteria.

On the contrary, the penetration ratio of isoniazide within CSF was equal to 1X in
237 patients with meningeal tuberculosis (TBC) [144]. Chloramphenicol had CSF/plasma
ratios of 0.6–0.7X [22,148].

The penetration of rifampin into the LRT has been evaluated by bioassay in 15 patients
who received a single oral dose of 0.6 g [149]. The mean tissue/plasma ratios were 0.34X,
0.51X, and 16.26X in ELF, bronchial mucosa, and AM, respectively. In 40 patients (with
or without AIDS) that were treated with rifampin 0.6 g q12h, the mean ELF/serum and
AM/serum ratios were 0.2X and 0.9–1.5X, respectively, 4 h post-dosing [150]. Although the
penetration rate of rifampin within AM, other authors suggested higher rifampin doses to
attain the desired antitubercular effect [151].

In 80 patients with AIDS or not, isoniazid 0.3 g q24h generated higher mean ELF/serum
ratios in slow acetylators (3.2X) than in fast ones (1.2X) [152]. Moreover, the mean
AM/serum ratio was 2.1X in the same patients.

Finally, a study in 14 patients that were affected by spine TBC, rifampin 10 mg/kg/day
yielded bone/plasma ratios of 0.54–0.66X 2–3 h after dosing [153]. Interestingly, drug
penetration into the infective foci was significantly lower (0.06–0.08X) than in healthy tissue,
and rifampin was undetectable in the presence of a sclerotic wall around the foci.

2.4.6. Cotrimoxazole (Trimethoprim-Sulfamethoxazole, TMP-SMZ)

The AUC/MIC parameter predicts the antibacterial activity of both TMP and SMZ [154].
Cotrimoxazole remains an effective drug to control and treat infections that are caused

by MDR strains as in the case of MRSA [155].
The penetration of TMP-SMZ 0.005/0.025 g/kg i.v. has been evaluated in nine patients

with the vertebral disease [156], showing that the CSF/serum AUC ratio was 0.18X for
TMP and 0.12X for SMZ. The mean actual AUC values of TMP (32.6 hxmg/L) and SMZ
(1160 hxmg/L) ensured the attainment of f AUC/MIC values > 25 [157]. Of note, TMP had
a CSF Tmax value (1 h) that was lower than those that were observed for SMZ (8 h).

After multiple doses of cotrimoxazole 0.16/0.8 g, the TMP synovial fluid/plasma
ratio was approaching 1X 3 h post-dosing, while for SMZ the ratio was about 0.75X 6 h
post-dosing [158]. Those data reflected the faster tissue diffusion of TMP in comparison
with SMZ. A total of 12 patients with diabetic foot infection received standard (0.16 g/0.8 g)
or high oral doses (0.32/1.6 g) q12h [110]. The findings showed that the penetration rate of
TMP (1.2X, range, 0.4–2.2X) was higher than that of SMZ (0.23X, range, 0.1–0.46X) regardless
of the dose [110].

Finally, oral cotrimoxazole 0.16/0.8 g q12h gave ISF/plasma ratios of 0.68–1.41X for
TMP and 0.39–0.83X for SMZ, with Tmax values of 2 h for both drugs [159].

3. Discussion

The penetration of antimicrobial drugs into tissues ensures the achievement of clinical
recovery from infections and, possibly, the eradication of infective foci. As widely described
in the literature, patients that are admitted to ICUs have a variety of clinical and pathological
conditions (i.e., the presence of comorbidities) that may significantly influence the outcome
of chemotherapy. Factors such as organ failure, increased vascular permeability, and renal
replacement therapies may alter the pharmacokinetics of antimicrobials up to a threshold
that could be associated with a reduced benefit for the patients. Furthermore, the presence
of resistant clones and the need to prevent their diffusion are mandatory prerequisites to
prescribe effective doses. Those factors justify the use of antimicrobials in regimens that
may be considered off-label for the dose (for example, tigecycline) [122], the route, and
modalities of administration (i.e., continuous infusions of linezolid) [106]. Furthermore, the
knowledge of tissue penetration of antibacterials in ICU patients may guide the choice of
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the most effective chemotherapy, according to bacterial strain sensitivity and tissue/plasma
penetration ratio. Although therapeutic drug monitoring becomes of utmost importance
in antimicrobial stewardship protocols, the correlation of concentrations between plasma
and peripheral tissue concentrations may vary among patients, so the prediction of tissue
levels could be difficult. Based on those premises, the present review focused on the tissue
penetration of antimicrobials, which mainly inhibit bacterial protein synthesis and alter
DNA structure and activity, in ICU patients.

The low CSF distribution represents a prevalent feature for many antimicrobials, even
if there are some exceptions. For example, levofloxacin 0.5 g q12h and metronidazole 0.5 g
q8h did achieve effective CSF/plasma ratios of 0.7X [38,135]. Even linezolid has a high
(and variable) CSF penetration [22,100–103].

Among ICU patients, the onset of pneumonia promptly requires effective treatment.
Indeed, VAP may be considered one of the most frequent infections that is reported in the
ICU, with incidence rates ranging between 5% and 40% and a mortality rate of approx-
imately 10% [160]. Many drugs that were examined in the present review have a high
penetration within the LRT. The empirical treatments and antibiogram-based therapies con-
sider fluoroquinolones for their optimal diffusion into the LRT. Ciprofloxacin, levofloxacin,
and moxifloxacin distribute into the ELF and achieve PK/PD threshold values [24,42,48].
Interestingly, the ELF/plasma ratios match similar or higher accumulation rates in alveolar
cells. Therefore, these concentrative processes support respiratory fluoroquinolones for
LTR infections (LRTI). Due to their low hydrophilicity, fluoroquinolones are less sensitive to
changes in the volume of distribution. Additionally, the combination of fluoroquinolones
plus anti-pseudomonal beta-lactams could be beneficial in reducing the risk of exitus [121].

The treatment of LTRI may also include tetracyclines, macrolides, and linezolid. Excel-
lent diffusion into the ELF of clarithromycin, azithromycin, doxycycline, and tigecycline
ensures therapeutic concentrations. Furthermore, doubling the dose of tigecycline may
increase the probability of cure rates [122], especially in patients with a high body mass
index [161]. A similar strategy has been identified for linezolid because an i.v. bolus of
0.6 g followed by a continuous infusion of 1.2 g/day was associated with an ELF/plasma
ratio of 1X [107]. Finally, isoniazid and rifampin penetrate the ELF well and concentrate in
alveolar macrophages [150].

Severe infections of the bone and soft tissues can be cured by linezolid thanks to
its high penetration regardless of the severity of sepsis [26,112,113]. Levofloxacin highly
penetrate the skin, especially in inflamed tissues [57], while tetracyclines diffuse into ISF
regardless of the inflammatory status.

Overall, the scientific literature shows how antimicrobials can penetrate within tissues
of ICU patients, and that knowledge may guide dosing to achieve therapeutic concentra-
tions. Indeed, respiratory fluoroquinolones, linezolid, macrolides, and tigecycline have
better ELF/plasma ratios. Moreover, those drugs accumulate within the AC, hence strongly
sustaining their administration in ICU patients with HAP or VAP. On the contrary, the distri-
bution in other organs and tissues is irregular, the pharmacokinetic variability among patients
is high, and the number of studies is relatively low. Despite those factors, the administration
of off-label regimens may increase the probability of a recovery from the infections.

The paucity of data for drugs in some tissues depends on the problematic collection
of samples. Techniques such as mini-BAL (to collect serial samples of ELF) [162] or micro-
dialysis (for ISF harvesting) [163] can solve that issue. In turn, the possibility of a dense
sampling allows the investigation of drug penetration in an extended time, which may
correspond to the tissue/plasma ratio of AUC values that were calculated between two
consecutive doses. That approach is better than a single time point ratio, because several
causes (i.e., blood perfusion, the presence of barriers, and physicochemical properties of
the drugs) may delay the equilibrium between the tissue and plasma concentrations.

It is worth noting that changes in tissue penetration of antimicrobials can depend
on multiple causes. For instance, hemodialytic procedures can augment the clearance of
drugs by both the mechanism of drug removal and drug properties [164]. Linezolid is a
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paradigmatic example because it is a hydrophilic antimicrobial with a low plasma protein
binding (31%) [165]. Therefore, dialytic procedures may significantly influence linezolid
clearance [166]. Some authors suggested intensive daily dosing (i.e., 0.6 g q8h) [11], but
that approach may expose the patients to an increased risk of toxicities. On the other hand,
TDM protocols can guide dose individualization of linezolid (and aminoglycosides as well),
hence they are considered valuable in ICU settings for standard dosing and continuous
infusions [13,167,168]. Despite the availability of immunoassays, the diffusion of drug
monitoring services among hospitals is still limited.

Additional causes of altered pharmacokinetics of antibacterial drugs and their tis-
sue penetration rates include the extracorporeal membrane oxygenation (ECMO) proce-
dure. The effects of ECMO on drug diffusion are variable among the antimicrobials and
a limited number of clinical trials have investigated those effects [169]. For instance, the
recommended ciprofloxacin dose in ICU patients with ECMO did not differ compared to
non-ECMO individuals [170]. On the contrary, amikacin and gentamycin doses could be
modified in patients that were undergoing ECMO [171,172]. Moreover, burn injuries can
cause rapid and massive changes in plasma protein content that gradually generate a state
of hypoalbuminemia 2–5 days later [173]. Hypoalbuminemia has severe consequences for
the pharmacokinetics of antibacterial drugs [174]. Indeed, at this stage, pharmacokinetic
alterations require increased doses. Finally, augmented renal clearance (ARC) is a multifac-
torial condition that affects approximately 25% of ICU patients [175]. ARC is a severe cause
of altered pharmacokinetics of antimicrobials such as aminoglycosides [176]. Therefore, the
risk of subtherapeutic concentrations in plasma (and, consequently, in tissues) should be
avoided by “maximizing the dose or using prolonged infusions, or making the decision
to switch to another agent” [176]. In all of those pathological situations (i.e., alterations
in renal function, burn injuries, dialytic procedures, ECMO, etc.), TDM protocols, careful
evaluations of patients’ health status, and knowledge of the antimicrobial penetration rates
may guide dose optimization in ICU patients [13,177,178].

In conclusion, the knowledge of tissue penetration ratio values retains its importance,
especially in ICU settings, where the expected clinical benefit depends on prompt and
adequate chemotherapy to treat infections. The choice of drug doses, the administration
scheme, and the evaluation of plasma concentrations by TDM protocols are based on that
knowledge, which is still in need of further clinical studies.

4. Materials and Methods

Tissue penetration of antibacterials in ICU patients was the sole focus of the present
review. Indeed, the tissue/plasma ratio may be useful for drug prescribing and forecasting
the effect of such treatments in severely ill patients.

ICU physicians selected the panel antimicrobials among those drugs that are com-
monly prescribed to treat bacterial infections in critically ill patients. Notably, pharma-
cological agents included fluoroquinolones, aminoglycosides, macrolides, tetracyclines,
oxazolidinones, clindamycin, and others (for a complete list, see Section 4.1).

4.1. PRISMA Selection of Literature

The PUBMed database was adopted to collect original research articles that were
published in peer-reviewed journals between April and June 2022. The search of relevant
bibliography was performed by the following keywords organized in 4 main domains:

• Domain 1: patients and ward: critically ill patient(s) OR intensive care unit OR ICU;
• Domain 2: study type: (study OR trial) AND (clinical OR human OR case series OR

case report);
• Domain 3: drug list: antimicrobial(s) AND [gentamycin OR amikacin OR tobramycin

OR erythromycin OR clarithromycin OR azithromycin OR ciprofloxacin OR lev-
ofloxacin OR ofloxacin OR norfloxacin OR moxifloxacin OR doxycycline OR tige-
cycline OR linezolid OR clindamycin OR metronidazole OR rifampin OR isoniazid
OR chloramphenicol OR clotrimoxazole (trimetoprim-sulfametoxazole)];
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• Domain 4: tissue distribution: tissue AND [distribution OR penetration OR diffusion
OR pharmacokinetic(s)] AND [brain OR cerebrospinal fluid OR (epithelial lining fluid
OR ELF) OR lung OR bronchial secretion OR skin OR interstitial fluid OR abdomen
OR (peritoneal OR peritoneum) OR urine OR kidney OR liver OR bile OR bone OR
synovial OR spleen OR muscle OR (subcutaneous OR subcutis) OR fat OR adipose].

The AND operator was used to combine the 4 domains. The full articles in English
that were retrieved during the first round of literature search were managed by Mendeley
software together with all those articles that were obtained by a more specific search
through the combination of domains 1–3 and distribution in single tissues, organs, and
compartments (i.e., CSF, lung, skin). Duplicates were removed from the database, and
two independent reviewers (A.Ca. and A.D.P.) selected articles of interest according to the
PRISMA 2020 guidelines [179]. The selection was based on the title and abstract if it was
informative enough. Further inclusion criteria for selecting articles included the following
information: patients’ number, the type of infection, drug dose, route of administration
and infusion duration (i.e., bolus, extended, or CI), frequency of dosing, tissue sampling
time points, methods for measuring drug concentrations (i.e., chromatographic methods or
microbiological assays), and further relevant data (i.e., hemodialytic procedures). Articles
were excluded if they presented the following topics: preclinical studies, epidemiology,
microbiology, laboratory techniques, clinical use of antibiotics, TDM, and POP/PK in
ICU without explicit reference to tissue penetration of drugs. A third reviewer solved
the controversies.

Drug penetration into tissues was described as a percentage of the corresponding
plasma concentrations. In particular, the tissue/plasma ratio (or tissue/free plasma ratio)
was preferentially based on AUC values to exclude possible errors due to the delay (the
hysteresis phenomenon) by which drugs pass from plasma to the tissues. The time of
sampling was indicated (i.e., 4 h post-dosing) for single concentration values (i.e., Cmax),
and the therapeutic regimens (i.e., the dose, the time interval between consecutive doses,
and the route of administration) were shown.
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