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    Seminal observations demonstrated that lym-
phocytes isolated from gut-associated lymphoid 
tissues (GALT) preferentially home to mucosal 
tissues, whereas lymphocytes isolated from 
skin-draining LN are biased to enter cutaneous 
sites ( 1, 2 ). Since then the molecular mecha-
nisms underlying these divergent homing prop-
erties have been studied in exquisite detail (for 
a recent review see reference  3 ). The migration 
of antigen-experienced T cells into the intes-
tine requires  � 4 � 7-integrin and the chemokine 
receptor CCR9.  � 4 � 7-Integrin interacts with 
mucosal vascular addressin cell adhesion mole-
cule 1, which is uniformly expressed by intesti-
nal venules, and  � 7-integrin – defi cient cells are 
impaired in entering the intestine ( 4, 5 ). Ex-
pression of the CCR9 ligand CCL25 builds up 
a gradient with highest expression in the proxi-
mal small intestine, low expression in the il-
eum, and no detectable expression in the colon 
( 6 ). Consistently, homing of T cells into the 
proximal small intestine more stringently de-
pends on CCL25 – CCR9 interaction compared 

with homing into the ileum ( 7 ). In contrast, 
the migration of eff ector T cells into the skin 
requires expression of E- and P-selectin ligand 
and the chemokine receptor CCR4, which 
endow T cells to interact with the respective 
ligands expressed in the skin ( 8 ). Thus the ana-
tomical site of T cell activation and expansion 
determines the array of homing factors, including 
chemokine receptors and integrins, expressed by 
antigen-experienced T cells. The particular com-
bination of these homing factors specifi cally tar-
gets antigen-experienced T cells to diff erent 
lymphoid and extralymphoid tissues expressing 
the respective ligands. 

 Numerous studies indicated that DC play a 
decisive role in the imprinting of tissue tropism. 
In vitro stimulation by GALT-derived DC is 
suffi  cient to induce expression of  � 4 � 7-integrin 
and CCR9 on T cells ( 9, 10 ), whereas DC iso-
lated from skin-draining LN confer expression 
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entry. On the subsequent day, mice were fed with a single 
dose of Ova, and a group of nontransplanted mice received a 
single s.c. injection of Ova. 3 d after antigen delivery, cells 
were isolated from gut-draining endogenous mLN or Tx-
LN as well as endogenous skin-draining pLN and analyzed 
by fl ow cytometry. In line with previous reports, we ob-
served that in nontransplanted WT mice, feeding of Ova in-
duced T cell proliferation preferentially in the gut-draining 
mLN but not pLN ( 16 ). Expectedly, OT-I T cells proliferating 
in the endogenous mLN acquired a gut-homing phenotype, 
characterized by up-regulation of  � 4 � 7-integrin and CCR9 
( Fig. 2, A and B ).  Expression of  � 4 � 7-integrin gradually in-
creased with progressing cell divisions, whereas CCR9 was 
highly expressed already after one or two rounds of cell divi-
sion ( Fig. 2 B ). Similarly, OT-II T cells up-regulated  � 4 � 7-
integrin and CCR9 expression in the mLN after antigen 

of CCR4 and enzymes required for E- and P-selectin ligand 
synthesis ( 11, 12 ). Such diff erential function of GALT and 
peripheral LN (pLN) DC has recently been suggested to re-
fl ect their diff erential ability to produce the vitamin A me-
tabolite retinoic acid (RA). RA is suffi  cient to direct expression 
of  � 4 � 7-integrin and CCR9 in vitro irrespective of the ori-
gin of the antigen-presenting DC ( 13 ). Moreover, addition 
of RA antagonists impairs up-regulation of gut-homing fac-
tors after priming by GALT DC ( 13 ). Thus, availability of 
RA supports the generation of gut-homing T cells, and GALT 
DC can act as a source for RA in vitro. However, at present 
the in vivo function of DC-delivered signals in imprinting 
gut-homing remains speculative. In this paper, we use LN 
transplantations and DC injection into mesenteric LN (mLN) 
aff erent lymphatics to reveal a hitherto unrecognized essential 
role of stroma cell – derived signals, including RA, on the 
generation of tissue tropism in vivo. 

  RESULTS AND DISCUSSION  

 mLN but not pLN stroma cells support the generation 

of gut-homing T cells in vivo 

 To study the role of LN stroma cells in the generation of gut-
homing eff ector T cells, mLN were excised from WT mice 
and replaced by either pLN or mLN fragments isolated from 
EGFP mice. 8 wk after surgery, transplanted LN (Tx-LN) 
could be identifi ed by their EGFP expression ( Fig. 1, A and B ).  
In line with previous observations, we noted that Tx-LN 
displayed normal tissue architecture and cellular composition 
(Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20080039/DC1) ( 14 ) and were connected to gut-drain-
ing aff erent and LN eff erent lymphatics (not depicted) ( 15 ). 
Fluorescent microscopy on T cell zones in Tx-LN revealed 
that EGFP expression colocalized with gp38 ( Fig. 1 C ) and 
ER-TR7 ( Fig. 1 D ), which are both expressed by LN stroma 
cells, whereas EGFP +  cells showed no overlap with anti-
B220 and anti-CD3 staining (not depicted). Similar results 
were obtained when cells isolated by collagenase digestion of 
Tx-LN were analyzed by fl ow cytometry. Few B and T cells, 
as well as DC, expressed EGFP ( Fig. 1 E ). Flow cytometry of 
CD45  �  gp38 +  stroma cells revealed almost 50% EGFP  �   cells 
( Fig. 1 E ). Because immunohistology showed that in the T 
cell zones of Tx-LN the vast majority of stroma cells ex-
pressed EGFP, this indicates that donor- and host-derived 
stroma cells are unevenly distributed in the various compart-
ments of the transplant. In conclusion, a major population of 
donor-derived nonhematopoietic stroma cells survived in the 
Tx-LN, whereas the vast majority of hematopoietic cells were 
constituted by host cells. 

 To investigate the type of tissue tropism generated in such 
chimeric Tx-LN, TCR transgenic OT-I or OT-II T cells 
were fl uorescently labeled with CFSE and adoptively trans-
ferred into nonmanipulated or transplanted recipients. The 
frequency of adoptively transferred cells homing into Tx-LN 
was comparable to endogenous mLN (unpublished data), in-
dicating that Tx-LN were properly vascularized and equipped 
with the molecular machinery enabling effi  cient lymphocyte 

  Figure 1.   Transplantation of LN fragments yields chimeric LN con-

stituted by donor-derived stromal cells and recipient-derived hema-

topoietic cells . (A) 8 wk after transplantation, Tx-pLN and Tx-mLN could 

be identifi ed in situ by expression of EGFP. (B) To demonstrate low auto-

fl uorescence in endogenous LN, an excised Tx-pLN was placed besides the 

endogenous pLN. (C and D) Tx-pLN were analyzed by fl uorescence micros-

copy for EGFP expression (green). Expression of gp38 (C) and ER-TR7 (D) is 

depicted in red. Comparable results were obtained for Tx-mLN (not de-

picted). Bars, 20  μ m. (E) Cells were isolated from Tx-LN, and EGFP expres-

sion by stroma cells, DC, B, and T cells was analyzed by fl ow cytometry 

(data are pooled from four mice analyzed in two experiments). Error bars 

represent SD.   
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status (Fig. S2, available at http://www.jem.org/cgi/content/
full/jem.20080039/DC1). However, because their small size, 
neither Tx-pLN nor Tx-mLN were able to direct normal 
numbers of primed OT-I T cells into the small intestine. 

 Because the induction of T cell proliferation after oral an-
tigen application depends on DC-bound antigen transport ( 16, 
17 ), the effi  cient induction of T cell proliferation indicates that 
gut-derived DC readily entered Tx-LN. Consistently, we ob-
served that compared with endogenous pLN, Tx-pLN con-
tained increased frequencies of DC expressing CD103 + , which 
is indicative of their origin in the small intestinal lamina pro-
pria (Fig. S3 A, available at http://www.jem.org/cgi/content/
full/jem.20080039/DC1). Moreover, orally applied latex 
beads appeared in Tx-mLN as well as Tx-pLN (Fig. S3 B), a 
process which requires the active cell-bound transport of the 
beads. Thus, even though gut-derived DC initiated T cell 
priming in Tx-pLN and Tx-mLN, divergent homing mole-
cules were induced on the expanding T cells. In particular, 
gut-derived DC that eff ectively induce a gut-homing pheno-
type in vitro are insuffi  cient to sustain the generation of a gut 
tropism in Tx-pLN in vivo. This suggests that in Tx-LN, do-
nor-derived factors, which are retained after transplantation, 
essentially shape the type of tissue tropism generated. 

 Notably, fl ow cytometry revealed a signifi cant fraction of 
EGFP  �   host-derived stroma cells in Tx-LN ( Fig. 1 E ). Thus 
we cannot rule out that EGFP  �   host-derived stroma cells 
might have seeded the Tx-LN. Transplantation of LN frag-
ments requires puncturing and tearing of the LN capsule 
before insertion into the mesenterium to allow for proper 
engraftment and vascularization of the transplants. Thus, re-
building of the capsule and ingrowth of the vasculature most 
likely will involve substantial contribution of EGFP  �   host 
cells. However, apparently these cells are not able to over-
come the dominant eff ect of EGFP +  donor-derived stroma 
on the type of tissue tropism generated in Tx-LN. Moreover, 
immunohistology showed that in the T cell zones, i.e., at the 
site of T cell priming, indeed the vast majority of gp38 +  stroma 
cells is donor-derived. We therefore suggest that nonhema-
topoietic stromal elements are essential for the generation of 
gut-homing T cells in gut-draining mLN and that these stro-
mal elements diff er between pLN and mLN, thereby provid-
ing a structural basis for the divergent generation of tissue 
tropism observed in these LN in vivo. 

 BM-DC and spleen-derived DC induce gut-homing T cells 

in vivo but not in vitro 

 Analyzing the potential of distinct DC subsets to generate 
gut-homing T cells in vivo requires uncoupling the origin of 
the DC from their usual destination, i.e., the draining LN. 
To this aim, we established a new method to inject DC di-
rectly into the mLN aff erent lymphatics (intralymphatic [i.l.] 
injection). After oil feeding, the small intestine was exposed 
by surgery and the mLN aff erent lymphatics were located. 
10 5  BM-DC was injected into two separate lymphatic vessels 
opening into the distal aspect of the mLN chain using a fi ne 
glass capillary ( Fig. 3, A and B ).  Injection of Ova-loaded 

feeding ( Fig. 2 C ), even though expression levels were lower 
compared with OT-I T cells. s.c. antigen delivery preferen-
tially resulted in T cell proliferation in the draining inguinal 
LN, accompanied by no apparent expression of  � 4 � 7-integ-
rin and CCR9 ( Fig. 2, A and B ). 

 Comparison of these results obtained from the endog-
enous LN with the Tx-pLN revealed striking diff erences: T 
cells primed in Tx-pLN failed to up-regulate  � 4 � 7-integrin 
and CCR9. In contrast, grafted Tx-mLN were indistinguish-
able from endogenous mLN with respect to their ability to 
promote the generation of gut-homing T cells ( Fig. 2, A – C ). 
Notably, oral administration of Ova readily induced pro-
liferation of T cells in Tx-pLN and Tx-mLN comparable to 
endogenous mLN ( Fig. 2 A ). Expanding T cells down-regu-
lated CD62L and up-regulated CD44 in Tx-pLN and Tx-
mLN to a similar extent, which is indicative of their eff ector 

  Figure 2.     Heterotopic chimeric Tx-pLN, but not orthotopic Tx-

mLN, fail to generate gut-homing T cells in vivo.  Cells isolated from 

OT-I or OT-II Ly5.1 mice were labeled with CFSE and adoptively transferred 

into mice that received Tx-pLN or Tx-mLN 8 wk before. 1 d later, a single 

dose of Ova was applied orally or injected s.c. (A) Representative results 

obtained for  � 4 � 7-integrin and CCR9 expression by OT-I T cells 

(DAPI  �  V � 2 + V � 5 + CD8 + ) activated in the mLN, Tx-mLN, and Tx-pLN after 

oral antigen application and in pLN after s.c. injection of antigen. 

(B and C) Diagrams depict expression of  � 4 � 7-integrin and CCR9 as fold 

isotype control for OT-I T cells (DAPI  �  V � 2 + V � 5 + CD8 + ; B) and OT-II T cells 

(DAPI  �  Ly5.1 + V � 5 + CD4 + ; C). All experiments have been performed at least 

three times with two or more mice per group. Error bars represent SD.   
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BM-DC readily induced proliferation of only antigen-specifi c 
adoptively transferred T cells, indicating that no overt un-
specifi c T cell proliferation was induced. Moreover, DC de-
fective in antigen presentation in the context of either MHC 
class I or class II failed to provoke T cell proliferation ( Fig. 3 C ). 
Thus, T cell proliferation upon i.l. injection of BM-DC re-
fl ects the direct priming by the injected DC and does not re-
sult from antigen passed on to LN resident DC. 

 We next explored the phenotype of T cells primed in the 
mLN upon i.l. injection of DC. As described in the previous 
paragraph, antigen-loaded DC were injected into mLN aff er-
ent lymphatics of WT recipients that previously received 
CFSE-labeled Ova-specifi c DO11.10 cells. 3 d later, cells 
were isolated from the mLN and analyzed for the expression 
of  � 4 � 7-integrin, CCR9, and E- and P-selectin ligand. For 
comparison, another group of mice received 10 6  DC-injected 
s.c., and cells isolated from the skin-draining pLN were 
analyzed. Strikingly, BM-DC that fail to induce CCR9 on 
T cells in vitro ( Fig. 4 B ) ( 9 ) effi  ciently induced CCR9 after 
i.l. injection in vivo ( Fig. 4, A and B ).  Similarly, in vitro ex-
pression of  � 4 � 7-integrin is induced by BM-DC only after 
prolonged culture ( 18 ; for review see reference  3 ) but was rap-
idly induced in vivo ( Fig. 4, A and B ). Thus, T cells primed 

  Figure 3.     Injection of antigen-loaded BM-DC into mLN afferent 

lymphatics induces proliferation of antigen-specifi c T cells.  Recipient 

mice received CFSE-labeled LN cells isolated from DO11.10, OT-I, or OT-II 

donors. 1 d later, these mice received oil by gavage 1 h before surgery to 

visualize mLN afferent lymphatics and to facilitate i.l. injection. (A) The 

small intestine was exposed by surgery and mLN afferent lymphatics were 

identifi ed by their white color. (B) To demonstrate the method of i.l. injec-

tion,  � 0.3  μ l of blue dye was injected into a single lymph vessel. After 

injection of 2 ×  1  μ l into two separate vessels, as performed for routine 

injection of DC, the fl uid spread throughout the LN sinus (not depicted). 

(C) 10 5  BM-DC was injected into two separate lymphatic vessels opening 

into the distal aspect of the mLN chain. Injection of Ova loaded DC (solid 

black line), but not heat-killed DC (red line), induced proliferation of Ova-

specifi c DO11.10 T cells (DAPI  �  KJ16-26 + CD4 + ). BM-DC derived from MHC 

class II – defi cient mice induced only marginal proliferation of OT-II cells. 

Similarly, DC derived from BM of bm-1 mice failed to activate OT-I T cells. 

All experiments have been performed at least two times with three or 

more mice per group.   

  Figure 4.     BM-DC and spleen-derived DC generate gut-homing 

T cells in vivo but not in vitro.  (A and B) DO11.10 cells were adoptively 

transferred into WT recipients. 1 d later, BM-DC were either injected i.l. or 

s.c., and proliferating DO11.10 T cells in the mLN and pLN were analyzed 

for expression of  � 4 � 7-integrin, CCR9, and E- and P-selectin ligand as 

indicated. Moreover, expression of these molecules was assessed after in 

vitro coculture of antigen-loaded BM-DC with DO11.10 T cells at a 1:10 

ratio. BM-DC injected into mLN afferent lymphatics, but not injected s.c., 

or in vitro cocultures led to the up-regulation of  � 4 � 7-integrin and CCR9 

on proliferating T cells. Conversely, s.c., but not i.l., injection of BM-DC 

induced expression of E- and P-selectin ligand. (C and D) DC were isolated 

from mLN and spleen, loaded in vitro with Ova peptide, and injected i.l. 

into recipient mice as described in  Fig. 3 . Spleen-derived DC that fail to 

up-regulate gut-homing factors after 3 d of coculture with DO11.10 cells 

in vitro (not depicted) readily induced expression of  � 4 � 7-integrin and 

modest expression of CCR9 after i.l. injection in vivo. All experiments were 

performed at least three times with at least two mice per group.   
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matopoietic cells was observed (2.4  ±  2.2% of all cells ex-
pressed CD11b and 1.5  ±  1.4% of cells coexpressed CD11c 
and MHCII;  n  = 7) and real-time PCR assays did not show 

by BM-DC in vitro largely diff er with respect to their hom-
ing properties from T cells primed by BM-DC in vivo. We 
next extended our experiments to primary DC. DC were 
isolated from spleen or mLN of WT mice and loaded with 
Ova peptide in vitro. Expectedly, only mLN-derived DC 
induced a gut-homing phenotype on T cells in vitro (unpub-
lished data). In contrast, both mLN- and spleen-derived DC 
induced considerable up-regulation of CCR9 and  � 4 � 7-in-
tegrin upon i.l. injection ( Fig. 4, C and D ). In line with these 
observations, i.p. injection of BM-DC has also been reported 
to induce expression of  � 4 � 7-integrin on antigen-specifi c 
proliferating T cells in the mLN ( 18 ). This indicates that even 
though mLN-derived DC might be more effi  cient in induc-
ing CCR9 ( Fig. 4, C and D ) compared with spleen-derived 
DC, the LN environment and not the origin of DC deter-
mines the generation of gut-homing T cells in vivo. 

 Stroma cells in mLN express RALDH and support 

the induction of CCR9 in vitro 

 Because RA can mimic the eff ects of GALT DC in vitro and 
addition of RA antagonists counteracts the ability of GALT 
DC to generate gut-homing T cells, it is tempting to specu-
late that stroma cells might directly or indirectly infl uence 
RA levels in LN. To determine a potential contribution of 
stromal cells to RA production, we compared the expression 
of the RA producing enzymes RALDH1, 2, and 3 in puri-
fi ed stroma cells and CD103 +  and CD103  �  DC isolated from 
mLN or pLN. Stroma cells were sorted as CD45  �  CD24  �  gp38 +  
cells to  > 95% purity and contained no detectable DC (un-
published data). As published previously, RALDH2 expres-
sion was substantially higher in CD103 +  mLN DC compared 
with their CD103  �   counterparts ( Fig. 5 A ) ( 19 ).  Surprisingly, 
CD103  �   pLN DC showed elevated expression levels of 
RALDH2. This indicates that RALDH2 expression by DC 
does not necessarily correlate with expression of CD103 or 
with their ability to instruct CCR9 expression on activated 
T cells. Interestingly, comparison of RALDH expression be-
tween pLN- and mLN-derived stroma cells revealed striking 
diff erences. Exclusively mLN-derived stroma cells showed 
robust expression of RALDH2, whereas expression of this 
enzyme was virtually absent from pLN stroma cells ( Fig. 5 A ). 
Moreover, expression of RALDH1 and 3 was substantially 
higher in mLN- compared with pLN-derived stroma cells 
( Fig. 5 A ). In contrast, no diff erences were observed in ex-
pression of the Vitamin A – metabolizing alcohol dehydro-
genases ADH1, ADH4, and ADH5 (unpublished data). 

 Next, we directly assessed the ability of LN stroma to 
support the generation of gut-homing T cells. Because cell 
sorting of primary LN cell suspensions did not yield suffi  cient 
cells for functional assays, LN were enzymatically digested 
and the resulting cell suspensions plated. Nonadherent cells 
were repeatedly removed and after 10 d of culture, a dense 
monolayer of LN-adherent cells with most cells resembling 
fi broblasts was obtained. Flow cytometry revealed that the 
vast majority of all cells in such cultures were CD45  �   and 
expressed gp38. In contrast, only a minor population of he-

  Figure 5.     mLN- but not pLN-derived stroma cells express high 

levels of RALDH and support the induction of CCR9 on proliferating 

T cells.  (A) cDNA was prepared from sorted CD45  �  CD24  �  gp38 +  stroma 

cells and CD103 +  as well as CD103  �   DC (CD11c + MHCII + ) purifi ed from pLN 

and mLN. Expression of RALDH1, 2, and 3 was assessed by real-time PCR 

and is depicted as fold expression compared with GAPDH. Data depict the 

mean and SD of three to fi ve independent experiments measured in du-

plicates. (B and C) CFSE-labeled OT-I cells were activated by anti-CD3/

CD28 treatment in the presence of either pLN- or mLN-derived stroma 

cells with or without addition of retinol. Stroma cells were enriched by 

adherence and culture of digested LN cell suspensions over 10 d. Data 

shown represent the mean and SD of three independent experiments. 

(D) cDNA was prepared from sorted CD45  �  CD24  �  gp38 +  stroma cells 

(open bars) and CD103 +  DC (closed bars) of CCR7-defi cient mLN. Expres-

sion of RALDH1, 2, and 3 was assessed by real-time PCR. Bars depict the 

mean and SD of fold expression compared with GAPDH observed in two 

independent experiments. (E) CCR9 expression was analyzed after i.l. in-

jection of antigen-loaded BM-DC into mLN afferent lymphatics of CCR7-

defi cient mice. In contrast to the situation in WT mice, BM-DC failed to 

support the induction of CCR9 on T cells in CCR7-defi cient mice. Expres-

sion of  � 4 � 7-integrin was not signifi cantly affected. Results depict data 

obtained in one out of two experiments performed with fi ve mice. Error 

bars represent SD.   
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over, might infl uence the balance between eff ector and regu-
latory T cell generation. 

 In conclusion, we suggest that in vivo, gut-homing T cells 
can only be generated in a permissive LN environment that 
is determined by resident stroma cells and DC. Resident stroma 
cells might produce negative signals that impair the genera-
tion of gut-homing T cells in Tx-pLN. Additionally, mLN 
stroma cells deliver positive signals, including RA, that sup-
port the induction of  � 4 � 7-integrin and CCR9 on T cells by 
DC that fail to promote this process in vitro. Under physio-
logical conditions, stroma cells and DC might cooperate in 
shaping a LN environment that in the mLN is distinguished 
by high levels of RA, favoring the induction of gut-homing 
molecules. This balance is perturbed by LN transplantation 
and i.l. injection, revealing the major infl uence of stromal cells 
in LN function. 

 MATERIALS AND METHODS 
 Mouse strains.   C57BL/6, C57BL/6-Tg(Tcra Tcrb)1100MjbJ (designated 

here as OT-I mice; OT-I T cells selectively recognize Ova peptide pre-

sented in the context of MHC class I), C57BL/6-Tg(Tcra Tcrb)425Cbn-

Ptprc a  (designated here as OT-II Ly5.1 mice; OT-II T cells selectively 

recognize Ova peptide presented in the context of MHC class II), B6.C-

H2 bm1  (designated here as bm1-mice; bm-1 mice carry a mutated H2-K 

molecule and cannot present Ova peptide in the context of MHC class I), 

B6;129-H2 dlab1  (designated here as MHC class II – defi cient mice; mice were 

provided by G. Behrens, Clinical Immunology and Rheumatology, Han-

nover Medical School, Hannover, Germany), C57BL/6-Tg(ACTbEGFP) 

(designated here as EGFP mice; these mice constitutively express EGFP in 

all cells under the control of the chicken  � -actin promoter), BALB/c, and 

BALB/c  – Tg(DO11.10) were bred at the central animal facility of Hannover 

Medical School under specifi c pathogen-free conditions. BALB/c mice 

were purchased from Charles River Laboratories. All experiments have been 

approved by the institutional review board and the  “ Nieders ä chsisches Lan-

desamt f ü r Verbraucherschutz und Lebensmittelsicherheit. ”  

 Antibodies and reagents.   The following antibodies, fusion proteins, and 

conjugates were used in this study: anti – CD11c-APC (HL3), anti – MHCII 

(1A b )-bio (AF6-120.1), anti – V  �  5.1, 5.2 TCR-bio (MR9-4), anti – V  �  2-PE 

(B20.1), anti- � 4 � 7 (DTAK32), and CD45.2-PerCp-Cy5.5 (104) (BD Bio-

sciences); anti-DO11.10 TCR-bio (KJ1-26) (Caltag Laboratories); ER-TR7 

(BMA Biomedicals); and recombinant mouse E-Selectin/Fc chimera and 

recombinant mouse P-Selectin/Fc chimera (R & D Systems). Anti-CD4 

(RmCD4.2), anti-CD3 (17A2), anti-CD8 �  (RmCD8-2), anti-B220 (TIB146), 

anti-CCR9 (7E7), and anti-gp38 (8.1.1) antibodies were produced in our 

laboratory. Cy3 and Cy5 conjugates (GE Healthcare), as well as Pacifi c Or-

ange conjugates (Invitrogen), were prepared as recommended by the manu-

facturer. Biotinylated antibodies were recognized by streptavidin coupled to 

PerCp (BD Biosciences). Anti-CCR9 and anti- � 4 � 7 were detected using 

mouse anti – rat Cy5 (Jackson ImmunoResearch Laboratories). E-Selectin/Fc 

chimera and P-Selectin/Fc chimera were detected with goat anti – human 

Cy5 (Jackson ImmunoResearch Laboratories). 

 Intestinal surgery.   Under the combined anesthesia with Ketamine and 

Rompun, mesenteric lymphadenectomy was performed by microdissection 

along the length of the superior mesenteric artery to aortic root. mLN or 

pLN (inguinal, axillary, and brachial LN) were isolated from EGFP mice and 

grafted into the site of the removed mLN. Mice were used for experiments 

8 wk after transplantation. Immunohistology of grafted LN was performed as 

previously described ( 25 ). 

 Adoptive cell transfer.   Cells were isolated from DO11.10, OT-II Ly5.1, 

or OT-I transgenic mice expressing TCR recognizing Ova (Ovalbumin), 

any expression of MHCII. Thus, we suggest that such cultures 
of LN-adherent cells do not contain functionally relevant 
populations of DC or macrophages and can be used as a sub-
stitute for primary isolates of LN stroma cells. Interestingly, 
OT-I T cells activated by anti-CD3/CD28 stimulation readily 
up-regulated expression of CCR9 in the presence of adher-
ent cells cultured out of mLN but not pLN ( Fig. 5, B and C ). 
Up-regulation of CCR9 was dependent on the presence of 
retinol, suggesting that the ability of mLN but not pLN stroma-
adherent cells to metabolize retinol was responsible for the 
induction of CCR9 ( Fig. 5, B and C ). We therefore suggest 
that the particular ability of mLN to support the generation 
of gut-homing T cells, at least in part, relies on the ability of 
mLN stroma cells to produce RA. 

 RA is well known to act as a signaling molecule eliciting 
RA-dependent responses throughout tissues, as exemplifi ed 
by the rescue of morphogenetic defects in RALDH2-defi -
cient embryos by low chimerism with WT cells ( 20 ). More-
over, RA can enhance its own production by up-regulation 
of the enzymatic machinery regulating RA levels. Thus the 
combined function of LN-resident stroma cells and migrating 
DC, both of which express high levels of RALDH genes, 
might integrate to shape the unique properties of LN, includ-
ing the particular ability of mLN to direct eff ector T cells into 
the gut. 

 In line with this idea, we observed that BM-DC failed to 
induce expression of CCR9 upon i.l. injection in the mLN 
of CCR7-defi cient mice ( Fig. 5 E ). CCR7-defi cient mice 
are characterized by impaired steady-state migration of DC, 
have a strongly reduced population of CD103 +  DC in their 
mLN ( 16, 21 ), and residual CD103 +  DC in the mLN of 
CCR7-defi cient mice almost completely lack expression of 
RALDH2 ( Fig. 5 D ). Up-regulation of  � 4 � 7-integrin, as 
well as expression of RALDH genes by mLN stroma cells, 
was not signifi cantly altered in CCR7-defi cient mice ( Fig. 5, 
D and E ). Therefore, in vivo, the generation of gut tropism, 
i.e., expression of CCR9, appears to require instructive sig-
nals by both mLN resident stroma cells and DC. These sig-
nals are likely to include the agonistic eff ects of RA on the 
induction of CCR9 and  � 4 � 7-integrin and appear to infl u-
ence proliferating T cells in trans. In contrast, RA provided 
in cis by the antigen-presenting DC appears to play a subor-
dinate role, as revealed by the ability of RALDH2-negative 
spleen DC to induce CCR9 after i.l. injection and the in-
ability of Tx-pLN to support the induction of gut tropic 
T cells. Still, RA provided in cis by the antigen-presenting 
DC might add to the net regulation of tissue tropic factors, 
as refl ected by the more potent activity of mLN-derived DC 
to induce CCR9 compared with spleen-derived DC after 
i.l. injection. 

 Recently, an additional role for RA has been reported in 
the generation of regulatory T cells ( 19, 22 – 24 ). Interest-
ingly, conversion of naive T cells into regulatory T cells oc-
curs more effi  ciently in GALT than other tissues ( 19, 23 ), 
raising the possibility that regulation of RA levels by LN 
stroma cells does not only aff ect tissue tropisms but, more-
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i.l. were gavaged with 200  μ l of olive oil 1 h before surgery for better visual-
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Ketamine and Rompun, mLN aff erent lymphatics were exposed and 10 5  

DC in a volume of 2  ×  1  μ l were injected with a fi ne glass needle into two 

separate lymph vessels. 

 Cell isolation.   For isolation of DC, lymphoid organs were digested at 37 ° C 

for 45 min with 0.5 mg/ml Collagenase A and 50 U/ml DNase I (both 

Roche) in RPMI 1640/10% FCS. RBC were lysed and CD11c +  cells were 

enriched by CD11c Microbeads using AutoMACS (Miltenyi Biotec), yield-

ing a mean purity of 70% MHCII + CD11 +  DC. Enriched DC suspensions 

were pulsed with 1  μ g/ml OVA peptide (323 – 329) binding to MHC class II 

for 1 h at 37 ° C and washed thoroughly before i.l. injection. For isolation of 

stroma cells, LN were digested at 37 ° C for 60 min with 0.1 mg/ml Liberase 

Blendzyme 2 (Roche) and 50 U/ml DNase I. Hematopoietic cells were de-

pleted by anti-CD45 anti-CD11c MACS negative selection and purifi ed by 

FACS sorting (FACSAria; BD Biosciences) as DAPI  �  CD45  �  CD24  �  gp38 +  

cells for isolation of RNA. Alternatively, digested LN cell suspensions were 

cultured in DMEM/10% FCS/PS for 10 d. Medium was exchanged every 

second day to remove nonadherent cells from the cultures. 

 In vitro cocultures.   10 5  CFSE-labeled OT-I cells were activated by adding 

10 5  antigen-loaded DC. For stroma cell cocultures, 2.5  ×  10 5  CFSE-labeled 

purifi ed CD8 +  OT-I cells (CD8 +  T Cell Isolation kit; Miltenyi Biotec) were 
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 Online supplemental material.   Fig. S1 shows that Tx-LN display normal 

cellular composition and LN architecture. Fig. S2 shows that proliferating T 

cells in Tx-LN gain a phenotype indicative for activated T cells. Fig. S3 

shows that gut-derived DC enter Tx-LN. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20080039/DC1. 
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