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A B S T R A C T   

Refining the α-Al grain size and controlling the morphology of intermetallic phases during solidification of Al 
alloys using ultrasonic melt processing (USMP) and Al-Ti-B have been extensively used in academic and industry. 
While, their synergy effect on the formation of these phases has not yet clearly demonstrated. In this paper, the 
influence of USMP and Al-Ti-B on the solidified microstructure of multicomponent Al-4.5Cu-0.5Mn-0.5Mg-0.2Si- 
xFe alloys (x = 0.7, and 1.2 wt%) has been comparatively studied. The results show that the USMP + Al-Ti-B 
method produce a more profound refinement effect than the individual methods. In addition, the area of single 
Fe-rich phases in both alloys with USMP + Al-Ti-B are also refined compared with conventional methods. A 
mechanism is proposed for the refinement, which are the deagglomerated TiB2 parties induced by USMP 
providing more effective nucleation sites for α-Al, and the refined interdendritic regions limited the growth of Fe- 
rich phases in the following eutectic reaction. Finally, the application of combined USMP + Al-Ti-B methods is 
feasible in microstructural refinement, resulting in the improving the casting soundness and mechanical prop-
erties of alloys.   

1. Introduction 

Al–Cu alloys have a high strength-to-density ratio, and good fatigue 
and damage tolerance, which is widely used in aerospace and engi-
neering structure applications [1–3]. Nowadays, a large number of air-
crafts have reached the end of their service life. Their number will 
increase in the coming years, providing an abundant sources of valuable 
recycled metals, a large part of which are Al-Cu alloys. Thanks to the 
high recyclability and sustainability of Al, most of these Al scraps are 
recycled, which leads to reduce energy consumption, reducing green-
house gas and solid waste, promoting circular economy [4,5]. 

However, due to the various sources of Al scraps and use of iron- 
based tools, these impurity elements, such as, Fe and Si, are easily 

introduced to the recycled Al alloys [6–9]. Fe is the main impurity 
element in Al-Cu alloys, that form hard and brittle plate-like Fe-rich 
intermetallic phases (named Fe-rich phases hereinafter) during solidi-
fication [10–29]. The type of Fe-rich phases in Al-Cu alloys, such as, 
Al3(CuFe), Al6(CuFe), Al7Cu2Fe (β-Fe), Al15Fe3(SiCu)2 (α-Fe), varies 
with different alloy compositions, cooling rates, and external fields 
during solidification [12–23]. The presence of these brittle particles 
(especially the large sizes) in the alloys significantly decreases the fa-
tigue strength and ductility of the alloys [10–14]. In order to avoid these 
problems and foster the use of these recycled Al alloys, various methods 
are used: 1) The chemical route to change the morphology of Fe-rich 
particles by adding trace elements or grain refiner before solidification 
[15–21]; 2) applying ultrasonic or electromagnetic fields to refine the 
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microstructure during solidification [22–25]; 3) using heat treatments 
or thermomechanical processing, such as rolling or extrusion, to broke 
the Fe-rich particles after solidification [26–29]. In some alloys, Fe is 
deliberately added for improving their strength at room temperature 
[30,31] or their high-temperature properties [32,33]. Hence, it is 
necessary to optimize in-service condition of recycled Al alloys by 
adjusting the Fe content and Fe-rich particles morphology. 

It is well accepted that the Al-5Ti-1B master alloy has Al3Ti and TiB2 
nucleant particles. This plays a critical role in the grain refinement, 
reducing pores and micro-segregations reduction, which enhances Al 
alloys mechanical properties [43–48]. Moreover, the Al-5Ti-1B addition 
can alter the solidification sequence and change the morphology of Fe- 
rich phases in Al alloys during solidification [34–42]. The influence of 
Al-5Ti-1B can be ascribed to the following three aspects: 1) refinement 
of the Fe-rich particles size without changing their type [35–36,42]; 2) 
promotion of the formation of plate-like Fe-rich phases [37–40]; 3) 
promotion of the transformation of Fe-rich phases from plate-like to 
Chinese-script [20,21,41]. The formation of different Fe-rich phases 
depends on the alloy composition and cooling rate. Al-5Ti-1B addition to 
Al-Mg alloys [35,36] not only refine the primary Al grains but also re-
fines the α-Fe particles. Both effects are related through the refinement 
of Al grains that limits the growth of α-Fe phases in the interdendritic 
liquid regions during subsequently eutectic reaction. 

The size of primary Al3Fe phases in Al-Fe alloys is also reduced by Al- 
5Ti-1B addition [42]. Submicron-scale tomography results in Al-Mg-Si 
alloy [37] clearly demonstrated that Al-5Ti-1B reduces the number 
and length of α-Fe and β-Al5FeSi (β-Fe) particles. This improvement is 
produced because TiB2 act as nucleation site for α-Fe and β-Fe. More-
over, some researchers [38–40] found that Al-5Ti-1B induces the for-
mation of β-Fe phases in Al-Si alloys. They deduced that TiB2 particles 
have a small misfit with β-Fe phase. In our previous studies [20,21], it 
has been shown that the addition of Al-5Ti-1B to Al-Fe and Al-Cu-Fe 
alloys promotes the formation of Al6Fe phases and inhibit the growth 
of primary Al3Fe phases. However, the study of Al-5Ti-1B addition on 
the solidification sequence and distribution of Fe-rich phases of high-Fe- 
containing recycled Al-Cu alloys remains unknown. 

Ultrasonic melt processing, USMP, is a promising economical tech-
nology that provides an environment-friendly method for improving the 
soundness and quality of cast ingots [43–48]. It is generally believed 
that the action mechanisms of USMP on solidifying microstructure can 
be ascribed to two aspects: 1) the cavitation bubbles generated by 
acoustic cavitation that continually attack and broke the dendritic 
structure and the intermetallic phases; 2) acoustic streaming improves 
solute homogeneity which homogenizes the spatial distribution of 
dendrites and intermetallic phases [43–45]. Extensive works have been 
conducted to demonstrate that USMP refines the Al grain size, improve 
the microstructural homogenisation, and enhance the properties of Al 
alloys [49–55]. Moreover, it has been demonstrated that the USMP re-
duces the macro-segregation and boosts the formation of fine and 
homogenously distributed Fe-rich phases in Al-Si-Fe alloys [56,57]. 
Also, the USMP has been used to tune the Fe-rich phases in Al alloys at 
different solidification stages [56–63]. Moreover, the USMP changes the 
shape of α-Fe phases from coarse Chinese-script to fine polygonal type in 
Al-Si alloys [58]. At melt temperatures below 600 ◦C, the acoustic 
streaming distributes the solute homogenously. At melt temperatures of 
600–750 ◦C, the acoustic cavitation promotes the nucleation and breaks 
the large particles. The morphology of primary Al3Fe phases in Al-Fe 
alloys changes from plate-like to blocky and granular shape by 
applying USMP, which is due to cavitation-induced fragmentation of 
primary Al3Fe and enhances the nucleation and refines the size of Al3Fe. 
Both effects improve the mechanical properties of the alloys [60]. The 
size of α-Fe in Al-Si alloys is also greatly reduced by acoustic cavitation 
during USMP [61]. Acoustic streaming and cavitation of USMP ho-
mogenize the solute distribution and the temperature fields in Al-Si al-
loys. This results in the presence of refined δ-Al4(FeMn)Si2 Fe-rich 
particles [62]. In Al-Si-Fe alloys the plate-like β-Al9Si2Fe2 phases was 

replaced by star-like α-Al12Si2Fe phases [63]. This morphological 
modification and phase transformation is due to the acoustic cavitation 
that induces melt undercooling and increases the nucleation of Fe-rich 
phases. However, to author’s knowledge, the combined effect of 
USMP and Al-5Ti-1B on the solidification sequences and growth of Fe- 
rich phases in recycled Al-Cu alloys have not been reported yet. 

Hence, the effect of USMP and Al-Ti-B on the growth of α-Al and Fe- 
rich phases in Al-Cu-Mn-Mg-Fe-Si alloys is comparatively studied in the 
present work. Optical microscope (OM), scanning electron microscope 
(SEM), electron backscatter diffraction (EBSD), differential scanning 
calorimeter (DSC) and thermal analysis were used to characterize the 
microstructural evolution of the alloy during solidification. The detailed 
mechanism of USMP + Al-Ti-B on the growth of α-Al and Fe-rich phases 
is briefly discussed. 

2. Materials and methods 

2.1. Alloy preparation 

Commercial pure Al (99.8 %), Al-50Cu, Al-20Fe, Al-10Mn, Al-10Mg 
and Al-20Si master alloys were used to produce the studied alloys. The 
selection of Al-Cu-Mn-Mg-Si-Fe alloys is based on the A206 alloy, which 
has high mechanical properties and is widely used in the aerospace and 
automotive sectors. These alloys were added to a graphite crucible for 
melting and they were heated to 800 ◦C under an energetic stirring for 
liquid homogenisation. Then, the melts were degassed using C2Cl6 and 
the slag removed by mechanical methods. Al-10Mg and 0.2 % Al-5Ti-1B 
master alloys were added into the melts under mechanical stirring to 
reduce the Mg loss in the alloys. The average size of TiB2 particles in the 
Al-5Ti-1B master alloys is 0.77 ± 0.28 μm [21]. Finally, the melts were 
poured into a preheated steel mould (see Fig. 1) at 750 ◦C. During the 
solidification process, the cooling curves were recorded in the centre of 
the ingots. 8 alloys were prepared: 0.7Fe+Al-Ti-B, 1.2Fe+Al-Ti-B, 
0.7Fe+USMP, 0.7Fe+Al-Ti-B+USMP, 1.2Fe+USMP, 1.2Fe+Al-Ti-B 
+USMP that are termed as 0.7FeB, 1.2FeB, 0.7FeU, 0.7FeUB, 1.2FeU, 
1.2FeUB, respectively, for simplicity. The chemical composition of the 
studied alloys was analysed by optical spectrometry, and the results are 
summarized in Table 1. 

2.2. Ultrasonic melt processing 

The ultrasonic equipment is made up of an ultrasonic generator (1 
kW), an magnetostrictive transducer (18 KHz) and an ultrasonic sono-
trode (Ti-6Al-4V horn diameter: 30 mm). The schematic diagram of the 
ultrasonic melt processing setup is shown in Fig. 1a. During the exper-
iment, the sonotrode was preheated to 400 ◦C using the electric- 
resistance coil to reduce the chilling effect. The sonotrode was inser-
ted 30 mm into the melt at 710 ◦C, 5 min after the ultrasonic treatment, 
the melt temperature is about 695 ◦C. At this temperature, the melt is 
fully liquid, as the liquidus temperature of these two alloys are both 
about 640 ◦C. After that, the sonotrode was withdrawn from the melt 
and the crucible was extracted from the furnace for casting (Fig. 1b). 
Also, a thermocouple located in the centre of mould was used to record 
the cooling curves during solidification. The samples were cut using wire 
electrical discharge machining at the bottom of the ingot (Fig. 1c), and 
the size of the different samples is also schematic displayed in Fig. 1c). 

2.3. Microstructural analysis 

The metallographic samples (size: 7 × 7 × 7 mm3) were cut from the 
bottom of the ingots and prepared by standard grinding, polishing, and 
etching processes. Optical microscope (LEICA/DMI5000M, Germany) 
was used to analysis the microstructure of the casting alloys. A SEM 
(Sigma 500, Zeiss, Germany) combined with an energy-dispersive 
spectrometer (EDS, Oxford) was used to observe the microstructure 
and identify the phases present in the alloys. The 3D morphology of the 
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Fe-rich phases was revealed by methanol and solid iodine solution used 
to remove the Al matrix for 3–6 h. 30 binarized optical images were used 
to calculate the Fe-rich phases average size. The EBSD maps and Kikuchi 
patterns were measured using a sample-to-detector distance of ~ 10 mm 
and a voltage of 20 kV at the SEM. The sample was tilted 70◦ with 
respect to the detector. The scanning step size was set at 1 μm. The 
conventional procedure of counting grain boundaries in vertical and 
horizontal lines was used to calculate the average grain size. The sam-
ples were heated at a constant heating rate from 25 ◦C to 700 ◦C in DSC 
(Netzsch DSC 404, Germany) and then a constant cooling rate (10 ◦C/ 
min) to 25 ◦C with the protection of Ar gas. 

2.4. Thermodynamic calculation 

The solidification sequences of 0.7Fe and 1.2Fe alloys were calcu-
lated by using the Scheil model in Thermo-Calc software. The results are 
shown in Fig. 2. In 0.7Fe alloy (Fig. 2a), the solidification sequences are: 
1) L → α-Al; 2) L → α-Al + Al3(FeMn); 3) L → α-Al + Al3(FeMn) +
Al6(FeMn); 4) L → α-Al + Al6(FeMn); 5) L → α-Al + Al6(FeMn) +
Al7Cu2Fe (β-Fe); 6) L → α-Al + β-Fe; 7) L → α-Al + Al6(FeMn) + β-Fe +
Al15Fe3Si2(α-Fe); 8) L → α-Al + α-Fe; 9) L → α-Al + α-Fe + Al2Cu; 10) L 
→ α-Al + α-Fe + Al2Cu + Mg2Si; 11) L → α-Al + α-Fe + Al2Cu + Mg2Si +
Al2CuMg (S). The β-Fe and S phases are not detected in the alloys due to 

the low content. In 1.2Fe alloy (Fig. 2b), the solidification sequences are 
similar to that of the 0.7Fe alloy except for the primary Al3(FeMn) 
phases. So, the individual phase transformation for 0.7Fe alloy is: L → 
α-Al + Al3(FeMn) + α-Fe + β-Fe + Al2Cu + Mg2Si + Al2CuMg; for 1.2Fe 
alloy is: L → α-Al + Al3(FeMn) + Al6(FeMn) + β-Fe + Al2Cu + Mg2Si +
Al2CuMg. Fig. 2c shows the vertical section of Al-4.5Cu-0.5Mn-0.5Mg- 
0.2Si-xFe (x = 0–2) alloys, which demonstrates that the high Fe con-
tent promotes the formation of Al3Fe phases. Table 2 shows the solidi-
fication sequences of 0.7Fe and 1.2Fe alloys obtained from the 
thermodynamic calculation (Fig. 2a and b). The Scheil solidification 
sequences obtained from the thermodynamic calculation are listed in 
Table 2. 

3. Results 

3.1. α-Al grain size 

The EBSD maps along the x direction in the studied alloys and the 
inverse pole figures (IPF), are shown in Fig. 3. It can be seen that the 
conventional casting alloys exhibit a dendritic morphology, while the 
alloy with Al-Ti-B present a certain grain refinement effect. It is worth 
nothing that USMP process produces an equiaxial and uniform fine grain 
structure (Fig. 3c and d). Moreover, the combined USMP and Al-Ti-B 
method exhibits the most grain refinement effect. This is in accor-
dance with Ref. [64]. The mean grain size in 0.7Fe, 0.7FeB, 0.7FeU, and 
0.7UB alloys are 118.5, 101.0, 65.7, and 46.0 μm, respectively. In the 
USMP process, a gradient of grain sizes is found from the horn to the 
bottom of the ingot. After USMP processing, the melt was not directly 
solidified in the clay crucible, but poured into the steel mould. So, we 
assumed that the melt is homogenously and samples are taken at the 
bottom place. An increase in Fe content from 0.7 % to 1.2 % increases 
the mean grain size, Fig. 3. This indicates that USMP is an effectively 
method for grain refinement, the higher refinement is found in the 1.2Fe 
alloy. 

Fig. 1. Schematic diagram of (a) the ultrasonic melt treatment process; (b) casting process; (c) the sample position taken from the ingots.  

Table 1 
Chemical composition of the studied alloys (wt.%).  

Designed Alloy Cu Mn Fe Mg Si Ti Al 

0.7Fe  4.66  0.54  0.60  0.50  0.22  – Bal. 
0.7FeB  4.58  0.54  0.57  0.50  0.26  0.22 Bal. 
1.2Fe  4.41  0.52  1.08  0.49  0.21  – Bal. 
1.2FeB  4.42  0.53  1.15  0.50  0.28  0.19 Bal. 
0.7FeU  4.60  0.52  0.72  0.57  0.04  0.13 Bal. 
0.7FeUB  4.30  0.52  0.70  0.57  0.19  0.14 Bal. 
1.2FeU  4.52  0.50  1.18  0.60  0.15  0.13 Bal. 
1.2FeUB  4.31  0.53  1.21  0.57  0.19  0.14 Bal.  
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3.2. Optical microscope 

Fig. 4 shows the OM images of the studied alloys under different 
manufacturing conditions. In the conventional alloys, dark-grey Fe-rich 
phases, white Al2Cu phases and medium-grey Mg2Si phases are 
distributed in the interdendritic regions. In the conventional alloys, the 
Fe-rich phases exhibit the Chinese-script and coarse structures (Fig. 4a 
and b). Al-Ti-B addition partially changed the morphology of Fe-rich 
phases to blocky or plate-like structures (Fig. 4c and d, as indicated by 
red arrows). This indicates that Al-Ti-B not only affects the grain size of 

α-Al, but also change the shape of Fe-rich phases. The USMP promotes a 
higher dispersion of Fe-rich phases (Fig. 4e and f). Moreover, the com-
bined of USMP + Al-Ti-B process significantly refined the size of Fe-rich 
phases compared with individual processes (Fig. 4g and h). 

3.3. Phase identification 

The identification of Fe-rich phases by their morphology can be 
misleading in some cases, as for example Al6(FeMn) and α-Fe. Thus, EDS 
mapping, point analysis, and Kikuchi patterns were used to identify 
these phases. The EDS element mapping of the four alloys produced 
without USMP are illustrated in Fig. 5. Fig. 5a shows the element dis-
tributions of Mg and Si (indicated by white circles). This phase is 
confirmed as Mg2Si, which coincide with the SEM analysis and ther-
modynamic calculations (Fig. 2). Also, traces of Si exist in the Al2Cu 
precipitates (see Fig. 5a-d). In addition, both the red and white dotted 
lines indicate the presence of Fe, but Si is only present in the region 
indicated by the red dotted line (Fig. 5a). The phase without Si is sup-
posed to be Al6(FeMn), Fig. 5a). The phase with Si is confirmed to be 
α-Fe according to the element mapping [18]. In addition, the AlSiTi 
phase is found in the 0.7FeB alloy (Fig. 5b), which is consistent with the 
results shown in [39]. In the 1.2Fe alloy (Fig. 5c), Mg2Si (yellow dotted 
line) is also found through the coupled eutectic reaction with the Al2Cu 
phase. Similarly, the Fe-rich phases with and without Si are identified as 
α-Fe (white circle) and Al6(FeMn) respectively. In the 1.2FeB alloy 
(Fig. 5d), the Ti-containing particles are located in the Fe-rich phases, 
which allows to speculate that TiB2 particles are pushed into the 

Fig. 2. The solidification sequences of different alloys calculated using Thermo-Calc software:(a) 0.7Fe alloy; (b) 1.2Fe alloy; (c) the vertical section of Al-4.5Cu- 
0.5Mn-0.5Mg-0.2Si-xFe (x = 0–2) alloys. 

Table 2 
The Scheil solidification sequences obtained from the thermodynamic 
calculation.   

0.7Fe alloy 1.2Fe alloy 

1 L L 
2 L → α-Al L → Al3Fe 
3 L → α-Al + Al3Fe L → α-Al + Al3Fe 
4 L + Al3Fe → α-Al + Al6Fe L + Al3Fe → α-Al + Al6Fe 
5 L → α-Al + Al6Fe L → α-Al + Al6Fe 
6 L + Al6Fe → α-Al + β-Fe L + Al6Fe → α-Al + β-Fe 
7 L → α-Al + β-Fe L → α-Al + β-Fe 
8 L + β-Fe → α-Al + α-Fe L + β-Fe → α-Al + α-Fe 
9 L → α-Al + α-Fe L → α-Al + α-Fe 
10 L → α-Al + α-Fe + Al2Cu L → α-Al + α-Fe + Al2Cu 
11 L → α-Al + Mg2Si + Al2Cu L → α-Al + Mg2Si + Al2Cu 
12 L → α-Al + Mg2Si + Al2Cu +

Al2CuMg 
L → α-Al + Mg2Si + Al2Cu +
Al2CuMg  
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interdendritic regions serving as heterogenous nucleation sites for 
Al3(FeMn) phases [19,20]. 

The EDS element mapping of the two alloys with USMP are shown in 
Fig. 6. In 0.7Fe alloys, Fig. 6a and b, the presence of Mg2Si (white circle) 
together with Al2Cu is observed. The addition of Al-Ti-B does not modify 

the type of Fe-rich phases (Fig. 6b). In addition, some Si aggregates are 
found solubility into Al2Cu particles (red dotted line), which is agreed 
with our previous studies [15,16]. The Ti containing particles (red cir-
cle) are located at the Al matrix, in accordance to the well accepted idea 
that the TiB2 particles serve as heterogenous nucleation sites for α-Al. 

Fig. 3. The EBSD images and α-Al size distribution of different alloys: (a) 0.7Fe alloy; (b) 0.7FeB alloy; (c) 0.7FeU alloy; (d) 0.7FeUB alloy; (e) 1.2Fe alloy; (f) 1.2FeB 
alloy; (g) 1.2FeU alloy; (h) 1.2FeUB alloy. 

Fig. 4. OM images of the alloys: (a) 0.7Fe alloy; (b) 1.2Fe alloy; (c) 0.7FeB alloy; (d) 1.2FeB alloy; (e) 0.7FeU alloy; (f) 1.2FeU alloy; (g) 0.7FeUB alloy; (h) 
1.2FeUB alloy. 
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USMP is an efficient method for reduce the segregation of TiB2 particles 
and promotes their heterogenous nucleation. 

The identification of the type of intermetallic phases even with a 

combination of techniques as OM + SEM + EDS mapping, is very hard 
for some specific phases. Therefore, EBSD maps and Kikuchi patterns 
(Fig. 7) had been used to identify these Fe-rich phases. Al3(FeMn) is 

Fig. 5. SEM images and EDS element mapping of the alloys without USMP: (a) 0.7Fe alloy; (b) 0.7FeB alloy; (c) 1.2Fe alloy; (d) 1.2FeB alloy.  

Fig. 6. The SEM images and EDS element mapping of the alloys with USMP: (a) 0.7FeU alloy; (b) 0.7FeUB alloy.  
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observed in the 0.7Fe and 1.2FeB alloys, Fig. 7a and d. However, as 
shown in Fig. 7b and c, Al6(FeMn) is observed in the 0.7FeB and 1.2Fe 
alloys. The Al3(FeMn) phases are also found in the 1.2FeUB alloy 
(Fig. 7e). The experimental Kikuchi patterns in Fig. 7a2 are shown in 
Fig. 7a4-7. The Al2Cu (MAD = 0.38, 95.3, 124.9, 37.8), Al7Cu2Fe (MAD 
= 0.81, 40.1, 63.2, 22.5), Al6(FeMn) (MAD = 0.54, 108.1, 34.8, 90.8), 
and Al3(FeMn) (MAD = 0.99, 69.0, 119.2, 230.8) phases are identified 
in the alloys. 

3.4. Solidification sequences of the studied alloys 

The solidification sequences of the studied alloys under different 
solidification conditions were analysed by DSC and cooling curves. 
Fig. 8 shows the effect of the Fe content on the DSC cooling curve. There 
are 5 exothermic peaks both in 0.7 % and 1.2 %Fe alloys. These peaks 
correspond to the formation of α-Al, Al3(FeMn)/Al6(FeMn), β-Fe/α-Fe, 
Al2Cu, and Mg2Si, respectively. In 0.7Fe alloy, the primary α-Al phases 
nucleated at 635 ◦C, followed by the peaks of Al3(FeMn)/Al6(FeMn) and 
β-Fe/α-Fe at 617 ◦C and 552 ◦C, respectively. Finally, the Al2Cu, and 
Mg2Si peaks appear at 517 ◦C and 509 ◦C, respectively. The USMP 
process and the addition of Al-Ti-B, both slightly modify the formation 
temperatures of the different phases. Such as, the formation tempera-
tures of α-Al, Al6(FeMn), Al2Cu, and Mg2Si increase by 4, 4, 4, and 1 ◦C, 
respectively. In the 1.2Fe alloys, the formation temperatures of α-Al, 
Al3(FeMn), Al6(FeMn), Al2Cu, and Mg2Si are 637, 625, 559, 513, and 
508 ◦C, respectively. Furthermore, the Al-Ti-B addition and USMP in 1.2 

%Fe alloy also modify the intermetallic formation temperatures. The 
formation temperatures of the intermetallic phases generated in 
different conditions are summarized in Table 3. 

The cooling curves taken during solidification are shown in Fig. 9. 
The formation temperatures are obtained from the first-order derivative 
of the cooling curves. As can be seen in Fig. 9, the maximum under-
cooling of α-Al is greatly reduced by the Al-Ti-B addition and USMP both 
in the 0.7Fe and 1.2Fe alloys. Such as, the formation temperature of α-Al 
in 1.2Fe alloy is 636 ◦C; while this temperature in the 1.2FeU alloy is 
649 ◦C. The primary α-Al phase nucleation temperature under USMP is 
not clearly in the recorded cooling curves. This is due to the USMP 
temperature is 710 ◦C and the melt temperature is about 695 ◦C after 5 
min. The melt temperature is close to the liquidus temperature when the 
melt was poured into the steel mould. The first-order derivative of the 
cooling curves also shows five exothermic peaks corresponding to the 
five solidification reactions (Fig. 9c). Fig. 9d shows the schematic dia-
gram used to calculate the nucleation temperature of the different 
phases. It is also evidenced that the heterogeneous nucleation of TiB2 
and the strong effect of acoustic streaming and cavitation affect the 
formation temperatures of Fe-rich phases, Al2Cu and Mg2Si. The 
nucleation temperature of different phases measured by DSC and cool-
ing curve are presented in Table 3. Based on the above analysis of DSC 
(Fig. 8) and cooling curves (Fig. 9), the possible solidification reactions 
for both alloys are listed in Table 4. 

In order to study the effect of USMP + Al-Ti-B process on the Fe-rich 
phases size in different alloys, the area of single Fe-rich phases is shown 

Fig. 7. SEM images and EBSD phase mapping, Kikuchi patterns of different phase in the studied alloys: (a1-a3) 0.7Fe alloy; (b1-b3) 0.7FeB alloy; (c1-c3) 1.2Fe alloy; 
(d1-d3) 1.2FeB alloy; (e1-e3) 1.2FeUB alloy; (a4-a7, e4) Kikuchi patterns of different Fe-rich phases. 
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in Fig. 10. The image binarization in OM images were conducted ac-
cording to their colour, Fig. 10 a and b. The binarization process was 
performed by the ImageJ software. The total threshold value is 0–255, 
the criteria for Fe-rich phases (white colour) is 93–255. The area size 
distributions are shown in Fig. 10 c and d. At least 30 images were used 
for the statistical analysis. Hence, the USMP + Al-Ti-B process refine the 
size of single Fe-rich particles in comparison with individual methods. 

The 3D morphology of Fe-rich phases is also influenced by the Fe 
content and processing methods of the studied alloys, as demonstrated 
in Fig. 11. In conventional casting sample (Fig. 11a and e), coarse and 
fine dendritic Fe-rich phases are observed. As shown in Fig. 11b and c, 
the Fe-rich phases in 0.7FeB and 0.7FeU alloys are better dispersed. In 
Fig. 11d, it is shown that the size of Fe-rich phases in 0.7FeUB alloy is 
refined compared with individual methods. However, the morphology 
of Fe-rich phases in 1.2Fe alloys is more disperse with skeleton structure 
(Fig. 11e-h). 

4. Discussions 

4.1. Effect of USMP and Al-Ti-B on grain size of the studied alloys 

It is universally acknowledged that the Al-Ti-B grain refiner have a 
good grain refinement of α-Al, as TiB2 particles can serve as heteroge-
nous nucleation sites for α-Al [66,67]. The solute element, and melt 
process parameters have a strong influence on alloy’s grain size. The 
growth restriction factor (GRF) is calculated by Equation (1), Q repre-
sent the growth restriction degree obtained for a multiphase alloy upon 
solidification [68]. 

Q =
∑

j
mj
(
kj − 1

)
Cj (1)  

where mj is the liquidus line slope on the different equilibrium binary 
phase diagram, and kj are the equilibrium distribution coefficient and Cj 

is the solute concentration of element j, respectively. The value of liq-
uidus line slope (mj) and equilibrium distribution coefficient (kj) for 

Fig. 8. The DSC cooling curve (10 ◦C/min) of different alloys under different conditions: (a) 0.7Fe alloy; (b) 1.2Fe alloy.  

Table 3 
The nucleation temperature of different phases measured by DSC (Fig. 8) and cooling curve (CC) (Fig. 9). (Unit: ◦C).  

Alloy Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 

DSC CC DSC CC DSC CC DSC CC DSC CC 

0.7Fe 635 642 617 616 552 577 517 519 509 511 
0.7FeB 640 – 620 613 549 581 521 516 510 510 
0.7FeU 646 644 619 617 557 – 520 515 512 511 
0.7FeUB 654 – 619 618 560 – 524 522 511 513 
1.2Fe 637 636 625 629 559 558 513 518 508 508 
1.2FeB 642 643 628 631 561 – 517 519 509 512 
1.2FeU 644 649 628 633 563 – 522 525 505 505 
1.2FeUB 644 – 631 636 556 571 516 515 508 507  
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different elements are listed in Table S1. 
The relationship between the grain size (d) and 1/Q in solidified 

alloys with and without USMP is calculated by equation [69]: 

d = a+ b ∗ 1/Q (2)  

where a and b are constants. The values of 1/Q in the 0.7Fe, 0.7FeB, 
0.7FeU, and 0.7FeUB alloys are 0.056, 0.013, 0.054, and 0.015, 
respectively; and the calculated d is 118.5, 101.0, 65.7, 46.0 um, 
respectively. The relationship between 1/Q and grain size of the studied 
alloys are plotted in Fig. 12. A clear contribution of the UMSP and Al-Ti- 
B addition contribution to the grain refinement can be seen in Fig. 12. 
However, the combination of UMSP and Al-Ti-B have a better grain 
refinement efficiency, with the 0.7Fe alloy presenting the smallest grain 
size. An increase in the Fe content from 0.7 % to 1.2 % increases the 
grain size. The specific relations found in the present case are d = 87 +
1000*1/Q for alloys with USMP, and d = 37 + 537*1/Q for alloys 
without USMP (see Fig. 12). 

It is interesting to note that the USMP process have a higher refine-
ment efficiency compared to Al-Ti-B. This is due to the agglomeration 
tendency of TiB2 particles in the Al melts [19,20], that greatly decreases 
their grain refinement efficiency. It is widely accepted that the USMP 
process produces the effects of acoustic cavitation and acoustic 
streaming. The ultrasonic intensity I is calculated by [43,44]: 

I =
1
2

*ρc(2πfA)2 (3) 

The density ρ of molten Al at 700 ◦C is 2.4 kg/m3, the sound velocity 
c in liquid Al at 700 ◦C is 4.6 × 103 m/s, the ultrasonic vibration fre-
quency f is 20 kHz and the applied amplitude A is estimated to be 20 μm. 
Thus, the calculated ultrasonic intensity I in the current study is 
approximately 875 W/cm2, which is higher than the threshold value 
required producing acoustic cavitation in molten Al (100 W/cm2) [44]. 

USMP is one of the most effective methods for grain refinement 
during solidification of alloys [44,45]. Various mechanisms have been 
established based on the in-situ studies [46–48] and post-mortem ex-
periments [49–52] to justify its influence on alloy refinement. The 
different refinement mechanisms are mainly related to the melt tem-
perature: 1) above the liquidus temperature and 2) temperature between 
liquidus and solid temperature (semi-solid temperature zone). When the 
melt temperature is above the liquidus temperature, the cavitation- 
enhanced grain nucleation and cavitation-enhanced inclusion nucle-
ation are the two main mechanisms [44,46]. When the cavitation bub-
bles reach the negative pressure, the bubbles will implosion and 
generate a very high local pressure (up to several GPa). The pressure will 
be resulting in the high local undercooling, which facilitates the solid 
nucleus generation and promotes the homogenous nucleation. This is 
the main mechanism for grain refinement. Moreover, the cavitation 
improves the wetting of inclusions (so-called sonocapillary effect), 
which promote these inclusions for heterogenous nucleation sites for 
primary α-Al phases. The second mechanism of the grain refinement is 
cavitation induced-dendrite fragmentation in the semi-solid tempera-
ture zone. After the primary phases are formed, the cavitation bubbles 
continually attacked the growing dendrite phases and resulting in the 
fatigue fracture. These fragment dendrites will be grown up as the new 
grains. This phenomenon had been clearly observed by the high-speed 
synchrotron X-ray imaging [45–47]. 

In the present case, the USMP temperature for both melts are 710 ◦C, 

Fig. 9. The cooling curve measured during solidification of different alloys: (a) 0.7Fe alloy; (b) 1.2Fe alloy; (c) the first-order derivative of the cooling curves; (d) the 
schematic diagram used to calculate the nucleation, undercooling and growth temperature. 

Table 4 
The possible solidification reactions in the studied alloys.   

Reactions Temperature range (◦C) 

1 L → α-Al / L → Al3(FeMn) 635–654 
2 L → α-Al + Al3(FeMn)/Al6(FeMn) 613–631 
3 L + Al3(FeMn)/Al6(FeMn) → α-Al + β-Fe/α-Fe 548–580 
4 L → α-Al + β-Fe + Al2Cu 513–524 
5 L → α-Al + Al2CuMg + Al2Cu + Mg2Si 504–513  
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which is higher than the liquidus temperature of the alloys. This ensures 
that the USMP force the wetting of TiB2 particles which is the main 
mechanisms for heterogenous nucleation. The bubbles generated by 
acoustic cavitation continuously broke the agglomerated TiB2 clusters 
and the acoustic streaming homogeneously distributes these deag-
glomerated TiB2 parties in the Al melts. Thus, the greater the hetero-
geneity in nucleation, the greater the decrease in the nucleation 
undercooling of α-Al (Table 2). For example, the nucleation temperature 
for α-Al in 0.7Fe alloy for the conventional alloy, with Al-Ti-B, USMP, 
and combined USMP and Al-Ti-B is 635, 640, 646, and 654 ◦C, respec-
tively. Hence, both and USMP and Al-Ti-B reduce the nucleation 
undercooling similarly with the Ref. [65]. 

4.2. Effect of USMP and Al-Ti-B on the formation of Fe-rich phases 

The Fe-rich phases in 0.7Fe and 1.2Fe alloys are formed through 
different solidification reaction, so USMP and Al-Ti-B have different 
effect on them. The refinement mechanism of Fe-rich phases is based on 
the melt temperature and solidification stage. As shown in Fig. 2, 
Al3(FeMn), Al6(FeMn) and α-Fe phases in 0.7Fe alloy are mostly formed 
through eutectic or peritectic reaction; while only a very small volume 
fraction of Al3(FeMn) phases in 1.2Fe alloy are formed through prior to 

Fig. 10. Example of Fe-rich phases distribution images: (a) original image; (b) binarized image (The threshold value, 93–255, has been determined by ImageJ 
software). The area of Fe-rich phases under different conditions: (c) 0.7Fe alloys; (d) 1.2Fe alloys. 

Fig. 11. The deep-etched morphologies of Fe-rich phases in different alloys: (a, e) conventional alloy; (b, f) Al-Ti-B alloy; (c, g) USMP alloy; (d, h) USMP + Al-Ti-B 
alloy; (a-d) 0.7Fe alloy; (e-h) 1.2Fe alloy. 

Fig. 12. The relationship between the grain size and 1/Q in alloys solidified 
without and with USMP. 
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the α-Al. The Fe-rich phases in different alloys are different. The calcu-
lated vertical section phase diagram of Al-4.5Cu-0.5Mn-0.5Mg-0.2Si-xFe 
(x = 0–2) alloys is presented in Fig. 2c. It can be seen that the Fe-rich 
phases are mostly formed through the eutectic reaction in 0.7Fe alloy; 
while a small proportion of primary Al3(FeMn) phases are formed in the 
1.2Fe alloy and this can be ignored. So, we similarly regard that the 
0.7Fe and 1.2Fe alloys have the same mechanism. The main refinement 
mechanism for Fe-rich phases is the ‘liquid pocket’ mechanism due to 
the refined interderdendritic regions have narrow room for the eutectic 
reaction. As the Fe content increases, the percentage of Al3(FeMn) phase 
also increases. Due to the equilibrium phase diagram, the metastable 
Al6(FeMn) phases is not found in the system. 

Fig. S3 presents the XRD patterns of the deep-etched 0.7Fe and 1.2Fe 
alloys with Al-Ti-B addition and USMP processing. The deep-etched 
process reduces the intensity of α-Al and increases the relative in-
tensity of the intermetallic particles. It can be seen that α-Al, Al3(FeMn), 
Al6(FeMn), α-Fe, and Al2Cu phases are co-existed in both 0.7Fe and 
1.2Fe alloys. Al6(FeMn) and α-Fe are the main Fe-rich phases in 0.7Fe 
alloy, while relatively intensity of Al3(FeMn) and Al6(FeMn) are 
increased in 1.2Fe alloys. If the Fe content increases from 0.7 to 1.2 %, 
the type of Fe-rich phases does not change, the main Fe-rich phases 
change from Al6(FeMn) and α-Fe to Al3(FeMn) and Al6(FeMn). More-
over, the Al-Ti-B promotes the formation of Al3(FeMn) in 1.2Fe alloy, 
which is maybe due to the low crystal misfit between TiB2 and 
Al3(FeMn) phases (Fig. 4c and d). 

The size of the Fe-rich phases is greatly influenced by the USMP 
processing and the Al-Ti-B addition. The refined size of Fe-rich phases, 
Fig. 11, under USMP + Al-Ti-B is due to the formation of Fe-rich phases 
after the α-Al. The narrow and refined secondary interdendritic regions 
limit their growth. The refinement of Fe-rich phases is related to the α-Al 
grain size reduction in the studied processes. Due to the USMP tem-
perature is above the its liquidus temperature, and wetting and deag-
glomerated TiB2 particles induced by USMP are the main reason for 
dispersion of Fe-rich phases. For example, the nucleation temperature 
for Al3(FeMn) or Al6(FeMn) phases in 1.2Fe, 1.2FeB, 1.2FeU and 
1.2FeUB alloys are 625, 628, 628, and 631 ◦C, respectively. This in-
dicates that both USMP and Al-Ti-B increases the nucleation tempera-
ture of these Fe-rich phases and also, the USMP process deagglomerates 
the TiB2 particles that are pushed into the liquidus/solid interface and 
subsequently engulfed into the residual liquid serving as heteroge-
neously distributed nucleation sites for Fe-rich phases. On the other 
hand, the nucleation rate around the location of collapsed cavitation 
bubbles would significantly increase. This reduces the critical nucleation 
radius and promote the nucleation rates. 

Also, it should be mentioned that the USMP processing also in-
fluences shape and distribution of the Fe-rich in the Al alloys, Fig. 11. 
The acoustic streaming and bubbles generation by USMP process ho-
mogenize the solute elements and improves the Fe-rich phase disper-
sion. Also, TiB2 particles in the Al-Ti-B-containing alloys act as 
heterogeneous nucleation sites for Fe-rich phases [20,21]. In the 
0.7FeUB and 1.2FeUB alloys, the acoustic streaming uniformly distrib-
utes the TiB2 particles and solutes elements, which promotes a hetero-
geneously nucleation in the narrow α-Al interdendritic region. 

Finally, the 3D morphology and distribution of Fe-rich phases is also 
influenced by the Fe content and processing of the studied alloys, 
Fig. 11. The Fe-rich phases in 0.7FeB and 0.7FeU alloys are better 
dispersed, because the USMP disperse the Fe-rich phases and TiB2 pro-
motes a heterogeneous nucleation. However, the morphology of Fe-rich 
phases in 1.2Fe alloys is more disperse with skeleton structure (Fig. 11e- 
h) due to the high content of Fe in the residual liquid at the last solidi-
fication stage to form Fe-rich phases. Al-Ti-B increases the nucleation 
temperature of Fe-rich phases, providing them more space to growth 
and impinge. The acoustic bubbles induced by USMP can deagglomer-
ation, and fragmentation the dendrite and intermetallic phases; acoustic 
streaming can wet the nucleate substrate and promote the nucleation. 
Acoustic streaming can promote the equiaxed crystal and reduces the 

temperature gradient in the melt, in which the deagglomerates TiB2 
particles provided more effective nucleation sites for grain refinement. 
As the Fe content increases, Fe solute are rejecting into the interdendritic 
regions at the solid/liquid front resulting in constitutional undercooling, 
this also promotes the nucleation of Fe-rich phases. 

5. Conclusions 

The microstructural evolution during solidification of Al-4.5Cu- 
0.5Mn-0.5Mg-0.2Si-xFe alloys (x = 0.7, and 1.2 wt%) under gravity 
casting, USMP, Al-Ti-B and USMP + Al-Ti-B is comparatively studied by 
OM, SEM, EBSD, thermodynamic calculation, DSC, and thermal anal-
ysis. The main conclusions are listed as below: 

1). The combination of USMP and Al-Ti-B methods produces a higher 
grain refinement effect compared with the individual methods. The 
main reason for refinement is that USMP deagglomerates the TiB2 
clusters, which providing more effective nucleation sites for α-Al. The 
averaged grain size is reduced by a 61 % in the 0.7Fealloy. In the 1.2Fe 
alloys, combined USMP and Al-Ti-B methods produce even a higher 
refinement effect (80 %). 

2). The Fe-rich phases in both alloys with USMP + Al-Ti-B are refined 
and more homogenous distributed compared with conventional 
methods. As the USMP temperature is above the liquidus temperature of 
the studied alloys which generates the acoustic streaming during the 
process acting as the main refinement mechanism. The deagglomerated 
TiB2 particles are pushed into the refined interdendritic regions limiting 
the growth of Fe-rich phases in the following eutectic reaction. 

3). The acoustic cavitation produced by the USMP processing in-
creases the equilibrium freezing point. This promotes the wetting of the 
TiB2 particles providing heterogeneous nucleation sites. Moreover, the 
TiB2 particles are the ideal nucleation sites for α-Al and unused TiB2 
particles are pushed into the interdentric regions and serves nucleation 
sites for Fe-rich phases. 
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