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The spatial information associated with gene expression is important for elucidat-
ing the context-dependent transcriptional regulation during development.
Recently, high-resolution sampling approaches, such as RNA tomography or
single-cell RNA-seq combined with fluorescence in situ hybridization (FISH),
have provided indirect ways to view global gene expression patterns in three
dimensions. Now in situ sequencing technologies, such as fluorescent in situ
sequencing (FISSEQ), are attempting to visualize the genetic signature directly in
microscope images. This article will examine the basic principle of modern in situ
and single-cell genetic methods, hurdles in quantifying intrinsic and extrinsic
forces that influence cell decision-making, and technological requirements for
making a visual map of gene regulation, form, and function. Successfully addres-
sing these challenges will be essential for investigating the functional evolution of
regulatory sequences during growth, development, and cancer progression. © 2016

The Authors.WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

Comprehensive cataloguing of the molecular and
cellular heterogeneity is important for classifying

regulatory pathways into functional categories; how-
ever, they alone cannot reveal how sequence-to-
function relationships evolve over space and time.
Because cells interpret functional sequences in a cell
state-, history-, or environment-dependent manner,
retracing their decision-making algorithm requires
examining cell identities, lineage, and external cellu-
lar interactions across a range of landscapes, respec-
tively (Figure 1). Here, modern high-throughput
approaches are becoming indispensible for under-
standing how cells recapitulate complex form and
function using a defined set of conserved signaling
pathways, while overcoming or responding to biolog-
ical noise and perturbations.

For the past 100 years, optical microscopy and
general tissue stains were the main tools for survey-
ing the tissue landscape; however, elucidating the
genetic mechanism required extracting the nucleic
acids from pulverized tissues and destroying its spa-
tial information. Recently, several new technologies
have emerged to address the tissue heterogeneity,
including single-cell sequencing and multiplexed in
situ probe hybridization.1,2 Single-cell RNA-seq
(scRNA-seq) can measure the transcriptional hetero-
geneity and reconstruct the cellular location using the
known gene expression pattern in space,3–5 while
single-molecule fluorescence in situ hybridization
(smFISH) can directly visualize a modest number of
genes simultaneously in situ.6–9 Other approaches
combine geographically defined single-cell
isolation,10,11 laser-assisted sampling,12 or serial tis-
sue sectioning13 with genome14 or transcriptome
profiling.15,16

In situ sequencing is a set of proof-of-concept
technologies that can sequence the DNA or the RNA
within fixed cells without destroying their spatial
context,17–19 and it can be used to directly link spa-
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tial features to particular genetic elements in native
tissue specimens, as long as sequencing libraries can
be constructed from the sequence-of-interest inside
the cell. Technologically, in situ sequencing is an
extension of high-throughput DNA sequencing, in
which the nucleic acid sequence is read-out on a solid
surface using optical microscopy.20,21 In next-
generation sequencing (NGS), the temporal align-
ment of colors from fluorescent amplicons determines
the sequence of nucleotide bases, and in situ enzyme
reactions on the glass surface allow for saturation
kinetics and robust molecular imaging, leading to
longer reads and higher read densities.

Because FISH also involves fixing the nucleic
acids onto a solid matrix, the possibility of NGS
inside fixed cells had existed. In 2004, Nilsson and
coworkers demonstrated a padlock probe and rolling
circle amplification (RCA)-based approach to cap-
ture, amplify, and image the DNA with single-
nucleotide resolution in fixed cells and tissues.22

Later, the Church laboratory incorporated padlock
probes for targeted NGS, suggesting that the Nilsson
method could be scaled up for NGS inside the
cell.23–27 Eventually, the Nilsson laboratory demon-
strated targeted RNA detection using in situ sequen-
cing to identify a small number of transcripts and
mutations in tissue sections,17,18 which was later fol-
lowed by the report of transcriptome-wide fluores-
cent in situ sequencing (FISSEQ) from the Church
laboratory.19,28

At the present moment, in situ sequencing is at
the proof-of-concept stage (e.g. known cancer muta-
tions in tissues,18 cell culture models,19 and short
barcodes29), unlike smFISH or single-cell sequencing,
but it may be able to address questions that other
methods cannot if a number of technical limitations

can be overcome. With that in mind, this article will
focus on the biological and technological hurdles that
are addressed by the previous generation of in situ
hybridization and single-cell technologies and the
challenges that remain. To summarize the history of
DNA sequencing and in situ methods in a couple of
paragraphs will undoubtedly neglect seminal contri-
butions from multiple groups, so this article will focus
on technologies that immediately preceded or fol-
lowed the development of in situ sequencing. Beyond
providing a historical account, the article will also
address several key questions in biology, explore
whether current methods are ready to tackle these
problems, and conclude with a set of technological
goals for investigating the spatial dynamics and the
functional evolution of gene regulation during the
emergence of form and function in development.

A BRIEF WALK THROUGH MODERN
IN SITU AND SINGLE-CELL METHODS

The padlock probe-based method from the Nilsson
was a conceptually elegant approach to quantifying
multiple DNA or RNA molecules with single-
nucleotide resolution in situ;17,18,22 however, the var-
iable sensitivity of individual probes across different
samples and gene targets required careful validation
and limited its scalability. Moreover, it faced a com-
petition from smFISH, which was more uniformly
sensitive and easier to implement, soon making it the
gold standard in single-cell analysis in situ. With the
lower cost of generic oligonucleotide synthesis, it was
also more scalable, although it lacked the exquisite
single-base specificity of the Nilsson approach2,30

(Figure 2).

FIGURE 1 | Molecular or cellular taxonomy alone is insufficient for understanding the functional dynamics of genetic and phenotypic
evolution, as it requires analyzing how the selection pressure from the environment changes the phenotype from a common ancestor. To properly
address this question, one needs to compare multiple cell lineages, cell states/types, and microenvironments in parallel. Traditionally, the genetic
material was isolated from pulverized tissues, masking the cellular heterogeneity as well as their spatial context. Methods now exist to sample
randomly chosen cells or from spatially defined regions; however, they all lack the precise spatial resolution for understanding cell–cell or
cell–environment interactions.
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For decades, FISH was used to localize gene
transcripts in situ; however, quantifying gene expres-
sion was difficult due to the variable signal-to-noise
ratio and the nonspecific signal from nucleic acid
hybridization. Singer and coworkers demonstrated
that smFISH can obtain quantitative measurements
of the transcript abundance in single cells and that
genetic barcoding can be used to multiplex transcript
detection.6,32 Raj, along with colleagues in Tyagi and
van Oudenaarden laboratories, made smFISH practi-
cal and robust by using multiple short probes that
co-localize on the transcript for a high signal-to-noise
ratio7,33,34 (Figure 2). This also permitted better tis-
sue penetration, reducing the need to optimize

fixatives and partial tissue digestion in FISH experi-
ments. In addition, these advances affirmed an
important concept in NGS and in situ studies: the
high specificity and sensitivity can be achieved by co-
localizing numerous short reads or probes with qual-
ity scores based on a statistical model.

Because counting individual molecules using
microscopy is limited by the optical resolution, con-
ceptual approaches in super-resolution microscopy
(SRM) were important in inspiring new iterations of
smFISH. For example, localization microscopy, such
as Stochastic Optical Reconstruction Microscopy
(STORM), achieves higher resolution by using sto-
chastic molecular fluorescence over many cycles,35–37

suggesting that cyclical imaging of barcoded probes
may enable multiplexing in lieu of SRM38 (Figure 3).
In fact, Cai and coworkers reported generating a
unique temporal barcode by sequentially hybridizing
different colored probes to the same transcript,
enabling them to multiplex smFISH.8 Taking a step
further, Zhuang and coworkers used redundancy
coding to detect more than 1000 genes using smFISH
in an error-resistant manner.9 They also demon-
strated faster sequential color read-out by inactivat-
ing fluorophores with light, thereby shortening the
read-out cycle time.

In theory, smFISH can be combined with SRM
to profile the messenger RNA (mRNA; ~100,000
molecules per cell);40 however, the imaging time
required even for a small tissue makes it impractical.
Because most biologically relevant gene expression
patterns occur across many microns and millimeters,
SRM is akin to asking a single Google Street driver to
map the whole continent, and it is poorly suited for
whole-tissue mapping. One solution could be to have
an army of automated drivers, but it would require an
enormous amount of time and resources to update the
map frequently across multiple continents. Com-
pounding the problem is the fact that many RNA
molecules are tightly packaged into subcellular gran-
ules, making their quantification using optical ima-
ging challenging at any fixed resolution (Figure 4).

In contrast, a global approach (satellite view)
to RNA imaging enables comprehensive and efficient
mapping of whole tissues and organs, albeit at much
lower resolution. For example, Deisseroth and cow-
orkers developed CLARITY to make whole organs
optically transparent for high-resolution three-
dimensional (3D) imaging.41 Since then, other
groups have shown faster and easier methods for
whole-tissue clearing,42 and recently the Deisseroth
laboratory and others have demonstrated sequential
FISH in optically cleared tissues using serial hybridi-
zation of modified RNA targets.43,44 Here, a high-

FIGURE 2 | Quantitative methods for detecting multiple RNA
molecules in situ. (a) The Nilsson method uses target-specific reverse
transcription (RT) primers (typically locked nucleic acid (LNA)
derivatives) to make cDNA molecules in situ used for padlock probe-
based T4 DNA ligation.17 The intramolecular ligation reaction here is
less efficient and specific than the sequencing-by-ligation reaction
kinetics. The circular padlock probe is then amplified using rolling
circle amplification (RCA) that increases the number of barcode-
binding sites by 100-fold or more for robust imaging; however, it is
not known how the physical constraints or molecular crowding around
individual transcripts in tissues affect the RCA bias that is observed in
fluorescent in situ sequencing (FISSEQ).19 (b) Compared to the
previous method that involves long customized probes and multiple
enzymatic steps, single-molecule fluorescence in situ hybridization
(smFISH) offers the unmatched sensitivity, spatial resolution, ease of
use, affordability, and scalability, as long as one can optically resolve
individual signals under a microscope.7 Because smFISH is so
sensitive, this can be challenging for most abundantly expressed
transcripts, especially at low magnification.31 In addition, smFISH does
not have the single-nucleotide specificity of the Nilsson method.
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resolution objective for single-molecule imaging is
not a practical option for whole-tissue imaging;
therefore, RNA detection methods that depend on

single-molecule imaging for multiplexing cannot be
used,44 although potential solutions are starting to
emerge.31,45,46

While smFISH is relatively straightforward to
implement, it requires a list of candidate genes, typically
based on existing annotations. As NGS has shown,
unbiased sequencing often allows for new discoveries
compared with targeted gene expression arrays, which
are best suited for profiling already known genetic ele-
ments. For example, NGS has shown that a large frac-
tion of the long noncoding RNA (lncRNA) is more
tissue specific than the mRNA.47 In addition, many reg-
ulatory enhancers express noncoding RNAs, whose
spatial distribution may provide clues for understand-
ing gene regulation.48 Because many mRNAs still lack
detailed functional annotations, targeted assays are gen-
erally limited to well-annotated genes. In addition, mas-
sively parallel functional analysis uses expression
constructs containing synthetic barcode sequences for
de novo short-read sequencing.49–51

For these and other reasons, direct RNA
sequencing is preferable over targeted hybridization-
based methods in many applications (Figure 5). Over
the past several years, improvements in the detection
sensitivity and reliability have allowed transcriptome-
wide scRNA-seq.15,16 To investigate the cell-type
composition in space, Quake and coworkers used a
microfluidics platform for scRNA-seq (Fluidigm, San
Francisco, CA), sequencing a couple of hundred sin-
gle cells from the lung alveoli to infer their location
using known anatomic biomarkers.3 Several labora-
tories took it a step further by integrating high-
throughput scRNA-seq with an online database of
FISH experiments to reconstruct the cellular compo-
sition of 3D tissue structures.4,5 These approaches,
however, depend on having a database of positional
biomarkers, which may not be available in most
cases.

FIGURE 3 | Spatial versus temporal genetic barcoding for
multiplexed RNA detection. (a) Genetic barcoding to multiplex
transcript detection was first demonstrated in situ by Singer and
coworkers.6 Hood and coworkers then popularized this concept and
made it commercially successful for single-molecule RNA
quantification (Nanostring, Seattle, WA).39 Here, the target RNA
serves as a splint that pulls down a complementary probe with a
spatial barcode composed of fluorescent nucleic acid segments
(~1–2 μm). Optically resolving various color sequences-associated
each RNA molecule enables target identification and quantification.
(b) Large barcodes cannot be used for multiplexing in single cells;
however, Cai and coworkers showed that targeting the same loci
repeatedly with single-molecule fluorescence in situ hybridization
(smFISH) but using different colors generates a temporal barcode.8

Using four-color imaging and seven hybridization cycles, one could
interrogate over 16,000 genes in theory, despite a number of practical
challenges due to the diffraction limit of optical microscopy and the
imaging time required for super-resolution microscopy.

FIGURE 4 | Single-molecule fluorescence in situ hybridization (smFISH) requires spatially resolving individual molecules for quantification and
multiplexing.8,9 The addition of multiple small hybridization probes to cells and tissues generates significant nonspecific fluorescence;7 however,
the co-localization of many independent probe sequences on the same transcript can be detected as a diffraction-limited spot, resulting in a high
signal-to-noise ratio (SNR). But when the transcript density is too high or the imaging magnification is too low, it becomes difficult to discriminate
signal from noise, rendering smFISH largely qualitative and challenging for a high degree of multiplexing.31
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To enable de novo spatial reconstruction of
gene expression, van Oudenaarden and coworkers
developed RNA tomography, in which vertebrate
embryos or organs were cut into topographically
mapped 10–100-μm sections, sequenced, and recon-
structed leveraging the scRNA-seq pipeline.13

Although one can generate thinner tissue sections,
smaller tissue sections lead to more sampling noise,
requiring averaging of data from adjacent sections
and limiting the spatial resolution to several hundred
microns for less abundant transcripts1,53 (Figure 5).
Recently, a start-up from Joakim Lundeberg’s labora-
tory reported a method of extracting RNA from tis-
sue sections placed directly on a barcoded poly-dT
array, followed by NGS and computational recon-
struction.52 Each spatial element captures ~10K
unique mRNA transcripts per 100-μm feature, which
is several times lower than that of scRNA-seq. For
coarse multiregional sampling, however, this method
may provide a less destructive alternative to
microdissection (Figure 5).

For higher spatial resolution, Eberwine and
coworkers developed transcriptome in vivo analysis
(TIVA), in which photo-caged biotinylated poly-dT
primers are released exactly at the point of laser exci-
tation inside living cells.12 By pulling down the cap-
tured mRNA for sequencing, one could theoretically
sequence almost any region in the cell with submi-
cron resolution as long as enough of the identical
regions are sampled. If automated, TIVA could be a
promising option for studying the transcriptome

composition in different subcellular compartments
and cellular regions using unbiased deep sequencing;
however, the cell type- and tissue-specific penetration
of the TIVA reagent currently limits its application.

To conclude, the imaging resolution, the tran-
script density, and the imaging time limit multiplexed
methods that depend on single-molecule color coding
to simpler systems suited for high-resolution micros-
copy. Multiplexed error-robust fluorescence in situ
hybridization (MERFISH)9 can cycle through multi-
ple probe sets and deduce the transcript identity more
accurately than other smFISH methods. Because of
its reliance on single-molecule imaging, however,
profiling a large number of transcripts at the ‘-omics’
scale is currently out of reach for MERFISH or other
smFISH techniques.8,9

Unbiased deep transcriptome profiling is a
major benefit of scRNA-seq, but the limited detection
sensitivity as well as the sampling noise requires
pooling of data from multiple sources to detect small
variations. This in turn reduces the sequencing depth
for each cell sharing a sequencing lane. RNA tomog-
raphy, TIVA, RNA-capture arrays, and other NGS-
based methods typically sacrifice the sampling resolu-
tion for the sequencing depth. In general, biological
patterns or structures that occur reproducibly, such
as in embryos, stable cell types, or clinically defined
histologic features, benefit most from the NGS-
dependent methods, as sampling of many identical
cell types or structures will enable the statistically sig-
nificant detection of small variations with higher

FIGURE 5 | Location-aware sampling methods for next-generation sequencing (NGS). For unbiased profiling of transcriptome-wide gene
expression, NGS is currently the only wide available method. Tissue samples can be dissociated into random or sorted single cells and virtually
reconstructed later using the known spatial patterns of gene expression (single-cell RNA-seq, scRNA-seq).4,5 Alternatively, they can be spatially
dissected [i.e., laser capture microdissection (LCM), transcriptome in vivo analysis (TIVA)],12 sectioned (RNA tomography),13 or systematically
subsampled (i.e., RNA capture array)52 for RNA-seq. Here, the practical sampling number limits the spatial resolution as the specimen size
increases along multiple dimensions. Practically, only a small fraction of all possible sampling points are used for multiplexed RNA-seq with a
lower sequencing depth. In addition, the sampling noise requires pooling multiple regions or single cells together to detect subtle variations,
further handicapping NGS-based methods from achieving the single-cell spatial resolution based on less abundant and possibly more tissue-specific
transcripts.
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spatial resolution, whereas smFISH-based methods
allow for quantifying the spatial variation in any
small specimens, but mostly for validating a limited
number of preselected genes.

ISSUES IN QUANTIFYING INTRINSIC
AND EXTRINSIC VARIABLES IN
CELLULAR DECISION-MAKING

In development, cells use information regarding line-
age, intrinsic, and extrinsic factors to make decisions,
and the genetic code specifies how such information
is interpreted in different regions. The lineage infor-
mation includes a historical record of master tran-
scription factors and epigenetic modifications,
whereas intrinsic factors include the cell state and the
cell morphology. Extrinsic factors are composed of
cell–cell or cell–extracellular matrix (ECM) interac-
tions, such as the effect of stromal, endothelial, and
inflammatory cells. The scale of cell–cell interactions
can span few microns to many millimeters, implying
that the quantification of extrinsic factors needs to
occur at multiple scales.

The lineage information can be obtained by
observing individual cells under a microscope;54 how-
ever, this approach is limited to small and relatively
transparent organisms, and they are low-throughput.
Alternative approaches include combinatorial cell
labeling using fluorescent proteins or somatic muta-
tions for retrospective phylogenetic reconstruc-
tion.55,56 The former (i.e., Brainbow) lacks the
combinatoric capacity to trace complete cell lineages,
but it shows the cellular morphology, the cell–cell
interaction, and the local tissue context.55 In contrast,
the latter (i.e., GESTALT) can be scaled up for com-
plete phylogeny reconstruction of whole organisms;56

however, it requires dissecting the whole organism
into bulk tissues or single cells for NGS, destroying
the spatial information. In situ DNA or RNA sequen-
cing may provide a solution;18,22,29 however, suffi-
ciently sensitive methods for sequencing multiple
mutated loci in single cells in situ do not yet exist.

Intrinsic cellular variations can be measured
using some of the existing single-cell analysis tools.
For example, scRNA-seq can address the transcrip-
tome heterogeneity, and the increasing throughput in
combination with smFISH could make high-
resolution cell-type mapping practical for well-
defined developmental structures.57 To put this into a
perspective, however, a single 1-cm tissue mass con-
tains up to a billion cells; therefore, scaling single-cell
analyses to large tissues or organs may be impracti-
cal. A focused approach that combines labeled cells,

fluorescence-activated cell sorting (FACS), and
scRNA-seq may better quantify cellular variations in
defined cell populations.10,11 Of note, a variety of
single-cell technologies, such as protein mass spec-
trometry, electrophysiology, and cellular perturba-
tions, are all useful; however, many are relatively
low-throughput compared with NGS-based single-
cell methods, and they are more suited for addressing
specific questions rather than whole-tissue mapping.

Unlike single-cell variations, the environmental
context does not have a well-defined perimeter, as it
can span multiple spatial scales. This is a well-known
problem in functional genomics, where genetic features
are visualized across a continuum of chromosomal
window sizes and resolutions. It is also relevant in epi-
demiology, in which the emergence of nonrandom spa-
tial patterns can alert one to a spreading epidemic, and
the statistical significance is measured across a contin-
uum of resolutions and scales.58 Therefore, technologi-
cal and statistical approaches to quantify nonrandom
spatial patterns across various scales are necessary to
quantify how genetic information is interpreted in a
context-dependent manner in vivo.59–61

Practically, in vitro experiments are useful for
constraining extrinsic parameters, but they cannot
simulate the native environment, especially across dif-
ferent spatial scales. On the other hand, direct sam-
pling generates data that are dependent on the size
and breadth of biopsies, and it introduces a significant
amount of sampling noise at the lower end of meas-
urement values. Pair-wise comparisons of intrinsic
and extrinsic factors are incompatible with disso-
ciated single-cell analysis, unless cells are labeled for
reproducible sampling around individually marked
cells. In contrast, in situ experiments can examine sin-
gle cells and their native surroundings across a limited
number of spatial scales; however, high-throughput
molecular profiling in situ requires new types of tech-
nologies that require more development. One particu-
lar method that is potentially capable of co-localizing
and quantifying lineage histories, intrinsic factors,
and extrinsic forces across multiple tissue landscapes
will now be the focus of the next discussion.

IN SITU SEQUENCING: KEY FEATURES,
UNANSWERED QUESTIONS, AND
CURRENT IMPLEMENTATION

High-throughput NGS has been used to read genetic
barcode variants for lineage tracing, single-cell gene
expression profiling, and microenvironmental gene
expression profiling; however, it lacks the ability to
co-localize such information onto the native tissue

Focus Article wires.wiley.com/sysbio

6 of 13 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 9, March/Apr i l 2017



landscape. Because several popular NGS platforms
sequence polymerase chain reaction amplicons on
glass in situ,62 it was inevitable that some would
attempt NGS inside single cells.19 Sequencing flow
cells, however, are very different than the cellular
environment, in terms of the subcellular transcript
density, the tissue thickness, and the spatial scale at
which imaging is typically done. The key aspect of
FISSEQ is that it can change the random transcript
sampling rate during 3D imaging to quantify the

gene expression heterogeneity across multiple scales
and resolutions.19,28 To do so, FISSEQ amplicons are
orders of magnitude brighter than smFISH signals, as
low-magnification 3D microscopy makes single-
molecule imaging demanding. Also, FISSEQ enables
programmable subsampling using in situ sequencing
primers so that individual transcript sequence can be
resolved at any magnification (Figure 6).

To briefly summarize the FISSEQ workflow,
which is detailed elsewhere,28 fixed cells are immersed
in an enzyme cocktail with random hexamers for
reverse transcription in situ. The cDNA fragments are
circularized and amplified using RCA, and sequencing-
by-ligation is performed on a four-color confocal
microscope (Figure 7). Base calling and sequence map-
ping against RefSeq are done for every pixel. The
unmapped pixels are filtered out, and the mapped pix-
els are clustered using the sequence identity, allowing
one to compare gene expression in multiple cellular
regions, compartments, and morphologies. In the origi-
nal publication,19 FISSEQ identified coding and non-
coding RNAs associated with quiescent and
proliferating fibroblasts, including those that regulated
cellular migration and metabolism. In addition, it iden-
tified differential splicing of fibronectin in situ and
detected a large shift in ribosomal RNA (rRNA) tran-
scription in proliferating cells treated with EGF.

Interestingly, data from random hexamer-
initiated in situ sequencing libraries are relatively
scarce in major housekeeping genes despite their high
abundance.19,28 Because FISSEQ amplicons are
100–1000 times larger than RNA–DNA duplexes in

FIGURE 6 | Fluorescent in situ sequencing (FISSEQ) can utilize the
programmable signal density to acquire a similar amount of
information from multiplexed RNA detection regardless of the optical
magnification or the transcript density.19,28 In this way, small and
large biological patterns can be observed in the same specimen across
a range of spatial scales, similar to how modern maps display the
similar density of geographical information regardless of their
resolution, making the map useful at all scales.

Seq.
enzymes

M
em

br
an

e 
- 

pe
rm

ea
bi

liz
at

io
n

RCA amplification bias

Tissue-specific
transcripts favored

PDF-fixed cells

RNA

R.Hex cDNA 1. RT

2. cDNA circ.

3. RCA

4. SOLiD seq

Nucleus Nucleus

SP

SP

SP

SP

SP

SP

Nuclear:cytoplasmic
RCA bias

Immortalized
astrocytes

Primary
fibroblasts

FIGURE 7 | Fluorescent in situ sequencing (FISSEQ) converts endogenous RNA molecules in fixed cells or tissues into short cDNA fragments in
situ using random hexamer-primed reverse transcription (RT). (a) Each cDNA fragment contains a common sequencing adapter, which is then
circularized prior to rolling circle amplification (RCA) in situ. RCA amplicons are then crosslinked to generate a stable 3D matrix of DNA molecules
for in situ next-generation sequencing (NGS) reactions. FISSEQ then generates 3D images containing NGS reads at each pixel for data analysis.19,28

(b) Currently, the efficiency of RCA is not uniform across subcellular compartments, especially across different cell types.28 We hypothesize that
molecular crowding or liquid droplet phase transition may contribute to such observations; however, it is not clear whether such phenomenon is
responsible for the relative paucity of housekeeping genes in FISSEQ.
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smFISH, we suspect that molecular crowding or
sequestration of particular transcripts impacts the
RCA efficiency and imaging (Figure 7). Our ongoing
experiments indicate that the efficiency of generating
RCA amplicons from an smFISH probe is higher for
the FISSEQ-compatible transcripts than for β-actin or
tubulin mRNAs. Because of its potential implications
for stress- or cell type-associated RNA compartmen-
talization, our group is investigating its biological
basis in different cell and tissue types, including the
differential subcellular cDNA amplification that are
possibly indicative of liquid-phase transitions in the
cytoplasm and the nucleus.63

From a practical point-of-view, dedicated FIS-
SEQ hardware is most cost-effective when using mod-
ular microscopy platforms capable of various 2D and
3D imaging modalities for examining subcellular
regions, 3D organoids, and whole tissues at multiple
resolutions and scales. While the existing protocols
work well in most 2D or 3D cultured cells, RCA
appears to be hindered in compact tissue sections due
to the crowding effect, fixation, or embedding
reagents. Limited tissue clearing may improve the
RCA yield,44,45 but it is not obvious how each clear-
ing method will affect the detection bias and sensitiv-
ity. For now, a dedicated high-speed spinning disk
confocal microscope with four-color imaging appears
to meet our needs (~$350K, including customization).
Our FISSEQ microscope from Nikon (Melville, NY)
takes 1 min per 25 optical slices per field-of-view
(FOV), and approximately 1000 FOVs per day of
tiled imaging using PerfectFocus (~20 million mapped
FISSEQ reads). With the installation of a perfusion
set-up on the microscope stage for wash cycles, the
hands-on time is less than 5 min per sequencing cycle.

HIGH-SENSITIVITY TARGETED
IN SITU SEQUENCING: FUTURE
PROSPECT

While FISSEQ enables unbiased transcriptome sam-
pling in morphologically distinct subcellular and
microenvironment regions, its estimated detection sen-
sitivity is less than 0.005% compared to smFISH.28

Yet, nonnormalized reads contain few major house-
keeping genes from cultured cells19 and tissue sections
(in preparation), even without depleting the rRNA.19

For example, common genes such as ACTB,
TUB1A1B, HSP90B1, and ribosomal proteins
(i.e., RPS6, PRS23, RPS12) are significantly underrep-
resented in FISSEQ versus RNA-seq compared with
cell type-specific transcripts (odds ratio = 0.002–0.02;
P-value < 10−12).19 We hypothesize that this finding

could be useful for investigating RNA compartmentali-
zation or localization, and we are currently extending
our findings to multiple different cell and tissue
types (Figure 7). Regardless, this causes targeted
RNA-seq in situ to behave unpredictably depending
on the cell or tissue type. Combined with the low
detection sensitivity, the unpredictable or unknown
nature of the FISSEQ detection bias makes selective
sequencing of posttranscriptional modifications,
mutations, indels, barcodes, and transcriptional
reporters inefficient and prone to false negatives,
especially in tissue sections. This means that investi-
gating cell lineage, neural connections, and signal-
ing reporters using in situ sequencing could reflect
the technical bias rather than the biological varia-
tion. While tissue-clearing methods may reduce the
detection heterogeneity,44,45 it could also worsen
the detection sensitivity due to the prolonged
nature of tissue clearing steps.

To overcome these limitations, smFISH-like
approaches are needed, in which small oligonucleo-
tides are bound directly to the RNA template for
single-molecule imaging; however, it requires single-
nucleotide resolution for sequential sequencing reac-
tions in situ. Our laboratory is developing Heuristic
In Situ Targeted Oligopaint sequencing (HISTO-seq),
in which sequencing-by-ligation occurs directly on
targeted RNA molecules in situ with high sensitivity
and specificity using saturation sequencing enzyme
kinetics (in progress). By incorporating the oligonu-
cleotide cleavage and re-ligation chemistry from
SOLiD (ThermoFisher), we are now determining the
maximum HISTO-seq read length in situ, which is
especially important for cell and lineage barcoding
applications. We are also developing an approach to
remove nonspecific probe binding, so that molecular
quantification can occur in the absence of single-
molecule imaging. By using programmable detection
primers, targeted multiplex RNA-seq in situ with the
smFISH-like sensitivity may now be possible.

To summarize, FISSEQ is useful for finding
novel biomarkers and quantifying extrinsic factors in
the environmental landscape in an unbiased manner;
however, it lacks the sensitivity and the reproducibil-
ity for targeted RNA detection and genetic barcode
sequencing in single cells. Moreover, much remains
unknown about why FISSEQ detects predominantly
non-housekeeping genes, emphasizing the need to see
whether this extends to other cell and tissue types.
Technologies like HISTO-seq require knowing the
target genes-of-interest; however, if their high sensi-
tivity and ease of use can parallel that of smFISH,
they can become a powerful tool for investigating the
single-cell intrinsic variation and cell lineage
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information with subcellular, single-cell, and single-
base resolution in situ.

BUILDING TOOLS TO INVESTIGATE
HOW CELL KNOW WHERE THEY ARE

One of the foundational ideas in biology is that of
positional information in normal development.64

Turing first coined the term ‘morphogens’ and pre-
dicted that a simple regulatory network of diffusible
molecules can generate robust patterns, suggesting
how gene networks may encode patterns and forms
in development. Wolpert then proposed the ‘French
Flag’ model, in which the morphogen concentration
gradient was interpreted differently through multiple
signaling thresholds.65 While they remain some of
the most fundamental ideas in biology today, testing
these hypotheses in vivo has proven difficult, except
in a limited number of model organisms and isolated
experimental systems. Regardless, the key assump-
tion in these idealized models is that the diffusion
rate is consistent across various tissue landscapes and
that all responding cells interpret a particular mor-
phogen concentration in the same way.

Despite many pioneers in the field, however, it
is still not clear how cells interpret positional infor-
mation to make decisions about its growth and dif-
ferentiation.66 If morphogen is one of the extrinsic
factors, is the morphogen concentration the only var-
iable in position-dependent cell fate specification? Do
intrinsic cellular variations such as the cell cycle
state,67 biophysical forces,68 morphology,69 and cell–
cell interactions play a role? If these decisions are
also dependent on their cellular memory or lineage
information that is not directly observable, how does
one quantify the effect of intrinsic, extrinsic, and line-
age information in cellular decision-making?
(Figure 8).

The location awareness of cells is critical to
understanding the origin of cancer as well.70 The vast
majority of cancers are derived from the epithelial
cells involved in developmental patterning.71 Nor-
mally, such cells proliferate and differentiate progres-
sively within a defined zone, and the cells that
become lost commit apoptosis.72 In cancer-prone
conditions, a disproportionate number of cells
become lost and escape the geo-location fences set-up
around the epithelial layer.73 Therefore, investigating
how cancer cells lose the ability to choose their fate
based on their location may require examining intrin-
sic, extrinsic, and lineage information with single-cell
resolution across various tissue regions.

Our collaborators and we are developing tools
to sequence complete cell lineage information, similar
to GESTALT56 but in situ, using HISTO-seq, and we
are also using it to classify single-cell transcriptional,
morphological, and behavioral variations. Such
information is then superimposed on the FISSEQ
data to reveal how the landscape heterogeneity
affects cellular decision-making. The most important
benefit of in situ sequencing is that one can develop
methods to capture other types of genetic data,
including the somatic variation, the methylation sig-
nature, the DNA accessibility, and the chromatin
topology. Rather than using bulk sampling-based or
context-unaware technologies, adding the spatial
dimension to these sequencing approaches could
have a dramatic impact on our ability to select func-
tionally relevant information.

CONCLUSION

The take-home message is that methods that depend
on standard NGS (i.e., scRNA-seq, RNA tomogra-
phy, LCM RNA-seq, spatial array capture RNA-seq)
have limited spatial resolution because higher the
sampling rate (i.e., single cells, ultra-thin tissue sec-
tions, microdissected regions) larger the random sam-
pling noise for less abundant transcripts, requiring
pooling of data from multiple individual samples.
Also, the number of sampling points increases as the
specimen size increases, making the economics of
high-resolution sampling unfavorable. While shallow
sequencing can provide some relief, it misses many
low abundance and tissue-specific genes, capping its
ability to spatially discriminate subtle cell type- or
state-specific variations. These considerations make
determining cell–cell and cell–microenvironment
interactions challenging using NGS-based methods.

On the other hand, multiplexed smFISH
depends on single-molecule imaging to discriminate
signal from noise, hampering its application to
whole-tissue imaging using low-magnification objec-
tives. Because of its high sensitivity and nonspecific
background probe binding, the lack of single-
molecule imaging can lead to frequent false positives.
Multiplexing approaches using single-molecule bar-
coding face a similar set of issues, as it is restricted
by the optical diffraction limit, the practical voxel
size, and the imaging time. Given these considera-
tions, quantitatively surveying large tissues using
multiplexed smFISH will likely be limited to a rela-
tively small number of less abundant genes.

While FISSEQ is promising for investigating
cell–cell and cell–microenvironmental interactions in
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situ, it is too premature to say whether the method
will be practical or informative in a wide range of cell
and tissue types. FISSEQ on cultured cells, organoids,
and whole-mount embryos are straightforward; how-
ever, a protocol for a wide range of fixed tissues is
not yet available. The most interesting aspect of FIS-
SEQ is its ability to selectively detect cell type- and
state-specific transcripts without any human interven-
tion, suggesting that the subcellular organization of
RNA molecules could have functional implications
for cell type- or tissue-specific transcripts.

Currently, the low sensitivity of FISSEQ limits
its application for the targeted detection of specific
RNA transcripts, including those bearing genetic bar-
code sequences. For example, it is typical for ~5000
specific transcripts to yield ~10 targeted FISSEQ
amplicons per cultured cell, resulting in a high false
negative rate due to stochastic biological or technical
variations. This requires developing a targeted RNA
sequencing method with the smFISH-like sensitivity
with single-base resolution such as HISTO-seq. If
successful, such approaches could allow for sequen-
cing of various barcode associated with cell lineage
tracing, signaling pathways, promoter activities, and
Cas9-targeted gene perturbations in situ. In addition,

it could allow for tracking RNA processing, trans-
port, and compartmentalization as well as discrimi-
nating multiple odorant receptors and their
connectivity based on the transcript sequence.

Finally, finding a way of out of the maze of
new technologies can be challenging. The real-world
information regarding the sensitivity, the specificity,
the usability, the economics, and the availability
require some digging, but they are generally availa-
ble; however, a self-critical assessment about whether
such technologies will actually address important
biological questions are harder to find. For example,
given that complex traits and cancer clonal evolution
involve spatial mosaics of gene expression and
somatic mutations, will cheaper sequencing of a large
patient population be sufficient to map causative
genetic elements? The current crop of sequencing
technologies uses the abundance as a functional sig-
nificance metric, which favors highly expressed tran-
scripts over less abundant, less conserved, but often
more tissue-specific noncoding RNAs. Will scaling
up single-cell sequencing lead to the better under-
standing of the genome regulation, especially since
ultra high-throughput single-cell approaches focus on
the less noisy and more abundant transcripts?

FIGURE 8 | Focusing technology development around a central question enables multiple creative approaches necessary to measure specific
elements, rather than simply scaling up existing technologies. For example, positional information in developmental biology has been investigated
under the assumption of idealized morphogen gradients without considering cellular and environmental variations. If true, any fluctuations in the
signal strength due to environmental factors can make precise tissue patterning difficult over a global scale. To understand what makes
interpreting positional information robust, our laboratory is developing three distinct in situ sequencing methods capable of measuring single-cell
variations, microenvironmental heterogeneity, and cell lineages. In the future, it should be possible to perform selective knockdown of genetic
pathways or optogenetic induction of morphogen signaling in vivo and quantify how intrinsic, extrinsic, and lineage-specific factors drive location-
specific cell fate commitment and differentiation.
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The cutting-edge technology development can
be as important as basic biological research because
they can both lead to surprising and unexpected out-
comes that can revolutionize science. Given the finan-
cial and opportunity cost of technology development
and large-scale studies using such tools, however, the
broad research community faces an important chal-
lenge of balancing the call to scale up the latest tech-
nologies versus the need to find the right technologies
capable of addressing key biological questions.
Because identifying fundamental biological questions

and variables that need to be measured are important
elements in new technology paradigms, we advocate
training young scientists familiar with technology
development to ask fundamental biological ques-
tions, and those comfortable with rigorous experi-
mental approaches to learn cutting-edge technology
development. In the long run, we believe that such
scientists may be best prepared to utilize emerging
technologies, recognize their deficiencies, and build
tools necessary to tackle many of the unaddressed
questions in biology.
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