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Abstract: In the current Internet of Things era, digital devices form complex interconnections. The
statuses of objects of interest are monitored using sensors, and distributed wireless sensor networks
are formed from numerous sensor nodes. Many Byzantine fault tolerance mechanisms in wireless
sensor networks (WSNs) were proposed from Byzantine agreement which even with a few faulty
nodes in a sensor network, most healthy nodes can reach a consensus, perform data transmission
tasks, and maintain network operation. In this study, this mechanism was utilized together with
the majority function technique; in particular, the proposed method uses original sensor signals to
define a threshold to assert a binary value of one or zero, thereby performing data judgment and
aggregation. This approach reduces node energy consumption and enables the nodes to quickly
reach a consensus. Moreover, the operating performance of the network can be maintained even
when problems such as node failure and faults occur within the fault tolerance range. Compared
with existing algorithms, the proposed data aggregation mechanism exhibits a better network life
cycle and can effectively extend the flexibility of network operations.

Keywords: wireless sensor network; byzantine agreement; majority function; consensus

1. Introduction

A wireless sensor network (WSN) [1] is a large-scale distributed system used for sens-
ing and processing space-intensive data. Most WSNs employ large numbers of nodes to
perform security /monitoring tasks, environmental monitoring, health monitoring, indus-
trial automation, disaster management, and other challenging tasks in harsh environments.
Although node resources are limited, complex tasks, such as decentralized detection and
evaluation [2], can be achieved through node cooperation.

The Internet of Things (IoT) is a relatively new concept in the field of information
technology [3]. Many information devices can form end-to-end links with a server through
suitable communication protocols (e.g., Wi-Fi, ultra-wideband, Bluetooth, and ZigBee),
thereby expanding applications in the fields of industrial monitoring, smart technology;,
and home care, among others. By combining the IoT with WSNSs, the scope of management
can also be extended effectively.

Whether it is WSN or IoT, which a distributed system has three significant conse-
quences, such as concurrency, no global clock, and independent failures [4]. Because of
above characters, a lot of research proposed many methods to allow some nodes fail and
the others still operating. Since many applications in low-power wireless networks require
complex coordination between their members (nodes). Such applications require consensus
algorithms to enable coordination within short periods of time to execute tasks. While
consensus has been studied for wired networks decades ago, with, for example, Paxos and
Raft, it remains an open problem in multi-hop low-power wireless networks due to the
limited resources available and the high cost of established solutions [5].
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However, once a large number of information devices (referred to as sensor nodes)
in the WSN encounter failures or faults, the network may not operate normally. In severe
cases, the entire network may be shut down. Therefore, in early WSN environments,
large numbers of nodes were deployed to reduce the effects of node failures on network
operations. Considering such an environment, a fault-tolerant data aggregation mechanism
was designed in this study to tolerate the faults of a few sensor nodes in a network, such
that network operation can be maintained and valid data can still be acquired. Moreover,
by quickly arriving at a consensus and transmitting data among the nodes, the network
stability can be improved effectively and the network life cycle can be extended.

Thus, this paper proposes a method for optimizing the network life cycle and the
number of surviving nodes based on the Byzantine fault tolerance mechanism. By using
the principle and the characteristics of the majority-consensus algorithm, we also simulate
a clustered network that provides both a fault tolerance and a data aggregation mechanism.

The remainder of this paper is structured as follows. A literature review is provided
in Section 2, the proposed method is explained in Section 3, the experimental analysis is
detailed in Section 4, and the conclusions and future research directions are presented in
Section 5.

2. Literature Review
2.1. WSN

WSNSs originated from a project for military applications, conducted by the University
of California, Berkeley, where researchers used micro-electromechanical systems technol-
ogy to develop a button-sized sensor called “Smart Dust” [6]. This type of sensor is used
in battlefields to monitor and provide warnings regarding the whereabouts of enemies.
The data collected from the sensors are sent back to a sink, through a wireless network,
for aggregation and analysis. The obtained intelligence then serves as a reference for
subsequent operations.

Arampatzis et al. [7] pointed out that WSNs based on IoT have been widely used in the
military, homeland security, medical care, ecological conservation, agricultural monitoring,
and manufacturing. By deploying a large number of sensors in a specific range, the relevant
data regarding objects of interest can be collected and subsequently analyzed and identified.
Because the IoT must respond and take action in response to changes in the surrounding
environment, it is critical to have a fault-tolerant and reliable data transmission mechanism.

In a paper on WSNs, Handy et al. [8] proposed a low-energy adaptive clustering
hierarchy (LEACH) algorithm. The algorithm generates clusters in each working round and
randomly selects cluster heads (CHs) from nodes, which are responsible for transferring
sensor data in each cluster to the sink. Li et al. [9] improved the LEACH algorithm
and proposed a distributed energy-efficient clustering (DEEC) algorithm. The DEEC
algorithm considers the remaining energy of nodes when selecting CHs, preventing the
quick deaths of low-energy nodes because they serve as CHs for a long time. Since then,
many scholars [10-15] have proposed various methods entailing WSNs, such as SEP,
PEGASIS, and HEED, to save energy and handle greater workloads; these methods extend
the lives of sensor nodes and achieve the best operating efficiency in an environment with
limited energy. In addition, some researchers [16-18] have surveyed and compared the
aforementioned methods. The most well-known WSN algorithms are shown in Table 1.
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Table 1. Energy-efficient distributed protocols in wireless sensor networks (WSNs).

Method Network Type Characteristic

CH election based on the residual

LEACH [8] Clustering-based energy of each node
CH election based on the ratio
. between the residual energy of each
DEEC [9] Clustering-based node and the average energy of the
network
. CH election based on the weighted
SEP[10] Clustering-based election probabilities of each node
Based on forming chains of sensor
PEGASIS [11] Chain-based nodes and using multi-hop
transmission
HEED [12] Clustering-based CH election based on residual energy

of each node and each iteration

2.2. Byzantine Agreement (BA)

BA is a well-known fault-tolerant method. Lamport et al. [19] quoted the historical
example of consensus among the generals of the Byzantine Empire with regard to attacking
their enemies and applied this concept to develop BA. Specifically, for a reliable com-
puter system to troubleshoot processor faults effectively, the following conditions of the
consensus protocol must be met:

e Agreement: All processors agree on a common value.
e  Validity: All processors agree on the initial value sent.
e  Termination: All processors reach a final decision.

To rule out cases in which the system operation failure is caused by only a few
processor faults (e.g., failures and hacker intrusions), Lamport et al. [19] proposed a fault
tolerance threshold:

f<ln-1/3] (1)

where f is the number of faults and # is the total number of processors.

Since then, with the rapid development of computer and network systems, many
scholars [20,21] have proposed various improved fault tolerance thresholds based on the
BA from different perspectives with the objectives of reducing the incidence of failures and
improving the system operating efficiency, as shown in Table 2.

Table 2. Fault tolerance mechanisms compiled in this study.

Author Fault tolerance model
Lamport et al. [19] f<|n-1/3]
Moniz et al. [20] f<n/3ando <[n—t2|n—k—t)+k—2
Rabin, MO [21] t<n/4

Note: f is the number of faulty processes, 7 is the total number of processes, ¢ is the number of omission faults,
t is the number of actually faulty processes, and k is the number of processes required to reach a consensus.

Moniz et al. [20] proposed the Turquois algorithm for wireless ad hoc networks, which
can tolerate f faulty processes while allowing n processes on the network, that is, f < n/3.
The network is allowed to operate normally when ¢ < [n — t/2](n — k — t) + k — 2,
where o denotes the number of omission faults, and a consensus is finally reached. Rabin
et al. [21] referred to BA, proposed by Lamport et al. [19], and proposed a solution that can
reach a final consensus in synchronous and asynchronous systems containing t(t < n/4)
faulty processes, where the security of message transmissions is verified using digital
signatures. In this paper, we wanted to combine the BA and majority function to observe
the phenomenon in the distributed sensor network.
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2.3. Consensus

Consensus is a concept equivalent to group decision. In this concept, the group
participants can exchange message and decide some policies. Similarly, when we apply
this concept to WSNs, each node can negotiate and cooperate with each other to achieve
the transmission of network data.

A consensus can lead to decisions, and the majority-consensus (MC) algorithm is
a majority decision-making algorithm. It was used as a solution to update distributed
databases in the 1980s. Even if some databases (minority) are disconnected, the database
replicas (majority) can be updated with regard to the remaining databases, keeping the
data consistent and updated [22].

Currently, the MC algorithm constitutes part of the data processing method employed
in sensor network application development modules. Through a threshold value, the
collected sensing data are asserted (asserted/deasserted) with binary values of one or
zero at the sensor nodes; then, in accordance with the MC concept, the final consensus is
calculated and sent to the sensor network sink [23].

Gogolev et al. [24] proposed a distributed binary majority-consensus rule to study
different reactions to disturbances. When a network has different kinds of disturbances,
such as message loss and stochastic noise, the random neighbors majority (RM) also
involves better tolerance toward the influence of faulty nodes.

Fischer et al. [25] proposed a consensus method that allows systems to make errors
and reach a final decision, where the binary values of one and zero are used for error
judgment. In this study, the method described in the literature [26,27] was referenced.
Accordingly, threshold assertion was performed based on a binary value and incorporated
into the fault tolerance mechanism, a WSN environment was simulated, and data were
aggregated from sensor nodes to reach a final consensus.

2.4. Majority Function (MF)

Logic gates play an important role in digital logic circuits. These gates combine the
high and low voltages of transistors (i.e., “1” and “0” bit values) to represent logical TRUE
and FALSE states [26]. A Majority Gate (MG) is based on the input state. That is, if more
than half of the input values are “1,” then the output value F is “1”; otherwise, the output
value is “0.” In addition, when a gate has several inputs and one output, it may form a
MF [27]. The corresponding formula is as follows:

. 1 7,1_ AN 1/2
Majority(p1,...,pn) = LZ + (ZMZ)J

@

This paper proposed a novel theory in which the BA fault tolerance mechanism is
considered and the aggregated sensor data are passed through a threshold to assert a binary
value of “1” or “0.” Khan et al. [28] proposed a cooperative theory that every clusters deploy
a coordinator as the Cluster Head (CH), which have strong computing and full functions,
communicating with other device and calculating the consensus degree. In this paper, the
MC calculation is performed on each cluster, and the MC result is sent by the respective
CH to the sink, which completes the aggregation of the sensor data. The MC calculation is
then performed again to ascertain the validity of the data within the sensing range.

3. Research Method

The method proposed in this paper, i.e., the Byzantine consensus algorithm (BCA),
was developed with reference to the research of Lamport et al. [19]. It is based on the
Byzantine fault tolerance mechanism and uses MC to aggregate sensor data. Moreover,
we refer to Wang et al. [29] to propose some assumptions clearly. The proposed method is
based on the following basic assumptions:

e In a distributed network, the total number of nodes is a constant n(n > 4), which is
minimum requirement.
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e Each node communicates with the other nodes in a reliable and fully connected
network environment and performs sensing tasks with limited energy e.

e  One or more nodes may encounter faults or failures; a faulty node will send an error
message to the other nodes, but a failed node will not send any messages.

o  After the message exchange, when the number of faulty or failed nodes f is less than
the fault tolerance value corresponding to the total node number 7 (e.g., f <n/3), the
network will maintain normal operation.

e  When the number of faulty or failed nodes is less than the fault tolerance value, the
MC of the sensing data of the nodes d will be calculated.

Some target areas desolate, dangerous or inaccessible to humans there are many
challenges for surveillance and monitoring by deploying and maintaining a large number
of static nodes. This paper presents a fault-tolerant data aggregation mechanism for
clustering sensor network to solve this problem. In this paper, the clustering sensor
network can extend its operating time and maintain operational flexibility, and we use
the energy-saving mechanism of the cluster to decentralize the management of sensor
nodes and allow a small number of nodes to fail. In addition, our research is different from
dynamic networks, in which nodes must consider factors such as moving time and offset
distance. To make this research consistent with an actual wireless sensing environment,
initial energy values are assigned to the sensor nodes based on the characteristics of actual
nodes with limited energy, and the energy of the nodes is increasingly consumed as the
number of experimental rounds increases.

K-means [30] is a clustering algorithm employed in machine learning. Several schol-
ars [31,32] in the field of WSN research have attempted to obtain the optimal clustering
number by improving this algorithm, so as to reduce the energy consumption of sensor
nodes and extend the network life cycle. The K-means clustering algorithm was also
adopted in the present study to establish a clustered network architecture, as shown in
Figure 1, aggregate the MC results from the clusters and send them to the sink through the
CHs, and complete the data aggregation from the CHs.

100 o D\ o
\ 2 \
o\ a2
80~ \ o 2 l
\ | *
*
70 N oo 3 1
N\ g o o
60 \\0 o f -
< o
3] o ~ © /s — =
gsn} ~N - - e P e -]
o ° l
40 - o © o, o : = j
2 o %5 —
or ° —T— | *
=
20 o/ \\
10— - * \
0 L 1 1 & ltl 1 L L

6 &
0 10 20 30 40 50 60 70 80 90 100
Meter

Figure 1. Schematic diagram of K-means network topology (cluster number = 5).

In Section 4, three methods—LEACH, DEEC, and SEP—are compared with the pro-
posed method. The experimental comparison results are then used to analyze the network
life cycle and node energy consumption performance.

3.1. Initial Network Setup

The initial energy values of nodes were set in the initial stage of this experiment.
Further, “Node” represents the total number of nodes 1, N; represents the ith node, and
N;"“'8Y is the energy e of the ith node. It was assumed that the energy of the nodes
decreased as the number of experimental rounds increased.
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3.2. MC Calculation at the CHs

In Algorithm 1, N;" represents the values sensed by the sensors, which are generated
randomly based on environmental monitoring indicators. Furthermore, the assertion value
is determined for the threshold T and is calculated as zero or one, as specified in the
assertion policy. Indicator values below the threshold value are set as zero and vice

versa. N;"""Y represents the binary value after node N, is asserted. The binary value

corresponding to each node is then aggregated by the corresponding CH to produce the
cluster majority result, denoted as Majority _Result (Equation (3)). Algorithm 1 is utilized
to calculate the MC of the nodes in each cluster, producing the results of this stage.

Algorithm 1 BCA (cluster MC calculation stage)

Input: Initial value of nodes N;"#!
Output: Majority result of each cluster (Majority_Result)

1 random(N;"ital)

/ /Randomly generate the values sensed by nodes according to environmental monitoring
indicator values.

2if 0 < Nj"ital < T, then N;P"ery =

/ /When the value sensed by a node is less than the threshold T, the corresponding assertion value
is 0.

3 else Nbinary = 1

//When the value sensed by the node is greater than the threshold, the assertion value is 1.

4 if ZNibi”‘”y > n/2, then Majority_Result = True

/ /When the final majority result is greater than or equal to half the total number of nodes, an MC
is reached.

5 else YN;"""Y < 11/2, then Majority_Result = False

/ /When the final majority result is less than half of the total number of nodes, no MC is reached

3.3. Consensus Calculation for the Entire Network

After the Majority_Result values corresponding to all clusters have been obtained
through the MC calculations at the CHs, the distances between clusters must be considered.
If majority results are exhibited by neighboring clusters in a particular region, then there
is a high consensus among the sensor data in that region. Conversely, if majority results
occur in scattered clusters in a region, then the consensus level among the sensor data is
relatively low in that region.

Therefore, when the distribution of clusters in the entire network is not considered,
factors such as the distance between the clusters and degree of clustering may affect the
final consensus results of the network, resulting in failure to provide reliable sensor data.
In this study, the SOP operation is performed to further calculate the consensus results for
the entire network and verify the data reliability. Accordingly, Algorithm 2 is proposed.

Algorithm 2 BCA (network consensus calculation stage)

Input: Majority result of each cluster (Majority_Result)
Output: Sensor network consensus result (Consensus_Result)

1if }, Majority_Result = False, then break,

/ /When the final consensus result is false, return to a new round.

2 else if } Majority_Result = True & SOP = True, then Consensus_Result = True,
/ /When the final consensus result is true, a consensus is reached.

3 else if ) Majority_Result = True & SOP = False, then Consensus_Result = False,
/ /When the final consensus result is false, no consensus is reached.

In Algorithm 2, the SOP operation uses the majority result obtained from each CH
as the input, Equations (2) are employed to perform the SOP operation, and the obtained
result is either one or zero. Then, the MC result of the entire network is calculated at the
sink, and the final output is Consensus_Result.
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For compliance with the BA fault tolerance mechanism, testing for faults must be per-
formed in each round of sensing to ensure the validity of the final consensus. When nodes
in the network environment encounter problems, such as death or non-responsiveness,
they will be regarded as faulty nodes. Once the total number of faulty nodes is greater than
or equal to the fault tolerance value, the sensor network will stop operating.

In summary, when all nodes have collected sensing data, assertions will be made.
Then, the MC will be calculated. Finally, the sensing results that can exhibit Byzantine
consensus will be obtained. The complete process is as follows:

1. Divide clusters using the K-means clustering algorithm.

2. Confirm whether the number of network faulty nodes is greater than or equal to the

fault tolerance value.

Collect sensing data at the sensor nodes in each cluster.

4. Assert the collected sensing data through a threshold to obtain a binary value of “1”
or “0.”

5. Calculate the MC of nodes in each cluster at the respective CH.

6.  Calculate whether the binary value of each CH reaches an MC via the SOP operation
at the sink.

7. The entire network reaches an MC, and each cluster sends the sensing data to the
sink.

®

4. Experimental Simulation and Analysis

In this study, we used MATLAB 2015 (MathWorks, Natica, Massachusetts, USA) [33]
to implement the simulation environment. First, we assumed an experimental sensing
environment with a size of 200 m x 200 m to analyze the network life cycle and other
experimental values.

Moreover, by referring to the first-order radio model [34], the radio energy consump-
tion was used as the energy consumption index for radio transmission and reception. The
cluster center generated by the K-means clustering algorithm was regarded as the CH,
which aggregated the sensing data of each node in the cluster to determine the cluster
consensus value and sent the result to the sink.

The initial parameter settings of the experiment are listed in Table 3. First, we deployed
100 fixed sensor nodes and a sink within our simulation network. In this study, three, five,
and seven clusters were used for the experimental analysis. The number of clusters was
determined according to the majority function (MA]) [35]. Equation (3) shows that the
number of clusters n takes three or more odd numbers as the input, and C; is the numbering

of the clusters.
L ifyi G=>3

0, otherwise

MAJ(Cy,Cy,...,Cy) = { 3)

Table 3. Experimental simulation parameters.

Simulation Parameters

Transmit/receive electronics 50 nJ /bit
Energy for data aggregation 5 nJ/bit/signal
Number of sensor node 100
Sensor field (m?) 200 x 200
Sink location (x, y) (87, 87), (100, 100), (174,174), (200,200)
Sensor node initial energy 0.5]
CH initial energy 5]
Radio region (M2) 87 x 87
Cluster number 3,5,7
Fault tolerance 1/2,1/3,1/4

Furthermore, we added different fault tolerance values to observe the entire life cycle
and number of surviving nodes changing in our experiments.
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4.1. Experimental Environment Simulation

The simulated experimental environment of this study constituted a 200 m x 200 m
sensor field; the sensor nodes were divided into three, five, and seven clusters and the
majority result of each cluster is calculated; further, 2000 rounds of experiments were
executed and obtained final consensus results from each round. Moreover, based on the
experimental results, the entire life cycle and number of surviving nodes were analyzed
and compared.

4.2. Experimental Data Analysis
4.2.1. Nonconsideration of Fault Tolerance Conditions

In accordance with the parameters given in Table 3, experimental simulations with
three, five, and seven clusters were conducted to obtain the entire network life cycle and the
number of surviving nodes. Figure 2 shows the status of dead nodes in the entire network
after 2000 rounds of experiments with three clusters. The red multiplication symbol (x)
represents the sink position, the red asterisk (*) represents the CH, the solid red dots are
the dead nodes, and the remaining hollow dots are the surviving nodes.
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Figure 2. Schematic diagram of nodes throughout the network.

Figures 3 and 4 respectively compare the entire network lifecycle and the number of
surviving nodes in the cases with three, five, and seven clusters, without considering the
Byzantine fault tolerance. As shown in the figures, when the Byzantine fault tolerance is
not considered, the entire network has a longer life cycle and more surviving nodes within
2000 rounds when seven clusters are employed. The network life cycle and number of
surviving nodes obtained with three clusters are the most unfavorable. The experimental
results show that in a network environment with a small number of clusters, the energy
consumption will also be greater because of the large data transmission distances between
the nodes and CH.

4.2.2. Consideration of Fault Tolerance Conditions

Similar to the previous experiment, three, five, and seven clusters were used again, and
Byzantine fault tolerance values of one-half, one-third, and one-quarter were considered to
reach a Byzantine consensus. The effects of different fault tolerance values on the entire
network life cycle and the number of surviving nodes were then analyzed.

Figures 5-10 show the network (100 sensor nodes) life cycles and number of surviving
nodes determined from 2000 rounds of experiments under different cluster numbers and
fault tolerance values.
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Figure 5. Entire network life cycle (fault tolerance = 1/2).
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Figure 8. Number of surviving nodes in the network (fault tolerance = 1/3).
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Figure 9. Entire network life cycle (fault tolerance = 1/4).
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Figure 10. Number of surviving nodes in the network (fault tolerance = 1/4).

The following phenomena are observable in the experimental results:

Network life cycle: The final remaining energy of the network shows that three clusters
cause the nodes to consume energy faster and the network to stop working in the
early rounds.

Changes in the surviving nodes: The number of faulty nodes reaches the fault tolerance
value fastest when there are three clusters, which indicates that the nodes in each
cluster consume more energy, resulting in a lower node survival rate.

Different fault tolerance values: Under different numbers of clusters, when the fault
tolerance value is one-half, the node survival rate is optimal. This finding indicates
that the sensor network can maintain the optimal network operation efficiency by
adopting a less rigorous fault tolerance condition.

For the above experiment, Figures 5-10 show that in a network with more clusters,

the nodes are closer to the CH and the energy consumption is less, which can enable the
maximum workload for the entire network. However, in a network with fewer clusters,
the nodes are farther from the CH and the energy consumption is greater; hence, the entire
network has a relatively poor operating efficiency. These results show that the number
of clusters is a key factor affecting the network operation and that better performance is

associated with a larger number of clusters.

4.2.3. Sink Deployment Environment

To understand the manner in which different sink deployment positions may affect
the time consumed by the entire network to aggregate data, we considered the above



Sensors 2021, 21, 248 12 of 17

experimental results showing the three cluster performance worse than others. Then,
we conducted experiments with five and seven clusters while considering different fault
tolerance values. The results are presented in Figures 11-16, and the time consumption is
shown in Table 4.

Total time consumption with sink postion (cluster = 5 with threshold = 1/2)
T T T T T T T T T

Sink = 87m x 87m

— — —Sink=100m % 100m
=+='=Sink=174m x 174m
ink =200m x 200m

Time (S)

1or-

0 L L Il 1 Il 1 1 Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (Round)

Figure 11. Data aggregation time consumption for the entire network (cluster number = 5, fault
tolerance = 1/2).

Total time consumption with sink postion (cluster = 5 with threshold = 1/3)
T T T T T T T T T

Sink = 87m x 87m

= Sink = 100m = 100m
ink = 174m x 174m i
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Figure 12. Data aggregation time consumption for the entire network (cluster number = 5, fault
tolerance = 1/3).
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Figure 13. Data aggregation time consumption for the entire network (cluster number = 5, fault
tolerance = 1/4).
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Figure 14. Data aggregation time consumption for the entire network (cluster number = 7, fault
tolerance = 1/2).
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Figure 15. Data aggregation time consumption for the entire network (cluster number = 7, fault
tolerance = 1/3).
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Figure 16. Data aggregation time consumption for the entire network (cluster number = 7, fault
tolerance = 1/4).
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Table 4. Time consumption with different sink positions.
Clust Fault Sink Position
Ul Tolerance  g7m x87m  100m x 100m 174m x 174m  200m x 200 m

1/2 v

5 1/3 v
1/4 v
1/2 v

7 1/3 v
1/4 v

Note: the symbol (v') represents the lowest time consumption when aggregating sensed data.

Taking five clusters as an example, when the sink is located at 87 m x 87 m, the
data aggregation time of the entire network is longest; when the fault tolerance values are
one-half and one-quarter and the sink is located at 174 m x 174 m, the data aggregation
time is shortest; and when the fault tolerance value is one-third and the sink is located
at 200 m x 200 m, the data aggregation time of the entire network is shortest. With five
clusters, sensing data aggregation requires the least time when the sink is located at
174 m x 174 m.

Taking seven clusters as an example, when the fault tolerance values are one-half and
one-third and the sink is located at 87 m x 87 m and when the fault tolerance value is
one-quarter and the sink is located at 200 m x 200 m, the data aggregation time of the
entire network is longest. In contrast, when the fault tolerance values are one-third and
one-quarter and the sink is located at 174 m x 174 m and when the fault tolerance value is
one-half and the sink is located at 100 m x 100 m, the data aggregation time of the entire
network is shortest. With seven clusters, sensing data aggregation takes the least time
when the sink is located at 174 m x 174 m.

The above experimental results show that different sink deployment positions can
affect the data aggregation time consumed by the entire network. For a clustered network,
the positions of the sensor nodes, CHs, and sink, as well as the distances among them, will
all result in a different data aggregation and transmission time. Table 4 shows that the
deployment strategy of the sink, CHs, and sensor nodes established in accordance with
the entire network environment will generate the most favorable outcomes in terms of the
node energy consumption and data transmission time.

4.2.4. Comparison with Other Research Methods

In addition, 2000 rounds of experiments were performed on 100 nodes using the pro-
posed method and the LEACH, DEEC, and SEP algorithms; note that in these experiments,
seven clusters were employed and fault tolerance was not considered. The corresponding
changes in the network life cycle and number of surviving nodes were analyzed and
compared; the results are shown in Figures 17 and 18, respectively.

The experimental network life cycle results are shown in Figure 17. First, the algo-
rithms were given different total energies at the beginning, because of the differences in
their energy settings. The reasons are as follows:

e LEACH and SEP: Some sensor nodes are randomly elected to become advanced nodes
and have more energy (1]), and the other nodes become normal nodes and have initial
energies of 0.5 J.

e  DEEC: All the nodes, which are randomly set up, will have energies between 0.5 ] and
1], according to their energy weight values.

e  Proposed method: All the nodes have the same initial energy (0.5 J).
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Figure 17. Entire network life cycle (no fault tolerance).
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Figure 18. Number of surviving nodes in the network (no fault tolerance).

When the sensor network is operated using the LEACH, DEEC, or SEP algorithm, the
total energy consumption of the nodes rapidly increases with the number of rounds. In
contrast, when the proposed method is used, the total energy consumption tends to be
stable. Moreover, from the differences in the number of surviving nodes after 2000 rounds
of experiments, as shown in Figure 18, it can be seen that the proposed method can maintain
a better node survival rate in the simulated experimental environment.

The results obtained in this portion of the study prove that the proposed method has
much better performance in terms of node energy consumption and survival time, which
can effectively extend the operating performance of the entire network. LEACH, DEEC,
and SEP focus on cluster division and CH selection to reduce the energy consumption
of the sensor nodes. This approach is likely to increase the time required for the nodes
to join a cluster and select the CH. In contrast to these methods, the proposed approach
adopts a different process. Firstly, the original signals acquired by the sensor nodes in each
cluster are used to define a threshold and are asserted. Then, the cluster majority results
are calculated by a fixed number of CHs. Finally, the network consensus is calculated
by the sink node. According to the Byzantine consensus-based sensing results, the CHs
aggregate the sensor data of each cluster and transmit them to the sink. This approach
avoids the large energy consumption of sensor nodes due to frequent data transmission
during network operation. Moreover, the CHs only send binary data during the calculation
process, avoiding excessive energy consumption. Compared with LEACH, DEEC, and SEP,
in which the CHs are frequently replaced and the network load is increased, if fixed and
high-power CHs can be appropriately deployed in each cluster, the operating efficiency of
clustered networks can be maximized.
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5. Conclusions and Future Research

The objective of this study was to improve the data aggregation efficiency of WSNs
via node cooperation. Based on the Byzantine fault tolerance mechanism, the principle
of majority decision, and the characteristics of the MC algorithm, the sensor data are
continuously acquired in each cluster; then, consensus is rapidly determined and data
aggregation is completed when the number of faulty nodes is lower than the allowed
fault tolerance. Furthermore, the experimental results show that a multi-cluster network
architecture with an appropriate fault tolerance value can improve the success rate of
reaching a data consensus and sending data to the sink. However, using a clustered
network architecture for sensor data aggregation and having too many clusters and CHs
will increase the difficulty of distributed network management and consensus calculation,
which may lead to a non-deterministic polynomial problem.

Based on the results of the series of experimental analyses presented in this paper, this
current study has produced three main findings. First, the introduction of the Byzantine
fault tolerance mechanism can prevent faulty nodes from affecting the normal network
operation and improve the network life cycle. Second, using the MC algorithm— which
makes assertions with binary values of one and zero—can decrease the energy consumption
of sensor nodes and reduce the data aggregation time. Third, reference indicators are
provided to researchers such that they can assess data reliability and validity in distributed
network environments.

There are two directions for future research. First, experimental data analysis and com-
parisons can be performed based on the proposed method and other common clustering
algorithms employed in WSNs to verify the CH selection strategy and energy consumption
fluctuations in a clustered network environment. Second, different fault tolerance mecha-
nisms can be adopted to aggregate sensor data in the network to analyze the advantages
and disadvantages of the BCA proposed in this paper.
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