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Data from all reported cases of 2009 pandemic influenza A (H1N1) were obtained from the China Information
System for Disease Control and Prevention. The spatiotemporal distribution patterns of cases were characterized
through spatial analysis. The impact of travel-related risk factors on invasion of the disease was analyzed using
survival analysis, and climatic factors related to local transmission were identified using multilevel Poisson re-
gression, both at the county level. The results showed that the epidemic spanned a large geographic area, with the
most affected areas being in western China. Significant differences in incidence were found among age groups,
with incidences peaking in school-age children. Overall, the epidemic spread from southeast to northwest. Prox-
imity to airports and being intersected by national highways or freeways but not railways were variables associated
with the presence of the disease in a county. Lower temperature and lower relative humidity were the climatic
factors facilitating local transmission after correction for the effects of school summer vacation and public holidays,
as well as population density and the density of medical facilities. These findings indicate that interventions focused
on domestic travel, population density, and climatic factors could play a role in mitigating the public health impact of
future influenza pandemics.
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Abbreviations: CCDC, Chinese Center for Disease Control and Prevention; CISDCP, China Information System for Disease
Control and Prevention.

In early April 2009, human cases of infection with 2009
pandemic influenza A (H1N1) virus were first identified
in the United States and Mexico (1). The virus then spread
rapidly to other regions of the world. As of January 24,
2010, laboratory-confirmed cases of pandemic influenza
(H1N1-2009) were being reported in more than 209 countries
or regions worldwide, with 14,711 deaths among confirmed
cases (2). Pandemic influenza was introduced to mainland
China on May 9, 2009 (3, 4), and then spread across the
whole country. By the end of 2009, more than 120,000
confirmed cases were reported to the Chinese Center for
Disease Control and Prevention (CCDC), including 648
deaths (5). Information on reported cases was released

daily by the Ministry of Health of the People’s Republic
of China in the early stages of the pandemic and then
twice weekly later on.

Analyzing the information gathered and unearthing under-
lying risk factors provide an opportunity to identify epidemic
characteristics and transmission patterns of the pandemic in
China, thereby producing useful information for prevention
and control measures during future epidemics. In this study,
we aimed to characterize the temporal and spatial distribution
of pandemic influenza in mainland China, to understand the
diffusion pattern of the disease within the country, and to iden-
tify risk factors for invasion and local transmission of this
disease.
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MATERIALS AND METHODS

Data collection

We used a database that included all cases of pandemic
influenza (H1N1-2009) reported to theChina InformationSys-
tem for Disease Control and Prevention (CISDCP) fromMay
9,2009,when thefirst confirmedcase inChinawas reported, to
December 31, 2009 (6). The CISDCP covers all provincial,
prefectural, and county centers for disease control and preven-
tion, 95.3%of the provincial, prefectural, and county hospitals
(9,084 in total), and 84.0%of township clinics (38,175 in total)
across mainland China. After the World Health Organization
issued an alert about the novel influenza virus (H1N1-2009),
pandemic influenza was classified as a class B notifiable in-
fectious disease on April 30, 2009, by the Ministry of Health
butwasmanaged according to the criteria for classAnotifiable
infectious diseases. According to the Law for Prevention and
Control of Infectious Diseases in China, information regarding
each patient, once identified, must be reported to the CCDC
within 2 hours through theWeb-based CISDCP system. A sus-
pected case was defined as a person with influenza-like symp-
toms who had had close contact with a confirmed case within
thepast 7days, hadahistoryof travel to affected areaswithin the
past 7 days, or tested positive for influenza A virus, excluding
other known subtypes of influenza A. A laboratory-confirmed

case was defined according to World Health Organization
criteria—that is, a person with influenza-like symptoms and
laboratory-confirmed pandemic influenza A virus infection
by one or more of the following tests: reverse-transcriptase
polymerase chain reaction, real-time reverse-transcriptase
polymerase chain reaction, viral culture, or a 4-fold rise in spe-
cific antibodies to pandemic influenza A virus (7). Influenza-
like symptoms were defined according to World Health
Organization criteria: sudden onset of fever greater than 38�C,
cough or sore throat, and absence of other diagnoses (8).

Figure 1. Epidemic curves for pandemic influenza (H1N1-2009) in
mainlandChina,2009.A)Daily temporal distributionof confirmedcases;
B) daily temporal distribution of deaths due to pandemic influenza
(H1N1-2009).

Figure 2. Epidemic curves for pandemic influenza (H1N1-2009) for
5 selected cities/provinces in different regions of mainland China, 2009.
A) Guangdong Province in southern China; B) Shanghai City in eastern
China; C) Shaanxi Province in central China; D) Tibet Autonomous
Region in western China; E) Beijing City in northern China.
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All laboratory-confirmed cases from 2009 were included in
our database, including information about age, sex, occupation,
residence address, work address, onset date and location, hos-
pital admission date and address, and clinical outcome. Further-
more, census information was obtained from the National
Bureau of Statistics of China (9).

Analyses of temporal and spatial distribution

Epidemic curveswere createdbyplotting thedaily numberof
newly confirmed cases and the number of deaths. Mainland
China is divided into 2,925 counties, which are political sub-
divisions of provinces, usually containing several townships.

Table 1. Association Between Duration of Time (Days) to the First Confirmed Case of Pandemic Influenza A (H1N1-2009) and Travel-related

Factors at the County Levela in Survival Analysis, People’s Republic of China, 2009

Variable and Unitb
Median Duration,c

days (IQR)

Univariate Cox Analysis Multivariate Cox Analysis

Crude HR 95% CI P Value Adjusted HR 95% CI P Value

Intersected by
national highway

No 172 (130 to >237) 1.00 1.00

Yes 161 (126–195) 1.32 1.21, 1.44 <0.001 1.25 1.14, 1.37 <0.001

Intersected by railway

No 173 (133–212) 1.00

Yes 159 (124–198) 1.19 1.09, 1.29 <0.001 NS (excluded)

Intersected by freeway

No 171 (134–215) 1.00

Yes 140 (118–187) 1.45 1.33, 1.58 <0.001 1.21 1.10, 1.32 <0.001

Distance to the nearest
airport (categorical), km

<40 130 (96–171)

40–79 168 (128–205)

80–120 170 (133–204)

>120 177 (146 to >237)

Distance to the nearest
airport (continuous), 50 km

0.80 0.77, 0.83 <0.001 0.87 0.84, 0.91 <0.001

Population density
(categorical), per km2

<120 180 (160 to >237)

120–299 172 (135–203)

300–700 159 (126–205)

>700 128 (91–168)

Population density
(continuous),
1,000 persons per km2

1.08 1.08, 1.09 <0.001 1.08 1.07, 1.09 <0.001

Density of medical facilities
(categorical),
per 10,000 people

<0.6 159 (124–199)

0.6–0.9 165 (127–199)

1.0–1.4 164 (128–201)

>1.4 167 (130 to >237)

Density of medical facilities
(continuous),
per 10,000 people

0.93 0.91, 0.95 <0.001 0.98 0.95, 1.00 0.068

Abbreviations: CI, confidence interval; HR, hazard ratio; IQR, interquartile range; NS, not significant.
a Unaffected counties were considered as right-censored, and results were corrected for population density and the density of medical facilities.
b For all continuous variables, categorical results are also reported to allow inspection of the data and assessment of whether or not the

assumption regarding continuous variables was justified.
c Duration of time to the first confirmed case for all affected counties, starting on May 9, 2009, the date of the first confirmed case in the whole of

mainland China; right-censored at 237 days for all unaffected counties.
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The incidences for different sex and age groupswere calculated
using 2009 census data. As was done previously (10, 11), each
casewas linked to a digitalmap ofChina (1:100,000) according
to its onset location. The incidence for each county was calcu-
lated and standardized using direct standardization for age and
sex according to the overall composition of the 2009 Chinese
population, using 5-year age-group categories. To explore the
spatial and temporal diffusion trend of pandemic influenza in
mainland China, a map of pandemic influenza spread was de-
veloped using trend surface analysis, which is a spatial smooth-
ingmethod that uses polynomials with geographic coordinates,
as defined by the central point of each county (12–14). The time
delay of the first confirmed case for each county was defined as
the duration of time (in days) sinceMay 9, 2009, the date of the
first confirmed case inmainlandChina.A trend surface on these
durations was created in ArcGIS 9.2 (ESRI Inc., Redlands,
California) using a second-order trend surface model with
a local polynomial method to explore the diffusion patterns
of pandemic influenza over time. In addition, the epidemic
curves were also plotted for 5 selected cities/provinces in
different regions of mainland China: Guangdong (southern
China), Shanghai (eastern China), Shaanxi (central China),
Tibet (western China), and Beijing (northern China).

Statistical analysis of risk factors

To assess the association between the invasion of pandemic
influenza and differentmeans of domestic travel, we performed
a survival analysis (Cox analysis) of the time delay of the first
confirmedcase for eachaffected county, consideringunaffected
counties as right-censored. The timedelay of thefirst confirmed
casewasdefinedas theduration (indays) sinceMay9,2009, the
date of the first confirmed case in mainland China. Domestic
travel was expressed using 4 variables: distance (from the mid-
point of each county) to the nearest civil airport andwhether or
not a countywas intersected by national highways, freeways, or
railways. This information was obtained from the National
Bureau of Statistics ofChina (9, 15). Spatial analyseswere used
to extract data on these variables in ArcGIS 9.2 (ESRI Inc.).
Since population density is also linked to human activities and
may facilitate influenza transmission (16, 17) and since density
of medical facilities could be linked to patient reporting, we
adjusted for the effects of these variables. In this study, the
population density for each county was obtained from the
National Bureau of Statistics of China (9, 15), and the densities
of medical facilities were based on the CISDCP, including all
reporting sectors for notifiable infectious diseases, comprising
provincial, prefectural, and county centers for disease control
and prevention and provincial, prefectural, and county hospitals
and township clinics. Hazard ratios and their 95% confi-
dence intervals and P values were estimated using maximum
likelihood methods. Hazard ratios for the continuous variables
were calculated for the following units: distance to the nearest
airport (in 50-km increments), population density (in 1,000
persons per km2), and density of medical facilities (in number
of reporting sectors for pandemic influenza per 10,000 persons).

To explore the effect of climatic factors on local transmission
within counties, we performed multilevel Poisson regression.
Climatic data (temperature, relativehumidity, andprecipitation)
during May–December 2009 were obtained from the National

Meteorological Bureau of China (18). Owing to probable time
lags, the climatic variables were processed by calculating the
average value for the current day and a lag of 1–3 days, which is
the observed incubation period of pandemic influenza (19).
Poisson regression deals with the daily number of laboratory-
confirmed cases per county. The inclusion of the population size
for each county as an offsetmakes it an analysis of incidence.To
account for possible confounding, we included school summer
vacation and public holidays, the proportion of the school-age
population (ages 6–19 years), population density, and the den-
sity of medical facilities as correction factors in the analysis.
The percentage change in incidence in response to the changeof
the variable by a given amount (10�C for temperature, 10% for
relative humidity, 1 mm for precipitation, 10% for school-age
population, 1,000 persons per km2 for population density,
and number of facilities per 10,000persons)was used to reflect
the impact of each variable. The 95% confidence intervals and
corresponding P values were estimated after correcting for
overdispersion because of the nature of infectious diseases
with spatial clustering patterns (20, 21). For temperature, we
also included a quadratic term in the analysis.

For all analyses, univariate analysis was performed first to
examine the effect of each variable separately. Multivariate
analysis was then performed by including all variables with
P values less than 0.20 in univariate analysis and exclusion of
variables with P values greater than 0.10, using a standard
backward likelihood ratio method. For all continuous vari-
ables, we also presented categorical results in 3–5 categories
to allow inspection of the data and determinewhether or not
the assumption regarding continuous variables (quadratic
for temperature) was justified. Statistical analyses were
performed using the Stata package (StataCorp LP, College
Station, Texas) (20). Readers interested in further research
can contact the corresponding author to obtain the full data
set used in this study.

RESULTS

Atotal of121,805casesofpandemic influenza (H1N1-2009),
distributed in all 31 provinces inmainland China, were reported
from May 9, 2009, to December 31, 2009. There was much
variation in the numbers of confirmed cases in different prov-
inces, ranging from881 to 12,748,with amedian of 2,958 cases,
and in the incidence of confirmed cases in different provinces,
ranging from 3.94 per 100,000 population to 71.72 per 100,000,
with a median of 8.41 per 100,000. From the time profile, we
found that the number of confirmed cases increased rapidly
beginning at the end of August, when a new term began for
school students, and peaked by the end of November. The first
death caused by pandemic influenzawas reported onOctober 4,
2009. The number of deaths eventually rose to 648 by the end of
the year, and peaked in earlyDecember (Figure 1). The age- and
sex-standardized incidence map shows that the epidemic
spanned a large geographic area, and the most affected areas
were in western China (seeWeb Figure 1, which appears on the
Journal’s website (http://aje.oxfordjournals.org/)). Significant
differences in incidence were found among age groups, with
incidences peaking in school-age groups (Web Figure 1). Boys
showed a higher incidence than girls (ages<20 years).
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Web Figure 2 shows the trend of the spatial spread of pan-
demic influenza over time inmainland China and indicates that
the epidemic areas during the first 120 days after May 9, 2009,
were limited to the circumferences of cities with international
airports, such as Beijing, Shanghai, Guangzhou, Shenzhen,
Chengdu, and Changchun. Thereafter, it spread to the rest
of mainland China, roughly from southeast to northwest. The
largest-scale spread took place 150–180 days after the first
case (Web Figure 2). Figure 2 shows the large variation in the
temporal patterns of pandemic influenza for the 5 selected
cities/provinces, but there was a marked drop in incidence
during the first week of October for all locations.

Survival analysis of the duration of time to the first confirmed
case in each county indicated that all 4 factors related to domes-
tic travel or human mobility were significantly associated with
the invasion of pandemic influenza in the Cox univariate anal-
ysis (Table 1). Population density and the density of medical
facilities also showed a significant association. The significant
effect of being intersected by railways disappeared, and the
density of medical facilities showed borderline significance
after correction for other factors in multivariate analysis,
whereas being intersected by national highways and free-
ways and proximity to airports and higher population den-

sity remained as significant factors, all showing a positive
association (Table 1).

Table 2 shows that all climatic factors (except precipitation),
school summer vacation and public holidays, proportion of the
school-age population, population density, and the density of
medical facilities were significantly associated with the extent
of local transmission in univariate multilevel Poisson regres-
sion.School summervacationandpublicholidays showeda sig-
nificant negative association with the incidence of pandemic
influenza. The significant effect of the proportion of school-
age children disappeared after correction for other factors; thus,
temperature, relative humidity, school summer vacation and
public holidays, population density, and the density of medical
facilities remainedas significant factors inmultivariate analysis.
Temperature showed a peak pattern,with the highest incidences
for the range from 0�C to 10�C, which was also reflected in the
statistically significant quadratic term.

DISCUSSION

Our study provides a complete overview of the spatial
and temporal characteristics of the pandemic influenza
(H1N1-2009) epidemic in mainland China in 2009. The

Table 2. Association Between Incidence of Pandemic Influenza A (H1N1-2009) and Climatic Factors at the County Level in Multilevel Poisson

Regression,a People’s Republic of China, 2009

Variable and Unitb
Daily Average

Incidence
No. of

Observations

Univariate Analysis Multivariate Analysis

Crude %
Change

95% CI P Value
Adjusted %
Change

95% CI P Value

Temperature
(categorical), �C

<0 0.076 38,106

0–9 0.159 66,570

10–19 0.110 97,800

20–30 0.027 168,983

>30 0.009 16,467

Temperature
(continuous), 10�C

74.8 71.7, 77.9 <0.001 76.3 73.2, 79.5 <0.001

Quadratic temperature
(continuous), 100�C

�36.7 �37.1, �36.3 <0.001 �34.9 �35.3, �34.5 <0.001

Relative humidity
(categorical), %

<20 0.316 1,770

20–39 0.164 20,645

40–59 0.096 67,031

60–80 0.065 199,565

>80 0.057 98,915

Relative humidity
(continuous), 10%

�4.4 �4.8, �3.9 <0.001 �1.4 �1.9, �0.9 <0.001

Precipitation
(categorical), mm

0 0.088 208,047

0.01–1.00 0.063 167,906

>1.00 0.022 11,973

Precipitation
(continuous), 1 mm

1.0 1.0, 1.0 0.184 NS (excluded)

Table continues
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epidemic spanned a large geographic area and presented spatial
and temporal heterogeneity in different regions of mainland
China. Our analyses of the invasion of pandemic influenza in-
dicated that domestic travel by air and bynational highways and
freeways and population density contributed to the spread of the
epidemic. Lower temperatures and lower relative humidity
were climatic factors that facilitated local transmission after
correction for the effects of school summer vacation and public
holidays, as well as population density and the density of med-
ical facilities. The density ofmedical facilities could have influ-
enced pandemic influenza patient reporting, and this effect
seemed more important for the reporting of local transmission
(a highly significant positive association) than for reporting of
the invasion (borderline significance). This indicates that the
CISDCP can be further improved.

In the initial phase of the epidemic, theChinese government
took measures to prevent and control the spread of the novel
influenza virus, declaring it a notifiable infectious disease in
order to strengthen national surveillance and find newly
confirmed cases quickly. In addition, quarantine measures
were implemented at the international airports (e.g., Beijing,
Shanghai,Guangzhou, andFuzhou) to identify and isolateprob-

able cases andclose contacts inorder todecrease the riskof local
transmission caused by imported cases. It is possible that these
measures were effective in achieving a slower pace of spread in
the early stages of the epidemic, but the current evidence is
inconclusive (22). However, following the development of the
global pandemic and the beginning of the new school term,
a rapid spread of the epidemic occurred in mainland China,
and local outbreaks increased at the end of August 2009.
A reduction in incidence was observed during the first week
of October, when there was an 8-day public holiday during the
National Days from October 1 to October 8. This drop in in-
cidencewas largely due to a lower tendency for patients to visit
medical facilities at that time, together with the fact that many
hospitals had reduced the open hours of their outpatient clinics
during the holidays. This is clearly visible in Figure 1,wherewe
see thedropbeginningonSeptember28, 3days (i.e., the average
duration between onset and seeing a physician) before the start
of the holiday period. Thus, the holiday period led to a reduction
in the number of people being diagnosed with pandemic influ-
enza. Apparently, most undiagnosed patients recovered in the
following days, because there was no marked compensation
visible in the days after the holiday period. Additionally, there

Table 2. Continued

Variable and Unitb
Daily Average

Incidence
No. of

Observations

Univariate Analysis Multivariate Analysis

Crude %
Change

95% CI P Value
Adjusted %
Change

95% CI P Value

School summer vacation
and public holidays

No 0.113 187,797 1.0 1.0

Yes 0.039 200,129 �62.3 �62.8, �61.8 <0.001 �36.4 �37.2, �35.5 <0.001

Proportion of school-age
population
(categorical), %

<18 0.094 121,412

18–22 0.062 132,302

>22 0.070 134,212

Proportion of school-age
population
(continuous), 10%

�19.7 �28.9, �9.4 <0.001 NS (excluded)

Population density
(categorical), per km2

<120 0.083 92,787

120–299 0.039 95,396

300–700 0.043 96,416

>700 0.130 103,327

Population density
(continuous),
1,000 persons per km2

13.1 10.2, 16.1 <0.001 14.8 11.8, 18.0 <0.001

Density of medical facilities
(categorical), per 10,000 people

<0.8 0.028 146,343

0.8–1.1 0.052 71,734

>1.1 0.125 169,849

Density of medical facilities
(continuous), per 10,000 people

62.5 52.3, 73.3 <0.001 43.5 35.3, 52.3 <0.001

Abbreviations: CI, confidence interval; NS, not significant.
a Results were adjusted for school summer vacation and public holidays, population density, and the density of medical facilities.
b For all continuous variables, categorical results are also reported to allow inspection of the data and assessment of whether or not the

assumption regarding continuous variables was justified.
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may have been some reduced transmission because of school
closure, as was observed in Japan, where transmission was
substantially reduced during school closure (23). In addition,
the temporal death curve could reflect the massive rise in
confirmed cases with approximately 1 week’s delay following
the peak of confirmed cases at the end of November.

The direction of the spread of pandemic influenza was
from the southeast to the northwest, indicating how the virus
benefited from entering the country through international
airports in the coastal areas and spreading further along routes
of long-distance domestic travel.

With the fast-growing public transportation infrastructure
and increasing socioeconomic activities, travel has become an
important issue in the prevention of emerging airborne infec-
tious diseases such as influenza, especially during the introduc-
tion period. Obviously, the presence of airports and high
densities of transportation routes coincidewithmore developed
areas (i.e., those with a higher population density and more
medical facilities); however, afterwecorrected for these factors,
proximity to airports and the presence of national highways or
freeways remained significantly associated with the spread of
the infection.

Geoinformatics plays an important role in the study and con-
trol of infectious disease outbreaks, and it includes techniques
such as geographic mapping and location-based alert services
(16, 24–26). As was recognized previously, the international
spread of pandemic influenza and severe acute respiratory syn-
drome was largely related to air travel (27–29). Our study con-
firms that air travel and transportation routes accelerated the
spread of pandemic influenza between counties in mainland
China. Air travel and travel by national highways and freeways
especially appeared to play a role, whereas railways were less
important. In mainland China, trains are mainly used for occa-
sional long-distance travel, whereas highways are more often
used for daily or weekly commuting, especially because bus
schedules are more flexible. Our previous study on the geo-
graphic spread of the severe acute respiratory syndrome epi-
demic in China also demonstrated that domestic travel along
national highways played a more important role than travel by
railway (30). Data from the National Bureau of Statistics of
China show that passenger traffic by highways in 2009 was
18.2 times that of railway travel (9). Transportation by high-
way remains an important mode of travel between Chinese
cities and provinces and therefore is a potential target for
controlling any future emerging airborne infections.

We also showed that lower temperature and lower relative
humidity create a higher riskof local transmissionofpandemic
influenza. However, much lower temperature (e.g.,<0�C) did
not facilitate local transmission, as indicated by the daily in-
cidence over categorical temperature in Table 2, and required
inclusion of a quadratic variable in themodel. The observation
of an influence of temperature and relative humidity on pan-
demic influenza is in accordance with animal experiments
on seasonal influenza virus (31). In addition, recent studies
have suggested that absolute humidity could also play an
important role in the transmission of pandemic influenza
and seasonal variations in influenza epidemics in temperate
regions (32–34). As expected, population density further facil-
itated both invasion and local transmission, whereas holiday
periods reduced spread (16, 17, 35, 36).Wealsousedpopulation

size as a correction factor instead of population density, which
led to similar results (not shown).

In conclusion, this is the first complete documentation of
pandemic influenza in mainland China, to our knowledge.
The findings indicate that interventions focused on domestic
travel, population density, and climatic factors could play
a major role in mitigating the public health impact of future
influenza pandemics.
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