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Advances in polymer chemistry over the last decade have enabled
the synthesis of molecularly precise polymer networks that exhibit
homogeneous structure. These precise polymer gels create the op-
portunity to establish true multiscale, molecular to macroscopic,
relationships that define their elastic and failure properties. In this
work, a theory of network fracture that accounts for loop defects
is developed by drawing on recent advances in network elasticity.
This loop-modified Lake–Thomas theory is tested against both
molecular dynamics (MD) simulations and experimental fracture
measurements on model gels, and good agreement between the-
ory, which does not use an enhancement factor, and measurement
is observed. Insight into the local and global contributions to
energy dissipated during network failure and their relation to the
bond dissociation energy is also provided. These findings enable
a priori estimates of fracture energy in swollen gels where chain
scission becomes an important failure mechanism.

chain scission | loop defects | Lake–Thomas theory | gel mechanics

Models that link materials structure to macroscopic behavior
can account for multiple levels of molecular structure. For

example, the statistical, affine deformation model connects the
elastic modulus E to the molecular structure of a polymer chain,

Eaff = 3νkbT

(
φ

1
3
o Ro

φ
1
3R

)2

, [1]

where ν is density of chains, φ is polymer volume fraction, R
is end-to-end distance, φo and Ro represent the parameters
taken in the reference state that is assumed to be the reaction
concentration in this work, and kbT is the available thermal
energy where kb is Boltzmann’s constant and T is temperature
(1–6). Refinements to this model that account for network-
level structure, such as the presence of trapped entanglements
or number of connections per junction, have been developed
(7–11). Further refinements to the theory of network elasticity
have been developed to account for dynamic processes such as
chain relaxation and solvent transport (12–17). Together these
refinements link network elasticity to chain-level molecular struc-
ture, network-level structure, and the dynamic processes that
occur at both size scales.

While elasticity has been connected to multiple levels of molec-
ular structure, models for network fracture have not developed to
a similar extent. The fracture energy Gc typically relies upon the
large strain deformation behavior of polymer networks, making
it experimentally difficult to separate the elastic energy released
upon fracture from that dissipated through dynamic processes
(18–26). In fact, most fracture theories have been developed
at the continuum scale and have focused on modeling dynamic
dissipation processes (27). An exception to this is the theory
of Lake and Thomas that connects the elastic energy released
during chain scission to chain-level structure,

Gc,LT =
Chains
Area

× Energy Dissipated
Chain

= νRoNU , [2]

where NU is the total energy released when a chain ruptures
in which N represents the number of monomer segments in the
chain and U the energy released per monomer (26).

While this model was first introduced in 1967, experimental
attempts to verify Lake–Thomas theory as an explicit model,
as summarized in SI Appendix, have been unsuccessful. Ahagon
and Gent (28) and Gent and Tobias (29) attempted to do this
on highly swollen networks at elevated temperature but found
that, while the scalings from Eq. 2 work well, an enhancement
factor was necessary to observe agreement between theory and
experiment. This led many researchers to conclude that Lake–
Thomas theory worked only as a scaling argument. In 2008, Sakai
et al. (30) introduced a series of end-linked tetrafunctional, star-
like poly(ethylene glycol) (PEG) gels. Scattering measurements
indicated a lack of nanoscale heterogeneities that are charac-
teristic of most polymer networks (30–32). Fracture measure-
ments on these well-defined networks were performed and it
was again observed that an enhancement factor was necessary to
realize explicit agreement between experiment and theory (33).
Arora et al. (34) recently attempted to address this discrepancy
by accounting for loop defects; however, different assumptions
were used when inputting U to calculate Lake–Thomas theory
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values that again required the use of an enhancement factor to
achieve quantitative agreement. In this work we demonstrate that
refining the Lake–Thomas theory to account for loop defects
while using the full bond dissociation energy to represent U yields
excellent agreement between the theory and both simulation and
experimental data without the use of any adjustable parameters.

PEG gels synthesized via telechelic end-linking reactions
create the opportunity to build upon previous theory to establish
true multiscale, molecular to macroscopic relationships that
define the fracture response of polymer networks. This paper
combines pure shear notch tests, molecular dynamics (MD)
simulations, and theory to quantitatively extend the concept
of network fracture without the use of an enhancement factor.
First, the control of molecular-level structure in end-linked gel
systems is discussed. Then, the choice of molecular parameters
used to estimate chain- and network-level properties is discussed.
Experimental and MD simulation methods used when fracturing
model end-linked networks are then presented. A theory of
network fracture that accounts for loop defects is developed,
in the context of other such models that have emerged recently,
and tested against data from experiments and MD simulations.
Finally, a discussion of the local and global energy dissipated
during failure of the network is presented.

Synthesis of PEG Gels
Over the last decade, synthetic methods have improved the
ability to prepare networks with fewer defects; specifically, end-
linked networks have attracted renewed interest (11, 30, 35–38).
Highly resilient networks were reported in 2012 by Crosby, Tew,
and coworkers (31, 36, 39) utilizing the thiol addition across
norbornene click reaction. This resilience was consistent with
homogeneous networks free of nanoscale differences in cross-
link density, which was later confirmed by neutron-scattering
studies. The same A2 + B4 synthetic route to PEG-containing
networks was used in this work and is shown in Fig. 1A. This well-
controlled chemistry results in homogeneous networks where
the mechanical properties can be easily tuned by the intentional
inclusion of defects. Kawamoto et al. (40) quantified the number
of dangling ends in PEG networks cross-linked by azide-alkyne
click reactions, and it was observed that stoichiometric ratios of

cross-linker to functionalized chains resulted in dangling ends on
less than 1% of network junctions. This result shows that defects
in the network of end-linked gels formed with highly efficient
cross-linking reactions, such as the thiol-ene click reactions used
in this study, are primarily loop defects. The characterization of
network elasticity through the equilibrium swelling ratios and
moduli (measured via indentation) for PEG networks swollen to
equilibrium in water is shown in Fig. 1B. The previously estab-
lished relationship between network elasticity and loop defects
(11) indicates good control over loop formation with respect to
φ. Full experimental details are contained in SI Appendix.

Structure of PEG Gels
PEG gels were chosen for this study to minimize losses that
would increase the fracture energy. Their high solvent content
reduces the impact of deformation rate and temperature on en-
ergy dissipation. In addition, the homogeneous network structure
of these gels minimizes stress concentration points, which create
a heterogeneous distribution of stress in front of a crack tip and
increase the energy dissipated (31).

The chain-level molecular structure of gels is characterized
by ν, Ro , and NU. ν can be calculated from polymer volume
fraction φo = {0.043, 0.053, 0.065, 0.083}, Avogadro’s number,
and density of PEG ρ= 1,110 kg/m3 (41). The end-to-end dis-
tance Ro of a chain can be estimated with the Kuhn length b =
0.72 nm, reference volume Vref = 0.1 nm3, monomer volume
VPEG = 0.069 nm3, and the input degrees of polymerization
N = {91, 182, 273} as shown in SI Appendix (36, 39, 42). NU
can be estimated from N and the number of bonds in each
monomer. Each chemical PEG monomer has three backbone
bonds. From the C-C bond dissociation energy (BDE) of 334.7
kJ/mol, U = 1.6× 10−18 J per monomer segment (39). Using
the lower BDE for C-O gives U = 1.4× 10−18 J per monomer,
which is a negligible difference (33).

In addition to chain-level structure, accounting for network
structure, described by the fraction of loop defects, requires an
estimation of network-level features. Kawamoto et al. (40) were
able to experimentally quantify loop density and used this mea-
surement to verify that MD simulations of network formation

Fig. 1. (A) Reaction scheme for telechelic PEG network formation used in this study. The scheme shows an example network with loop defects (red) where
the norbornene-functionalized PEG macromonomer and tetrafunctional thiol cross-linker are shown in blue and yellow, respectively. (B) Equilibrium swelling
ratio Q and solvent content against initial polymer volume fraction φ for a series of PEG gels swollen to equilibrium in water. Inset shows E measured via
indentation against φ for PEG gels in the equilibrium swollen state. (C) Plot showing the fraction of primary loops in the network f1 is inversely proportional
to νRo

3, taken from the simulated networks.
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were able to predict loop density. Building upon these findings,
MD simulations were performed in this work to estimate the
loop fraction for different molecular weights and concentrations.
End-linked networks formed via in silico cross-linking naturally
incorporate loop defects into the network structure, with the
fraction of loops dictated by the initial formation condition.
The number of loops were then counted by tracking polymer
chains that have both functionalized end groups bonded to the
same cross-linking junction. Fig. 1C shows that the fraction of
primary loops in the network f1 is inversely proportional to νRo

3.
This dependence implies that f1 can be tuned by altering either
the input chain length or initial polymer volume fraction φo

(11). Secondary and tertiary loop fractions, f2 and f3, can be
estimated assuming f2 = f3 ≈ 0.75f1 as was found by Zhong et al.
(11) for tetrafunctional networks. The effective network junction
functionality Feff can then be estimated as

Feff − 2

Feff
=

1

2

(
1− 4

3
f1 −

3

8
f2 −

81

4,961
f3

)
, [3]

where the right side of Eq. 3 is the correction factor proposed by
Zhong et al. (11) for a tetrafunctional network with loop defects.
Feff is a number that is less than or equal to the chemical junction
functionality F (maximum [max] number of chains connected to
a cross-linking junction) and greater than 2 to remain a network.
Feff can then be used in the phantom model correction to the
chain length to calculate an effective chain length,

Neff = N
Feff

Feff − 2
. [4]

Fracture of Simulated Networks
Simulated networks are made up of Kremer–Grest-style bead-
spring polymers (43) connected by breakable quartic bonds (44)
embedded in a Lennard-Jones solvent. Networks involving end-
reactive polymers and tetrafunctional cross-links are prepared by
explicitly simulating a cross-linking process so that the resulting
networks have a realistic concentration of defects. Full details
on the methods used to create and characterize simulated net-
works are contained in SI Appendix. The input BDE is defined
by the energy difference between the minimum of the quartic
bond potential and the local maximum that the bond energy
reaches at the moment of chain scission. To induce fracture in
the network, the simulation box was expanded uniaxially while
constant pressure was maintained in the transverse directions
until all bonds lying along a plane were ruptured (Fig. 2A). Cracks

are difficult to define on molecular size scales and thus no initial
crack was prescribed, and rupture of the chains in the simulation
box was taken to be representative of failure in the cohesive zone
in front of a crack tip. During deformation, the system stress was
tracked as a function of the applied strain. This stress response is
plotted against the engineering strain in Fig. 2B for both loading
and unloading of the networks at different maximum strains
εmax (Fig. 2C). The total system energy dissipated due to chain
scission Udissip was taken as the difference in the areas under
the simulated stress–strain curve from the uniaxial loading and
unloading of the network at varying εmax ,

Udissip(εmax ) = V

( ˆ εmax

0

σdε+

ˆ 0

εmax

σdε

)
, [5]

as shown by the shaded region in Fig. 2 B, Inset.
The slope of the normalized energy dissipated Udissip/Neff vs.

total number of broken chains at the corresponding breaking
strains εmax (Fig. 2C) gives the energy released per chain during
fracture due to chain scission. Gc is determined from this simu-
lated energy dissipated per chain in combination with ν and Ro .

Choosing an Estimate for U
In this work U is calculated from the BDE of the backbone bonds,
which is a practice that has recently been called into question
(45). Wang et al. (45) challenged this practice by assuming the
maximum force a polymer chain could withstand and calculating
the elastic energy that a single chain would contain at that point.
This approach suggested that the BDE may overestimate U by a
factor of ∼6 (45). As discussed in SI Appendix, similar reasoning
also led Arora et al. (34) to use a value of U that was significantly
less than the BDE.

In our approach, MD simulations were used to test whether
setting U to be equal to the BDE is reasonable. Udissip/Neff

during cyclic rupture tests is plotted against the number of broken
chains in Fig. 2C. There appears to be a weak dependence on N;
however, the slope of all three chain lengths is well approximated
by a single slope Usim that gives the elastic energy dissipated
per broken bond. The average Usim value measured from all
network systems at different φo and N is 89.4, which is of the
same order as the value of 72.4 from the bond energy potential
used in the simulations. We note that the energy of the bond when
the force is a maximum is ∼20 and any force-coupled reduction
in the energy barrier should naturally arise from our simulations,
which has been seen in simulations of other activated processes
(46, 47). This result suggests that estimating U as being the same

Fig. 2. (A) Visualization at progressively increasing engineering strain ε of a simulated fracture event in end-linked polymer network formed at φo = 0.5
and N = 10. Monomer units are colored by the values of per monomer stress as shown by the color bar. (B) Engineering stress vs. engineering strain
response for an example loading (solid line) and unloading (dashed line) process (φo = 1.0, N = 10). Inset shows the shaded area (purple) representing the
difference in energy dissipated between the loading and unloading process for a given breaking strain. (C) Total system energy dissipated normalized by
the effective chain length (Udissip/Neff ) as a function of the total number of chains broken at different system strains during fracture for networks formed at
φo = 1.0 and N = {5, 10, 20}. The solid line indicates the average slope of normalized energy dissipated vs. number of chains broken for networks formed
at N = {5, 10, 20}.
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order of magnitude as the bond dissociation energy is reasonable
and will thus be the value employed for all the calculations
presented in the following section. Rationalizing this difference
from the arguments of Wang et al. (45) and understanding the
weak residual dependence on N remain outstanding questions.

Comparison to Models
The material properties, E and Gc , should be defined by the
network structure through Eqs. 1 and 2, respectively. As shown
in Fig. 3, this is not the case for both the MD simulations and
experimental values. E measurements display a trend where the
affine deformation model consistently overestimates experimen-
tal values. Note that Gc is measured from monotonic loading
in a pure shear geometry as described in SI Appendix. Lin et al.
(48) have recently shown that the observed fracture energy from
monotonic loading of similar gels agrees with the threshold en-
ergy measured during cyclic loading. Gc measurements display a
trend where the classic Lake–Thomas theory underestimates the
experimental measurements. This trend is consistent with previ-
ous observations and is often attributed to an underestimation of
the size scale of dissipation, which many compensate for with an
enhancement factor (33, 34).

To address the mismatch in predicting E, the affine deforma-
tion model is often modified to soften the constraints of affine
deformation such that junctions can fluctuate about average
positions that deform affinely. These constraints are typically
conceptualized as “phantom” chains constraining the real chains
(49, 50). Zhong et al. (11) recently proposed a molecular model
called real elastic network theory (RENT) that is capable of
predicting E in networks with loop defects. RENT was developed
by modifying the phantom network model to further weaken the
constraints on the polymer chain in a manner consistent with

loop defects. RENT assumes both that Gaussian chain statistics
are valid and that the network junctions on average deform
affinely with the macroscopic deformation of the sample (10) and
estimates the modulus as

ERENT = 3νkbT

(
φ

1
3
o Ro

φ
1
3R

)2(
Feff − 2

Feff

)
. [6]

The RENT expression for the modulus (Eq. 6) differs from the
form presented by Zhong et al. (11) in that the loop correction
creates an effective network junction functionality Feff . As dis-
cussed above,Feff is calculated in a manner that is consistent with
the protocol outlined by Zhong et al. (11). When Feff is equal
to the chemical network junction functionality, F = 4, Eq. 6
collapses to the phantom network model. This reformulation
highlights that RENT can be conceptualized as a correction for
the number of elastically effective connections at network junc-
tions. The plots of simulation and experimental measurements of
E against values from RENT theory ERENT in Fig. 4 show good
agreement with the model once the influence of loops is included.

Building on RENT’s method of accounting for loop defects
when connecting E to network structure, we developed a loop-
modified form of Lake–Thomas theory, which we refer to as
Gc,RENT , that increases the size scale of dissipation based on the
underlying physics of polymer networks,

Gc,RENT = νeffReffNeffU = νRoNU

(
Feff

Feff − 2

) 1
2

. [7]

This model suggests that the fracture energy includes a contri-
bution from the energy released in the network surrounding the

A B

C D

Fig. 3. Plot of E and Gc measured via (A and B) MD simulations and (C and D) indentation and notch tests, described fully in SI Appendix, performed on
a series of PEG gels in the as-prepared state (no additional swelling step) against estimates calculated from the classic statistical affine deformation model
and Lake–Thomas theory, respectively. MD simulation values are given in reduced Lennard-Jones (LJ) units. The black line represents the equivalent point.
The theory consistently overestimates the observed values of E and underestimates those for Gc.
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A B

C D

Fig. 4. Plots of E and Gc against ERENT and Gc,RENT measured during simulations (A and B) and with indentation and notch tests (C and D), described fully in
SI Appendix, measured on a series of PEG gels in the as-prepared state (no additional swelling step). Simulation data are reported in reduced Lennard-Jones
(LJ) units. Good agreement is observed between the measurements and the theory.

fracture plane and that this additional contribution can be ac-
counted for by updating all of the terms in Lake–Thomas theory
with an effective chain. The net effect of this correction results
in a rescaling of the effective fracture plane height. Our model,
while qualitatively similar, has several key differences from the
models recently proposed by Arora et al. (34) and Lin and Zhao
(51). First, Arora et al. (34) construct their model to include
only contributions from real chains within the fracture plane, and
they do not consider energy released in the neighboring network.
Second, Arora et al. (34) empirically set their fracture plane
height to be a constant value of 100 nm and then change the
energy dissipated per chain and the chain density to account for
loop defects. Importantly, Arora et al.’s (34) model predicts a
reduction in fracture energy as the number of defects increases
because these defects reduce the number of chains contained
within the unadjusted fracture plane height. Lin and Zhao (51)
argue that only the energy term, and not the fracture plane height
or chain density, should be corrected, compared to our model
that updates all of these terms. Notably, both our model and that
of Lin and Zhao (51) predict an increase in the fracture energy
with the introduction of loop defects. A comparison between the
correction factor proposed in this work and those by Arora et al.
(34) and Lin and Zhao (51) is shown in SI Appendix. Importantly,
these differences have quantitative impact, allowing our model to
describe experimental data without any fitting parameters.

Our theory proposes that the fracture plane should be defined
by the effective size of the phantom chain (accounting for loop
defects) instead of being limited to the physical size of a single
chain as in classic Lake–Thomas theory. The loop correction de-
creases the estimate for E but increases the estimate for Gc . Both
E and Gc suffer from a reduction in chain density; however, the
increase in the size scale of dissipation offsets this reduction for
Gc . As noted for elasticity theory, Eq. 7 collapses to a phantom

network form of Lake–Thomas theory when Feff → F , which
would occur at high values of νRo

3. Plots of Gc against model
predictions are shown in Fig. 4. The loop-modified Lake–Thomas
theory displays good agreement with the fracture energies mea-
sured from experiments and simulations. This agreement shows
that Lake–Thomas theory can be modified to account for loop
defects in network structure.

While the model fits well for the PEG system where molecular
parameters are known, it remains unclear how precisely these
parameters must be known to accurately model fracture. A sen-
sitivity analysis, presented in SI Appendix, shows that the loop-
modified form of Lake–Thomas theory is most sensitive to errors
in U where a 25% error in estimation leads to a 25% difference
in model values.

Importantly, no fitting parameters or enhancement factors
were used to produce the theoretical estimates of E and Gc . The
strong agreement between theory and measurements presented
above demonstrates that the fracture energy of polymer networks
can be estimated from first principles by accounting for chain-
level and network-level molecular structure when estimating U
with the full bond dissociation energy.

Considering Local and Global Measurements of U
The results presented in the previous sections are predicated
on the assumption that it is reasonable to estimate U using the
full bond dissociation energy. This choice was justified using
global calculations of the energy dissipated in the network during
chain rupture; however, another test of this assumption would
be to consider the local energy dissipated by each bond during
chain rupture. These calculations have been performed and are
described in detail in SI Appendix. We find that the ruptured
bond, regardless of chain length, dissipates a quantity equivalent
to the BDE, but the sum of the bond energies across N bonds
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within a chain at the point of rupture is less than N × BDE . At
first glance, this finding appears to contradict the physical picture
presented in Lake–Thomas theory, where the dissipated energy
per chain is N × U (or N × BDE ). Upon further consideration,
this finding provides insight into the relative contributions of
bond energy and configurational entropy to the dissipated en-
ergy. The estimation of the average bond energy, which accounts
only for the sum of bond energies per chain, neglects entropic
contributions. These contributions have not been quantified in
our current simulations, but the calculations of global energy
dissipated per ruptured bond (Fig. 2C) suggest that Neff closely
accounts for these contributions. A first-principles understanding
of how Neff × UBDE accounts for these contributions would pro-
vide more quantitative links between the single-chain (local) and
network (global) dissipated energy values and BDE. Regardless,
the correlation of our Gc values with the RENT-modified Lake–
Thomas model, with no empirical fitting parameters, suggests an
encouraging path for the next level of understanding network
fracture.

Conclusions
The major finding of this paper is that the fracture properties of
polymer networks can be predicted from molecular parameters
without the need for empirical fitting parameters. This capability
was demonstrated through carefully conducted experiments and
simulations for model end-linked polymer networks. Insight with
regard to the distribution of local and global contributions to

the energy dissipated during network fracture was also gained.
The simulations provide a means of comparing the dissipated
energy during single-chain rupture and the global energy con-
sumption in network fracture. This analysis demonstrates that
the RENT-modified Lake–Thomas model describes the global
energy consumed during network fracture and opens additional
opportunities for understanding the entropic contributions of
network fracture events. Overall, these results are anticipated to
enable significant advances in materials design and use.

Materials and Methods
Materials and methods are described in detail in SI Appendix. This includes
a description of the synthesis of the PEG gels employed in this work. The
procedure used for swelling studies and measurement of the modulus of
gels via indentation and pure shear tests is then described. The procedure
for characterizing fracture energy of gels with pure shear notch tests is then
described. Finally, the procedures used to estimate modulus and fracture
energy of networks in the MD simulations are described. Summary data of
the experiments are also provided in SI Appendix.

Data Availability. All study data are included in this article and/or
SI Appendix.
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