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Periodontitis is considered to be the main cause of tooth loss, which affects about

15% of the adult population around the world. Scaling and root-planning are the

conventional treatments utilized to remove the contaminated tissue and bacteria, but

eventually lead to the formation of a poor connection—long junctional epithelium.

Therefore, regenerative therapies, such as guided tissue/bone regeneration (GTR/GBR)

for periodontal regeneration have been attempted. GTR membranes, acting as

scaffolds, create three-dimensional (3D) environment for the guiding of cell attachment,

proliferation and differentiation, and play a significant role in periodontal regeneration.

Nano-composite scaffolds based on electrospun nanofibers have gained great attention

due to their ability to emulate natural extracellular matrix (ECM) that affects cell

survival, attachment and reorganization. Promoted protein absorption, cellular reactions,

activation of specific gene expression and intracellular signaling, and high surface area

to volume ratio are also important properties of nanofibrous scaffolds. Moreover, several

bioactive components, such as bioceramics and functional polymers can be easily

blended into nanofibrous matrixes to regulate the physical-chemical-biological properties

and regeneration abilities. Simultaneously, functional growth factors, proteins and drugs

are also incorporated to regulate cellular reactions and evenmodify the local inflammatory

microenvironment, which benefit periodontal regeneration and functional restoration.

Herein, the progress of nano-composite electrospun fibers for periodontal regeneration

is reviewed, including fabrication methods, compound types and processes, and surface

modifications, etc. Significant proof-of-concept examples are utilized to illustrate the

results of material characteristics, cellular interactions and periodontal regenerations.

Finally, the existing limitations of nano-composite electrospun fibers and the development

tendencies in future are also discussed.

Keywords: nano-composite, electrospun fibers, synthetic polymers, natural polymers, inorganic components,

periodontal regeneration

INTRODUCTION

Periodontitis causes the progressive destruction of periodontal tissues, and affects about 15% of
the adult population worldwide. The periodontium is composed of gingiva (gum), alveolar bone,
periodontal ligament (PDL), and cementum (Figure 1) (Bottino et al., 2012; Sowmya et al., 2013).
Cementum and alveolar bone are mineralized tissues, and they mainly surround and support
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FIGURE 1 | Compositions of the periodontium. Adapted with permission from

Chen et al. (2010a). Copyright 2010 Elsevier.

the teeth. Gingiva and PDL are fibrous tissues, and PDL, also
called Sharpey fiber, anchors the cementum of tooth root to
the adjacent alveolar bone (Melcher, 1976). Periodontal disease
can lead to loss of teeth. The worldwide prevalence of this
disease has led to great demand for effective therapies. The
ultimate ideal outcome is to reconstruct the original hierarchical
complex architecture of periodontium, including new cementum,
alveolar bone and PDL, which is called periodontal regeneration
(Bosshardt and Sculean, 2009; Ripamonti and Petit, 2009).
Although defected periodontium can be restored partially in
clinics now, complete periodontal tissue regeneration has not
been successfully realized in humans, for reasons like oral
hygiene, defect size, infection and many others (Polimeni et al.,
2006). The weak innate regeneration ability of periodontal
tissues demonstrates the demand for clinical therapies for
periodontium regeneration.

Conventional treatment, open flap debridement (OFD),
provides more access for scaling and root-planning,
which can remove the bacteria and contaminated tissue
from root surface, while leading to the formation of
a poor connection—long junctional epithelium. If left
empty after OFD, epithelial cells and fibroblasts will
firstly fill in the defects, which prevents the sequential
regeneration of true periodontal tissues (Chen et al., 2010a).
Therefore, regenerative therapies, such as guided tissue/bone
regeneration (GTR/GBR) for periodontal regeneration, have
been attempted.

GTR utilizes a barrier membrane to prevent epithelial cells
and fibroblasts from migrating into defected space, and maintain
sufficient space and time for the regeneration of alveolar bone,
cementum and PDL (Zhang et al., 2007; Park et al., 2009). The
non-degradable membranes utilized in clinics mainly include
polytetrafluoroethylene (PTFE) membrane like Cytoplast R©

TXT-200 and titanium-strengthened PTEE membrane like

Cytoplast R© Ti-250, and the main shortcoming lies in its inability
to degrade, requiring a second operation (Gentile et al., 2011).
To avoid additional surgical procedures, attempts have been
made to develop degradable membranes, and the majority
of the membranes on the market are based on synthetic
polymers like poly-caprolactone (PCL), poly lactic acid (PLA),
polyglycolic acid (PGA), and their copolymers, etc. (Coonts
et al., 1998; Donos et al., 2002; Hou et al., 2004), and natural
polymer like collagen (e.g., from porcine skin, Bio-Gide R©)
(Bunyaratavej and Wang, 2001), mainly fabricated by melting
or solvent casting approaches. However, there are inevitable
disadvantages in current GTR membranes, like low attachment
to the adjacent tissues, lack of antibacterial properties, and poor
ability to enhance tissue regeneration (Behring et al., 2008).
In addition, existing biodegradable membranes are weak in
appropriate mechanical properties and controllable degradation
rate (Jung et al., 2013).

GTR can be conducted in combination with bone grafts
to prevent membrane collapse (Figure 2) (Chen et al.,
2010a). Currently in clinics, bone grafts including autografts,
demineralized freeze-dried allografts and bovine derived
xenografts have been used to restore alveolar bone defects.
However, pre-existing curative effects indicate that the
commercial grafts can just fill in the periodontal bone defects,
and perform poorly in promoting hierarchical structure
regeneration because of poor osteoinductivity (Yang et al., 2009;
Reynolds et al., 2010).

The ideal membrane has yet to be developed for enhancing
periodontal regeneration. GTR/GBR membranes, acting as
scaffolds to emulate the ECM, might recruit stem cells and
progenitors from the retaining healthy adjacent alveolar bone,
PDL and blood, and promote the proliferation and differentiation
of these stem cells into fibroblasts, osteoblasts, and cementoblasts
(Larsson et al., 2016). They are required to stay in place for
at least 4–6 weeks with appropriate mechanical, biocompatible
and degradable properties to prevent soft tissue growing into
alveolar bone defects (Veríssimo et al., 2010), and induce
bone regeneration for optimized periodontal regeneration
(Kikuchi et al., 2004).

To obtain membranes with optimal properties, like
biocompatibility, biodegradability, osteoconductivity, even
osteoinductivity and ability to promote cell attachment,
proliferation and differentiation for periodontal regeneration,
electrospinning technology utilizing synthetic or/and natural
polymers has received increasing attention (Bottino et al., 2012;
Liu et al., 2018). Biocompatible electrospun nanofibers have
an innate advantage in mimicking natural ECM, controllable
degradation rate and excellent mechanic properties by regulating
relative parameters. The small pore size of electrospun
membranes can effectively inhibit migration of fibroblasts
across the membrane barrier. To meet multiple requirements
for periodontal regeneration, different polymers and various
additives like active bioceramics, growth factors, proteins, and
drugs can be incorporated into electrospun nanofibers to obtain
ideal properties.

To update the advantage of electrospinning technology
for periodontal regeneration, different components of various
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FIGURE 2 | Schematic illustration of GTR membrane combined with bone grafts therapy for periodontal regeneration. Adapted with permission from Chen et al.

(2010a). Copyright 2010 Elsevier. (A) Periodontal defect with loss of PDL and alveolar bone. (B) Bone grafts in the defected site. (C) GTR/GBR membrane covered on

the grafts. (D) Sewing for closure of the wound.

synthetic and natural polymers as matrixes and inorganic
components as bioactive additives for periodontal regeneration
are reviewed in this paper. Functional growth factors, proteins
for optimized osteogenesis activity, and drugs like antibiotics
for better regulation of inflammatory microenvironment
are described. The existing limitations of nano-composite
electrospun fibers and the future development trends are
also discussed.

ELECTROSPINNING TECHNOLOGY FOR
THE FABRICATION OF
ELECTROSPUN FIBERS

Electrospinning has gained more and more attention for
the reason that it is widely recognized as a powerful tool
for fabricating nanoscale materials with controllable fiber
diameter, porosity, ideal morphology, and optimized surface
characteristics (Lu et al., 2018). Electrospinning utilizes a
polymeric solution or melt to generate nanofibers in high
electrostatic field. Various components can be added to obtain

properties, and random/aligned nanofibers, core-shell structure
can be obtained by modulating electrospinning setups (Figure 3)
(Min et al., 2015; Wu et al., 2018). A typical electrospinning
setup requires four components: a syringe pump (containing
solution/melt/suspension to be electrospun), a spinneret with a
metallic needle (as a capillary), a high-voltage power supply (for
generation of high electrical voltage) and a grounded conducting
collector (static plate or rotatable drum) (Min et al., 2015). A
proper high voltage makes liquid droplet formed by the polymer
solution electrically charged, and the droplet is stretched with
electrostatic forces counteracting the solution surface tension. A
“Taylor cone” can be formed at the key point of voltage, which
is called the threshold voltage, and then a jet of liquid erupts
from the surface (Jiang et al., 2015a). A jet of polymer charged
fluid is pulled toward the grounded collection, with multiple
nanofibers deposited and solidified, during which the solvent
evaporates, leaving dry nanofibers on the collector (Dersch et al.,
2003; Subbiah et al., 2005).

Moreover, to be applied in various fields, basic equipment
can be improved, like using multiple needle syringes to obtain
blended fibers, or rotatable mandrel collectors to fabricate
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FIGURE 3 | Schematic illustration for electrospinning process: (A) Various additives incorporated into polymer matrixes. (B) Uniaxial electrospinning setup. Adapted

with permission from Min et al. (2015). Copyright 2015 Elsevier. (C) Coaxial electrospinning setup. Adapted with permission from Chen et al. (2010b). Copyright 2010

Elsevier. (D) Random nanofibers, (E) Aligned nanofibers. Adapted with permission from Qasim et al. (2017), doi.org/10.1016/j.dental.2016.10.003, by the terms of the

Creative Commons Attribution License (CC BY), http://creativecommons.org/licenses/by/4.0. Copyright 2017 Elsevier. (F) Core-shell structure. Adapted with

permission from Tang et al. (2016). Copyright 2016 Elsevier.

hollow tube-like fibers. Generally, nanofibers made through
electrospinning are unwoven if using a static collector, while
electrospinning with two strips of electrodes or using a
rotatable collector has the ability to fabricate aligned fibers
(Li et al., 2003). Apart from uniaxial electrospinning, core-
shell structure can be fabricated by coaxial electrospinning
for drug loading and functionally graded membrane (FGM)
with multi-functional layers that can be obtained by sequential
electrospinning. To get the ideal physical-chemical-biological
properties of fibrous scaffolds, proper polymer matrixes,
suitable additives, optimized spinning processes (temperature,
humidity, customized accessories, etc.), and appropriate post-
processing should be taken into serious considerations during the
electrospinning process.

Nanofibrous scaffolds possess unique properties, including
high surface area to volume ratio, controllable porosity with
interconnected pores, enhanced protein absorption, activation
of specific gene expression and intracellular signaling, and
promoted cellular reactions (Zafar et al., 2016). With larger
surface to absorb proteins, nanoscale scaffolds present more
binding sites to cell receptors (Stevens, 2005). Several bioactive
components, such as bioceramics and functional polymers
can be blended into matrixes to enhance regeneration ability,
and functional growth factors, proteins and drugs can be
incorporated to regulate cellular reactions and/or modify the
local inflammatory microenvironment.

NANO-COMPOSITE ELECTROSPUN
FIBERS IN PERIODONTAL REGENERATION

Functional electrospun fibers can be obtained by blending
various polymers together or incorporating functional
components into the polymer matrixes. These composites
are charming for reasons that these materials fabricated by
electrospinning approach display good mechanical, bioactive
and biological properties compared with the pure polymer
matrixes. Various types of nano-components are summarized
in Table 1.

Nano-Composite Electrospun Fibers
Blended With Polymer Matrixes
Synthetic polymers have good mechanical properties and
electrospinnability, but poor biological characteristics. It is a
promising way to blend natural polymers with inherently good
bioactive properties with synthetic polymers to promote cellular
reactions in periodontal regeneration.

Polysaccharides, like chitosan, cellulose and alginate, etc.,
are attractive polymers in tissue engineering applications
for their ideal biological properties and easy accessibility.
Chitosan (CS) is a natural polymer, degraded into glycosylated
collagen and chondroitin sulfate in vivo, which is widely
studied for periodontal regeneration due to its excellent
biological performance or, in other words, biocompatibility,
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TABLE 1 | Various types of nano-composite electrospun fibers.

Types of

additives

Bioactive additives Polymer

matrixes

Advantages Directions for future development References

Ceramics Ca-P based

components

HAp nanoparticles PCL; COL; CS;

SF; cellulose; PLA;

GEL; PLGA

Major constituent of natural bone;

promoting osteogenesis

Finding proper proportion to improve

mechanical properties

Bottino et al., 2011; Wu

et al., 2014; Lai et al.,

2015; Tang et al.,

2016; Ao et al., 2017

β-TCP PGS; PCL; CS Ideal resorbability; promoting osteogenesis Improving diameter, porosity, and contact

angle

Masoudi et al., 2017

Ca-Si based

components

BGs PCL; CS; GEL;

COL; PVA

Releasing Ca2+ ions and silicate;

promoting osteogenesis

Enhancing efficacy of osteogenesis activity Zhou et al., 2017b

Oxides ZnO PCL Antibacterial activity; promoting

osteogenesis

Ensuring non-toxicity Nasajpour et al., 2018

CaO PCL Promoting osteogenesis Improving mechanical properties Münchow et al., 2015b

Carbon-

based

components

MWNTs PLGA; PLA Improving the strength and toughness;

promoting osteogenesis

Solving non-resorbability Zhang et al., 2018

GO P34HB Improving mechanical strength;

antibacterial activity; promoting

osteogenesis

Solving non-resorbability Zhou et al., 2017a

Metal

components

AgNPs CS Excellent antibacterial activity Ensuring non-toxicity Shao et al., 2017

AuNPs / Promoting osteogenesis Further exploring AuNPs incorporated

nanofibers

Jadhav et al., 2018

Drugs Antibiotics MNZ; ampicillin;

amoxicillin; tetracycline

hydrochloride; doxycycline

hydrochloride; tinidazole

PLA; PLGA; GEL;

COL

Ideal antibacterial activity Improving releasing profile Reise et al., 2012

NSAIDs Ibuprofen; piroxicam PCL; CS; PVA Anti-inflammation activity Improving releasing profile Batool et al., 2018

Growth

factors

BMP; PDGF COL Promoting osteogenesis Enhancing delivery efficacy and biological

activity

Ho et al., 2017

Proteins AMPs; PLGA; CS; GEL Antibacterial activity Guaranteeing biological activity He et al., 2018b

Fibronectin PLGA Enhancing cell recognition Improving connection method Campos et al., 2014
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biodegradability, and inherent antimicrobial properties (Eugene
and Lee Yong, 2003; Lee et al., 2009). It was reported to improve
osteogenic differentiation by means of enhancing mitogenic
property of osteoblastic cells for bone regeneration (Peter et al.,
2010; Anitha et al., 2014). Amine groups of chitosan offer a
positive-charged surface, and chitosan is a relative hydrophilic
material, thus, being able to promote protein adsorption and cell
adhesion. But it lacks mechanical stability and solubility in water,
and leads to the brittle nature of scaffolds. It can be blended
with different synthetic polymers, like PLA (Shen et al., 2018),
PCL (Masoudi et al., 2017), and bioceramics, etc. to make up for
these shortcomings.

Cellulose, with good biocompatibility and biodegradability,
is easily obtained from the natural world. Electrospun bacterial
cellulose (BC)/hydroxyapatite (HA) nanofibers were prepared to
promote osteogenic differentiation of stem cells (Ao et al., 2017).
With ideal mechanical properties like high tensile strength and
elastic modulus, BC is a promising material in GTR (Zhang
et al., 2018). Alginate, similar in structure to glycosaminoglycan
(GAG), the component of ECM, is one of most useful natural
polymers in the biomedical field. Previous studies indicated
that the addition of alginate could promote cell viability and
osteogenic differentiation of stem cells (Hu and Yu, 2013;
Ataie et al., 2019).

Structure proteins are vital components in ECM, and they are
capable of enhancing the mechanical and biological properties
of nanofibers, which make them promising GBR materials.
Collagen (COL) shows good biological properties like high
biocompatibility, good bio-affinity and resorbability, which can
make up for the drawback of polyester in poor cell response, but it
is insufficient in mechanical properties and dimensional stability
(Liao et al., 2005). It degrades rapidly, and cannot shield the
defected space efficiently because of its quick collapse (Bottino
et al., 2011). Membranes based on collagen need to be further
crosslinked, or blended with other polymers and additives like
nHA (Wu et al., 2014) and bioactive glass (Zhou et al., 2017b)
to overcome these drawbacks. Collagen was also electrospun on
a chitosan basement to fabricate a bi-layered collagen/chitosan
membrane for periodontal GBR (Lotfi et al., 2015).

In addition to collagen, there are many other proteins. Tussah
silk fibroin (TSF), abundant in Arg-Gly-Asp motif and Asp,
Ala, can be used to enhance cell adhesion. The addition of
TSF can also improve mechanical properties like tensile strength
(Shao et al., 2016). Zein, a native protein extracted from corn,
has good biocompatibility and electrospinnability. However, the
hydrophobicity of zein results in low cell affinity. It can be
blended with the hydrophilic polymers, like gelatin, to overcome
this disadvantage (Yang et al., 2017). He et al. (2017) constructed
core-shell nanofibers utilizing zein as shell structure for its
high hydrophobicity. Metronidazole was embedded in the core
structure, and the hydrophobic polymer was used to prolong
drug release.

Gelatin (GEL) has a structure similar to natural collagen, and
possesses bio-signal groups which can enhance proliferation of
various cells (Behring et al., 2008). It has been widely explored
in tissue regeneration for its ideal biocompatibility and low
immunogenicity. However, the high hydrophilicity of gelatin

brings dissolubility in organic solution, thus it is attempted to be
blended with various synthetic polymer like PCL (Xue et al., 2015;
Kim et al., 2016; Ke et al., 2017), PLA (Bottino et al., 2011) and
other natural polymers like zein (Yang et al., 2017) for enhanced
solubility in spinning solvents and better electrospinnability.

For better electrospinnability and mechanical properties,
synthetic polymers are widely utilized in electrospun GBR
membranes. PCL is a biocompatible polyester with extraordinary
mechanical properties, non-toxicity and ease of being
electrospun into nanofibers (Shor et al., 2007). Despite the
advantages described above, there are still some drawbacks. PCL
increases hydrophobicity when the fiber diameter is electrospun
into nanoscale, therefore it lacks in cell-recognizing sites, and
leads to slower degradation rate and a lower expression of
alkaline phosphatase (ALP) (Calvert et al., 2005). Chitosan
blended with PCL provides a feasible strategy to overcome these
disadvantages. The addition of hydrophilic chitosan into PCL
matrix can lower its hydrophobic behavior and improve cell
attachment. Furthermore, good miscibility doesn’t constitute a
requirement of any toxic crosslinking agents to crosslink them,
unlike blends between PCL-gelatin and PCL-collagen (Shalumon
et al., 2013; Nivedhitha et al., 2016; Masoudi et al., 2017).

PLA, as a biocompatible polyester, has been widely utilized in
periodontitis treatment. Previous studies indicate that PLA can
cause tissue inflammatory reaction due to its acidic degradation
products. Negative effects can be exerted on the periodontal
regeneration by acidic environment, and a relatively low pH
value can lead to gingival inflammation (Bickel and Cimasoni,
1985; Patel et al., 2016). In addition, PLA is poor in hydrophilic
property (Li et al., 2006). To overcome these disadvantages,
Shen et al. (2018) embedded chitosan, the natural alkaline
polymer, with PLA by electrospinning approach to improve its
hydrophilicity and reduce acid products.

Co-polymers can take full advantages of both polymers,
and they are extensively studied to explore materials with better
properties. To improve the degradation rate of PLA, glycolic acid,
which has analogous structure and faster degradation rate, can
be incorporated into PLA chains to construct poly (lactide-co-
glycolic acid) (PLGA), and to match repairing period of alveolar
bone after periodontal regeneration therapy (6–12months) (Park
et al., 2009; Zhou et al., 2012). PLGA has the ability to regulate
the degradation rate and improve the mechanical properties of
PLA for bone regeneration (Lyu et al., 2013). However, PLGA
has some disadvantages including weak hydrophilicity, cell
adhesion, and acidic degradation products. Functional proteins
(Campos et al., 2014), cellulose and multiwall carbon nanotubes
(MWNTs) (Zhang et al., 2018) were added into PLGA nanofibers
to improve cellular affinity, bioactivity, osteoconductivity and
reduce aseptic inflammation. Additionally, it was reported
that the incorporation of soluble eggshell membrane protein
(SEP) could improve the electrospinnability and mechanical
strength of PLGA (Jia et al., 2012). Poly (glycolic acid)
(PGA) has good biocompatibility, but fast degradation rate
by hydrolysis effect. While poly (butylene succinate) (PBS)
degrades slower if compared with PGA, it has poor biological
properties. Thus, the novel material poly (butylene succinate-
co-glycolate) (PBSGL), based on PBS and PGA, was synthesized
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by Pajoumshariati et al. to take use to their advantage and make
up for drawbacks (Pajoumshariati et al., 2018). Electrospun
PBSGL membranes, with tunable hydrolytic rate, were
proved to possess better mechanical and biological properties
(Pajoumshariati et al., 2018).

In previous studies, multiple synthetic polymers have
been utilized in electrospinning process for GBR application.
Polyethylene oxide (PEO) could enhance viscosities of polymer
solutions (Qasim et al., 2017), and was woven into nanofibers
with proper morphologies (Hu and Yu, 2013). He et al.
constructed naringin loaded polyvinylpyrrolidone (PVP) as a
core fiber, which possessed good biocompatibility (He et al.,
2018a). Poly (vinyl alcohol) (PVA) has good biodegradability and
non-toxicity, and its films are uniform, thick, and foldable, which
makes it effective in drug delivery system. Farooq et al. (2015)
fabricated novel electrospun chitosan/HA/PVA membrane to
load drug for GBR application.

Various synthetic and/or natural polymers can be blended and
electrospun into nanofibers. Apart from different components
affecting biological properties of nanofibers, alignment,
topological, and mechanical cues might also have influence on
the outcomes of alveolar bone and PDL regeneration. To achieve
aligned PDL regeneration, the effect of the alignment form of
nanofibers on cell bio-reactions has received increasing attention
(Jose et al., 2009).

Jiang et al. (2015b) incorporated oriented biodegradable
poly (caprolactone)-poly (ethylene glycol) (PCE) electrospun
nanofibers mats into porous chitosan to realize the aligned PDL
regeneration. The scaffolds were tailored into cross-sectioned
slices, put against the exposed root surfaces, and then bovine-
derived porous xenograft Bio-Oss was implanted to fill in
the alveolar bone defect to immobilize the scaffolds. The rat
periodontal defects regenerated PDL-like tissue arrangement
after 2 months, and showed that aligned groups had more
concentrated angles whose characters were closer to native PDL.
Higher collagen I/collagen III ratio and more fibrous tissue
formation were observed against random groups. These studies
indicated that aligned nanofibers embedded scaffolds could
enhance infiltration, viability, and expression of periostin of rat
bone marrow mesenchymal stem cells (BMSCs), and led to more
organized arrangement of regenerated PDL (Figure 4).

It is well-known that topological and mechanical cues play
critical roles in the cell line of differentiation of periodontal
ligament cells (PDLCs). PDLCs are exposed to mechanical
pressure caused by occlusal forces. To study the effects of
simultaneous topological and mechanical cues on the cell
alignment and protein expressions of PDLCs, Kim et al. (2016)
cultured PDLCs on aligned and random PCL/gelatin scaffolds,
respectively under mechanical-stressed condition. The results
showed that the cyclic uniaxial stretch and nanofiber alignment
brought effects on differentiation orientation of PDLCs and
led to higher expression of periostin, tenascin-C and TGF-β1
in aligned groups, which indicated the enhanced potential of
PDLCs for ligamentogenesis with aligned fibers. But no unified
conclusion on the effect of cyclic uniaxial stretch and nanofiber
alignment on the reaction of PDLCs was reached, which needs to
be further studied.

Random nanofibers are usually applied in alveolar
regeneration, while aligned nanofibers perform better in
organized PDL regeneration. To realize the simultaneous
regeneration of both alveolar bone and aligned PDL, Qasim et al.
(2017) fabricated a tri-layered membrane (Figure 5) consisting
of random and aligned PEO-doped chitosan nanofibers,
respectively. The aligned layer was designed for ligament
and the random layer for alveolar bone. The histological
results showed a large proportion of cell infiltration but a
disorganized matrix deposition in random fibers group, while
more organized deposited matrixes were observed in aligned
fibers group. Therefore, a tri-layered membrane with different
layer characteristics shows a possible way for simultaneous
alveolar bone and aligned PDL regeneration.

Nano-Composite Electrospun Fibers
Blended With Inorganic Components
Nano-Composite Electrospun Fibers Blended With

Ceramic Components

The strategy of polymer combined with bioceramic components
was inspired by the nature hybrid structure of bone matrix: a
complex composite constructed by organic collagen fibers and
hydroxyapatite (HAp). Bioceramics, such as HAp nanoparticles
and bioactive glasses (BG) can be incorporated into the
electrospun fiber matrixes to promote bioactivity and biological-
physical-chemical properties, such as osteoconductivity,
osteoinductivity, and to emulate the native inorganic bone
components (Heinemann et al., 2010; Yeo et al., 2011;
Qasim et al., 2015). For better alveolar bone regeneration
in periodontium restoration, bioceramics can be incorporated
into natural and/or synthetic polymeric scaffolds, and the
composite scaffolds show enhanced osteoconductivity in
comparison with the single-component polymeric scaffolds.

Blended with Ca-P based components
Hydroxyapatite (HAp) nanoparticle component. HAp, with
molecular formula Ca10(PO4)6(OH)2, is considered as the most
thermodynamically steady synthetic calcium phosphate ceramic.
It is biocompatible, bioactive and osteoconductive (Yang et al.,
2009). It is the major constituent of natural bone, and has
been widely applied in the bone repairing field. However, it
is impossible to use HAp alone as scaffold material due to
its brittleness. A large amount of researches have proved that
HAp incorporated into electrospun nanofibers can improve
their mechanical properties, proliferation and mineralization of
osteoblasts (Prabhakaran et al., 2009; Zhang et al., 2017).

The incorporation of HAp can effectively promote bone
regeneration. Compared with COL/PCL electrospun nanofibers,
the incorporation of HAp nanoparticles could promote the
expression of bone-related markers of PDLCs, such as alkaline
phosphatase (ALP) and osteocalcin (OCN), and it showed
possible applications in GBR in periodontium restoration (Wu
et al., 2014). The stimulation of nHA on the proliferation,
differentiation and mineralization of human mesenchymal
stem cells (hMSCs) was also observed in CS/silk fibroin (SF)
based electrospun fiber membranes, and the nano-composite
electrospun fibers with 30 wt.% nHA were ideal for GBR
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FIGURE 4 | Process of aligned nanofibers embedded scaffold for organized PDL regeneration. Adapted with permission from Jiang et al. (2015b). Copyright 2015

Elsevier.

FIGURE 5 | Schematic diagram of a tri-layered membrane for simultaneous alveolar bone and aligned PDL regeneration. Adapted with permission from Qasim et al.

(2017), doi.org/10.1016/j.dental.2016.10.003, by the terms of the Creative Commons Attribution License (CC BY), http://creativecommons.org/licenses/by/4.0.

Copyright 2017 Elsevier.

(Lai et al., 2015). Ao et al. (2017) added activated native
cotton cellulose into the well-dispersed nHA suspensions and
obtained aligned nanofibers utilizing the high-speed rotating

collector. The result showed that the addition of nHA
could remarkably enhance the mechanical property of the
membrane, and promote cell proliferation. Incorporation of
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FIGURE 6 | Schematic diagram of the FGM for periodontal regeneration. (A)

Membrane used for GBR. (B) The core layer (CL) and the functional surface

layers (SLs), respectively interfaced with bone (n-HAp) and epithelial tissues

(MNZ). Adapted with permission from Bottino et al. (2011). Copyright 2011

Elsevier.

nHA might not lead to cell cytotoxicity or affect nanofiber
alignment adversely.

The functionally graded membrane (FGM) was explored
for tailoring different layer properties to fabricate a material
system with ideal physical, chemical and mechanical properties
to optimize periodontal regeneration (Chen et al., 2013). Bottino
et al. (2011) carried out a sequential multilayer electrospinning
process to design a FGM composed of a core layer and two
surface layers, respectively interfaced with bone and epithelial
tissues for GBR, which showed to be promising in solving
the shortcomings of currently available membranes, like weak
mechanical property and poor osteoinductivity. In thismultilayer
membrane, the core layer was composed of a poly(DL-lactide-
co-ε-caprolactone) (PLCL) layer surrounded by two ternary
PLCL/PLA/GEL blended layers to provide ideal mechanical
properties. The surface layer designed to be interfaced with bone
consisted of PLA/GEL and nHAp to mimic natural collagen-
HAp bone matrix to promote bone regeneration, while the
layer designed to be interfaced with epithelial tissues had the
PLA/GEL as matrix, loaded with metronidazole (MNZ) to
combat periodontal pathogens (Figure 6).

Ideal GTR membranes require various properties, like
barrier ability, bone regeneration activity, and inflammatory
microenvironment regulation, etc. To meet these requirements,
different additives need to be incorporated into the nanofibers,
but for a more effective release and function of these additives,

they should not be blended simultaneously in one single spinning
solution. Coaxial electrospinning technology is a promising
strategy to fabricate core-shell structure, making it possible
to load different additives in core and shell, respectively for
different purposes for regeneration. Tang et al. (2016) fabricated
PLGA/HA (core)-collagen/amoxicillin (shell) membrane by
coaxial electrospinning for GTR. The core consisting of
PLGA/HA was designed to prevent fibroblasts growing into
defected space, and enhance bone regeneration, and at the same
time the shell composed of collagen/amoxicillin was aimed to
enhance wound healing process.

Beta tri-calcium phosphate (β-TCP) component. Beta tri-calcium
phosphate (β-TCP) has been widely applied in bone repair
and GBR membranes for its excellent osteoconductivity and
ideal resorbability, which are vital properties for required bone
regeneration (Yang et al., 2015). It can be blended into various
polymer matrixes to promote physical andmechanical properties
along with cell reactions. Masoudi et al. (2017) fabricated a two-
layered membrane by electrospinning method in which one layer
used poly (glycerol sebacate) (PGS)/PCL and β-TCP for GBR
and another one containing PCL/PGS and chitosan functioned
for GTR. In particular PGS, as an elastomeric polymer, can
provide flexibility for the GTR/GBR membrane (Zaky et al.,
2014). The results suggested that the membrane containing 10
wt.% β-TCP showed an overall better performance in contact
angle, hydrophilicity, mechanical properties, proliferation and
ALP activity of human fetal osteoblasts (hFOBs). Furthermore,
incorporation of chitosan into PCL/PGS nanofibers could
promote GTR barrier properties, including the reduction of fiber
diameter, porosity and contact angle.

Blended with Ca-Si based components
Bioactive glasses (BGs) are a typical group of Ca-Si based
inorganic materials containing SiO2-CaO-P2O5 networks. The
Ca-Si based materials with special components possess excellent
osteoconductivity and even osteoinductivity (Murakami et al.,
2017). BGs have been developed into various kinds of glasses
and glass-ceramics. They performwell in small bone defect repair
and are able to provide appropriate environment for the cultured
cells to grow naturally like HAp. Its dissolution products have
the ability to enhance the cell proliferation and activate the gene
expression of osteoblasts (Xia et al., 2007). Therefore, BGs have
been widely selected as bioactive components to be blended
into various biodegradable electrospun polymers for bone tissue
engineering applications, such as PCL/chitosan (Shalumon et al.,
2013), PCL/gelatin (El-Fiqi et al., 2015) and PVA (Shankhwar
et al., 2016), etc.

A biomimetic fish Col/BG/CS nano-composite electrospun
nanofiber membrane was developed by Zhou et al. (2017b).
The results revealed that the incorporation of BG promoted
cell viability and gene expression of RUNX-2, ALP, OPN
and OCN of PDLCs. Moreover, the in vivo results using the
periodontal defect model in beagle dogs showed that much
more new bone formed and less inflammation presented in the
Col/BG/CS membrane group when compared with the Col/CS
control group.
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Compared with the traditional BG, the mesoporous bioactive
glass nanoparticles (mBGn) possessed excellent ability for
bone tissue regeneration due to prominent bone regeneration
activity. The release of Ca and Si ions from mBGn could
enhance the differentiation of stem cells or progenitors into
osteoblasts (El-Fiqi et al., 2013). El-Fiqi et al. (2015) incorporated
mBGn loaded with osteogenic drug Dexamethasone (DEX) into
PCL/gelatin matrix by electrospinning method. Compared to
the pure biopolymer matrix, the addition of mBGn enhanced
the mechanical tensile strength, elasticity, and hydrophilicity.
Moreover, the sustainable release of DEX further accelerated the
proliferation and osteogenic differentiation of PDLCs.

HA and BG are both widely used for bone regeneration,
but great attention has been devoted to determining which
one performs better. Shalumon et al. (2013) compared the
electrospun composite nanofiber membranes of nHA/PCL/CS
(PCH) and nBG/PCL/CS (PCB) with the same amount (3
wt.%) of nHA and nBG. The results showed that both
nHA and nBG could apparently enhance the ALP activity of
human periodontal ligament fibroblast cells (hPDLFs), while
the incorporation of nBG showed superior performance in the
adhesion and proliferation of hPDLFs and osteoblast like cells
(MG-63 cell lines). A similar phenomenon was also observed
by Sunandhakumari et al. (2018). These studies indicate that,
compared to nHA, mBG performs better in enhancing viability,
attachment, proliferation and differentiation of osteogenic-
relative cells.

Blended with oxide components
Periodontitis is an infective disease, in which bacteria release
toxins, and the periodontium is then destructed. The main
treatment strategy in clinics is topical antibiotics therapy,
but the undesirable effects of antibiotics severely inhibit the
curative effects. Therefore, it is important to control the
release of antibiotics to regulate the inflammatory environment
in periodontal regeneration. Incorporating antibacterial
materials into electrospun nanofibers is a promising way due
to controllable antibacterial function and enhanced bone
regeneration activity at the same time. ZnO particles have
potentials to introduce antibacterial activity and improve the
osteoconductivity (Augustine et al., 2014; Münchow et al.,
2015a). Nasajpour et al. (2018) incorporated ZnO into PCL
by electrospinning method with ZnO concentrations of 0, 0.5,
and 1 wt.%, respectively. In vitro periodontal ligament stem
cells (PDLSCs) culture results indicated that PCL blended with
0.5 wt.% ZnO showed the optimal properties of cell viability,
mineralization ability, and bone-related gene expression of
Runx2, OCN, and ALP. Furthermore, in vitro Porphyromonas
gingivalis culture proved that ZnO incorporated PCL membrane
possessed excellent antibacterial activity. In conclusion, this
novel membrane not only has antibacterial activity, but also has
the ability to improve the osteoconductivity, which can makes
it a promising candidate to regulate inflammatory environment
and promote bone regeneration in periodontal regeneration.

Münchow et al. (2015b) incorporated CaO into PCL by
electrospinning with different concentrations of CaO at 0, 5, 10,
and 15 wt.%, respectively. The mechanical properties reduced

progressively with the increase of CaO concentrations. The
CaO-loaded membranes did not provide consistent antibacterial
activity, while they increased the viability and osteogenic
differentiation of MC3T3-E1. It is important to decide the
appropriate type and concentration of oxide added into
nanofibers during the electrospinning process to guarantee the
biocompatibility of the implanted material.

Nano-Composite Electrospun Fibers Blended With

Carbon-Based Components

Multiwall carbon nanotubes (MWNTs) have received
great attention for their excellent mechanical properties,
biocompatibility and stability for tissue engineering. Zhang
et al. (2018) used bacterial cellulose (BC) membrane as lower
membrane to collect electrospun PLGA/MWNT nanofibers
to fabricate a bi-layered composite membrane, constructed by
long, continuous fibers and weaved into a 3D network structure.
The addition of MWNT remarkably improved the strength and
toughness of the PLGA nanofiber scaffolds. Histological results of
periodontal defect model tests showed that in PLGA/MWNT/BC
composite membrane group, more newly formed PDL was
found adjacent to new alveolar bone, and more collagen fiber
bundles imbedded in the cementum and much more newly
formed alveolar bone could be observed than in control group,
indicating a greater ability to promote periodontal regeneration
using MWNTs as additives.

It is also a strategy to blend MWNTs with HA to bring
higher bioactivity. Mei et al. (2007) designed a PLA/MWNTs/HA
composite GTR membrane in which the MWNTs and HA
nanoparticles uniformly dispersed among the membrane.
Comparing with the single PLA group, the addition of MWNTs
and HA improved degradation property, and accelerated the
adhesion and proliferation of PDLCs, at the same time the
ingrowth of gingival epithelial cells was inhibited.

Graphene oxide (GO), derived from graphene, has received
great attention in bone regeneration for its prominent
mechanical strength, antibacterial property and capability
of promoting osteogenic differentiation (Luo et al., 2015). Zhou
et al. (2017a) fabricated electrospun P34HB/GO nanofibers, and
the results indicated that GO could enhance tensile strength
and Young’s modulus of the membrane, and promote bone
regeneration in vivo.

Nano-Composite Electrospun Fibers Blended With

Metal Components

Various metal nanoparticles with different characteristics
can be incorporated into nanofibers to improve membrane
properties like antibacterial activity and bone regeneration
activity, etc. Silver nanoparticles (AgNPs), which possess
excellent antibacterial properties, show 1.4- to 1.9-times stronger
antibacterial properties compared with silver ions (Ingle et al.,
2008). Moreover, AgNPs have a much lower tendency to
induce bacterial resistance compared with classical antibiotics
(Sondi and Salopeksondi, 2004). Shao et al. (2017) fabricated
a chitosan-based membrane blended with AgNPs. The results
of antibacterial property evaluation revealed that AgNPs could
have sustained antibacterial properties against Porphyromonas
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gingivalis and Fusobacterium nucleatum in a dose-dependent
manner. Furthermore, appropriate amounts of AgNPs added
into chitosan-based membranes did not cause noticeable
cytotoxic effects on PDLCs, and the incorporation of AgNPs did
not exert adverse influences on soft tissue responses. However,
the safety intake amount of the AgNPs should be taken into
consideration seriously.

Gold nanoparticles (AuNPs) were proved to have the potential
to promote the differentiation of hPDLSCs into osteoblasts,
increase their osteogenic-related expression of ALP, OCN, COL1,
and RUNX2 via MAPK signaling pathway (Niu et al., 2017;
Jadhav et al., 2018), while AuNPs incorporated electrospun fiber
scaffolds still require more exploration in bone regeneration.

Nano-Composite Electrospun Fibers
Blended With Drugs, Growth Factors
and Proteins
In the treatment for periodontitis, it is a feasible approach to
incorporate multiple drugs into nanofibers to realize periodontal
regeneration and anti-inflammation simultaneously. Anti-
inflammatory agents can activate signaling cascades and trigger
the healing process. Additionally, drugs loaded electrospun
nanofibers can bring in remarkable characteristics, such as high
loading capacity, high surface area to volume ratio and easy
modulation of drug release profile.

Antibiotics, among the most useful drugs in clinics, are
increasingly utilized in periodontal regeneration. Clinicians view
metronidazole (MNZ) as the gold standard for the treatment
of anaerobic infection, which is the main infection form
of periodontitis. Reise et al. (2012) fabricated MNZ loaded
electrospun PLA membrane, and found that this membrane
could significantly inhibit the viability of periodontopathogenic
species F. nucleatum and P. gingivalis for up to 2 days.
Sequential electrospinning to fabricate FGM (Bottino et al., 2011)
and coaxial electrospinning to construct core-shell structure
(Tang et al., 2016) were utilized to incorporate MNZ into
nanofibers for better drug delivery. Additionally, multiple drugs
were added into nanofibers in attempts to assist periodontal
regeneration, including ampicillin (Schkarpetkin et al., 2016),
amoxicillin (Furtos et al., 2017), tetracycline hydrochloride
(Ranjbar-Mohammadi et al., 2016), doxycycline hydrochloride
(Debridement, 2016), and tinidazole (Khan et al., 2017), etc.

One of the purposes of periodontal treatment is to inhibit
inflammatory reaction. Sustained release of prostaglandin (PG)
during periodontal wound healing process exerts adverse effects
on periodontal regeneration. Non-steroidal anti-inflammatory
drugs (NSAIDs), like ibuprofen (Batool et al., 2018) and
piroxicam (Farooq et al., 2015), can inhibit the activity of
cyclooxygenase (COX), thus blocking arachidonic acid (AA)
being converted into PG.

Growth factors can be used to promote osteogenesis of
alveolar bone. Bone morphogenetic proteins (BMPs) were widely
reported to enhance bone reconstruction in GBR (Shalumon and
Jyh-Ping, 2015). Ho et al. (2017) incorporated platelet-derived
growth factor (PDGF), a potent mitogen, into the nanofibers to
facilitate alveolar ridge regeneration.

Functional proteins are also promising candidates to
improve anti-bacterial and biological properties of materials.
Antimicrobial peptides (AMPs) have a broad spectrum
of antibacterial activity, distinguished from conventional
antibiotics, which may result in bacterial resistance. He et al.
(2018b) incorporated AMP-loaded PLGA microspheres into
electrospun chitosan/gelatin nanofibers, which maintained the
continuing release of Pac-525 to promote anti-bacterial activity.
Fibronectin (FN) is a ligand–integrin affinity protein that can
be found in ECM and cell membranes. It can aggregate adjacent
cells by Arg-Gly-Asp (RGD) motif, and create binding sites to
promote cell recognition. Campos et al. (2014) deposited FN
onto hydrolyzed PLGA nanofibers to promote the bioactivity
of scaffolds.

CONCLUSIONS AND FURTHER
PERSPECTIVES

Periodontitis is a chronic infection disease, which requires
effective treatments for clinical applications. Conventional OFD
can result in only weak epithelium connection, without affecting
native periodontium structure. GTR is a promising method to
promote the complex reconstruction of periodontium. Existing
commercial GTR membranes still have no desirable curative
effects, and have innate disadvantages, like poor mechanical
property, inappropriate degradation rate and weak ability in
promoting hierarchical periodontium regeneration, etc. Novel
GTR membranes are required to possess three main properties
to meet clinic requirements:

(1) Proper degradability, mechanical properties
and biocompatibility;

(2) Optimized alveolar bone and organized PDL
regeneration activity;

(3) Antibacterial activity.

Electrospinning technology is prominently efficient in
the fabrication of GTR membranes. Different polymers
and various additives, soluble in relative solvents, can be
subsequently electrospun into composite nanofibers. Electrospun
nanofibers possess innate advantages in promoting periodontal
regeneration, including high surface area to volume ratio for
higher protein absorption ability, activation of specific gene
expression and intracellular signaling, as well as enhanced
cellular interactions. Furthermore, the small pore size of the
electrospinning nanofiber network can effectively inhibit the
migration of fibroblasts across the barrier, which is vital in
GTR/GBR therapies for periodontal regeneration. To obtain dual
additives incorporated nanofibers with ideal releasing efficiency
and active function, FGM can be fabricated by sequential
electrospinning and core-shell structure can be obtained using
coaxial electrospinning process.

Appropriate biopolymers and additives should be selected
to guarantee their excellent biocompatibility. And biopolymers
and additives in proper proportions make it possible to
regulate the degradation rate of the membranes. To maintain
the membranes in the implanted site for at least 4–6
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weeks and avoid collapsing too early, mechanic properties
(like flexibility) need to be enhanced. Natural polymers (like
chitosan, cellulose, alginate, gelatin, collagen, silk fibroin, zein),
with good biological properties and synthetic polymers (like
PCL, PLA, PLGA, PBSGL), with good mechanical properties
and electrospinnability can be blended to make full use of
both advantages.

Capability to promote periodontal regeneration is one of
the vital properties required for GTR membranes. Electrospun
nanofibers, with inherent ability to mimic natural ECM, perform
excellently in inducing osteo-differentiation. Inorganic ceramics
like nHA, β-TCP, BGs, ZnO, AuNPs and carbon-based MWNTs
are proposed to facilitate the bone regeneration process, and
it is possible to enhance mechanical properties at the same
time. Furthermore, the functional biomolecules like proteins
and growth factors are also utilized to promote regenerative
properties, emulating natural in vivo osteo-differentiation
stimulus. Therefore, aligned electrospun nanofibers can be a
promising alternative in organized PDL regeneration.

Infection is regarded as the main factor inducing
GTR failure in clinics. Adding multiple drugs facilitates
periodontal regeneration and improves the anti-inflammatory
microenvironment simultaneously. Till now, various drugs like
antibiotics (amoxicillin, ampicillin, metronidazole, tinidazole,
doxycycline hydrochloride and tetracycline hydrochloride and
combination of amoxicillin-metronidazole-lidocaine, etc.) and
NSAIDs, functional proteins like AMPs, oxide components
like ZnO and metal nanoparticles like AgNPs, have been
incorporated into electrospun nanofibers to inhibit bacterial
growing and create ideal anti-inflammatory environment.

Regenerating complex hierarchical structure is vital in
periodontal regeneration. Not only alveolar bone should be
reconstructed, but also the structure of aligned Sharpey fibers
anchoring root cementum to adjacent alveolar bone, which is
challenging in hierarchical periodontium regeneration. Although
electrospinning technology might be a promising way in tissue
regeneration, there are still some problems to be further explored.

Electrospinning technology has distinct advantages in
periodontal regeneration. Parameters can be regulated to
control relative properties of electrospun fibers, like fiber
diameter, porosity and pore size, etc. Various materials
including functional polymers and bioceramics, with their
respective advantages and disadvantages in physical-chemical
characteristics, can be utilized for fabrication. Therefore, it is
vital to explore ideal materials in appropriate proportions and
optimized parameters for electrospinning process, depending on
clinical requirements. Pore size can be controlled by regulating
relative parameters during electrospinning process. Relatively
big pore size is beneficial for cell infiltration but unfavorable for
membrane barrier, while relatively small size leads to opposite
characteristic. It is required to strike a balance in pore size, or
acquire a multi-layered membrane, one layer with small pore
size for membrane barrier and another one with relatively big
core size for better cell infiltration.

Electrospun nanofiber membranes usually have a dense inner
packing structure, and pore sizes are too small for cells to
infiltrate into the mats. Although somemethods like salt leaching

can improve cell infiltration in electrospun mats, the results are
not desirable. Therefore, electrospun mats are widely applied
in the GTR field, but not as scaffolds implanted into defected
sites. Additionally, vascularization is one of the vital factors in
tissue regeneration, because this process supplies essential oxygen
and nutrients for cells to proliferate and differentiate. Taken
together, the next step is to evaluate the bone regeneration and
vascularization in vivo.

To maintain the bioactivity and control the releasing profile
of drugs polymer-related parameters including component,
crystallinity and molecular weight of polymer, and drug-
related parameters including molecular weight, drug loading,
and crystallinity of drug should be taken into consideration.
With the increasingly wide utilization of antibiotics in clinics,
bacterial resistance has become a great challenge in bacterial
inhibition, thus it is desirable to explore more types of
drugs to reduce bacterial resistance, and control periodontal
inflammation efficiently. Growth factors degrade quickly in
vivo, which severely limits their clinical efficiency. Release
of the macromolecules based on electrospun nanofibers is
not desirable. To construct effective vehicles for controllable
release of growth factors, and even realize the temporally
distinct release in target period during the regeneration
process, electrospinning technology can be combined with
other approaches.

Apart from scaffolds, stem cells like PDLCs also play
important roles in periodontal tissue engineering. Absence in
adequate healthy stem cells is one of the reasons contributing
to the incapability of instinctive periodontal regeneration. Stem
cells can be cultured on scaffold in vitro and then implanted
in defected sites to provide sufficient progenitors for tissue
regeneration by tissue engineering technology. But the origin
of stem cells, the in vitro culture condition, the viability of
stem cells and clinical effects are challenging for their clinical
applications. The next step is to select proper growth factors
and stem cells, explore appropriate proportions in scaffolds and
improve viability of these stem cells for optimal regeneration
of periodontium.

In conclusion, the electrospinning technology has received
great attention in periodontal regeneration. Although
there still exist some disadvantages and shortcomings to
overcome, it is believed that electrospun nanofibers will
be further explored and widely applied in clinics for their
innate advantages.
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