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Abstract

The risk of dying increases exponentially with age, in humans as well as in many other spe-

cies. This increase is often attributed to the “accumulation of damage” known to occur in

many biological structures and systems. The aim of this paper is to describe a generic

model of damage accumulation and death in which mortality increases exponentially with

age. The damage-accumulation process is modeled by a stochastic process know as a

queue, and risk of dying is a function of the accumulated damage, i.e., length of the queue.

The model has four parameters and the main characteristics of the model are: (i) damage

occurs at random times with a constant high rate; (ii) the damage is repaired at a limited

rate, and consequently damage can accumulate; (iii) the efficiency of the repair mechanism

decays linearly with age; (iv) the risk of dying is a function of the accumulated damage.

Using standard results from the mathematical theory of queues it is shown that there is an

exponential dependence between risk of dying and age in these models, and that this

dependency holds irrespective of how the damage-accumulation process is modeled. Fur-

thermore, the ways in which this exponential dependence is shaped by the model parame-

ters are also independent of the details of the damage accumulation process. These generic

features suggest that the model could be useful when interpreting changes in the relation

between age and mortality in real data. To exemplify, historical mortality data from Sweden

are interpreted in the light of the model. The decrease in mortality seen between cohorts

born in 1905, compared to those born in 1885, can be accounted for by higher threshold to

damage. This fits well with the many advances made in public health during the 20th

century.

Introduction

In many biological organisms, including humans, mortality rate (force of mortality or hazard

rate) is increasing with age [e.g., 1, 2]. This increase is often taken as a defining feature of bio-

logical aging, or senescence. A remarkable empirical finding, first described almost 200 years

ago, is that the rate of increase in mortality, over a substantial age range, is roughly exponential

[3]; see [4] and [5] for review. This exponential relationship is found in different populations
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of humans as well as in a range of other organisms, including fruit flies and nematodes. More-

over, the exponential dependence between age and mortality rate is seen also under experi-

mental conditions where environmental, and to some extent genetic, forces are kept constant

[e.g., 6]. In human populations, the age range over which there is an exponential relationship

between age and mortality rate varies. In Swedish data, mortality is an approximately exponen-

tial function of age from 55 years of age [7, Ch.6].

A prominent idea, often evoked in explanations of why humans and other organisms age

and die, is that damage, that inevitably occur in biological systems, accumulate over time, and

the accumulated damage leads to organ failure, and finally death [e.g., 2, 8–11]. The “damage”

featuring in these accounts is of many different kinds and occur to a range of different struc-

tures, including nuclear and mitochondrial DNA, and proteins [9]. The rate of damage accu-

mulation, and hence of aging, is thought to be a result of the balance between damage and

repair. There are a range of repair mechanisms, the most well studied repair damage to the

DNA [12, 13]. Many of these repair mechanisms become less efficient with age [12], which

implies that the rate of damage accumulation will increase with age.

The aim of this paper is to describe a family of models of damage accumulation and death,

where there is an exponential dependence between rate of dying and age, a dependence that

can be shaped by a small set of parameters having a clear interpretation. The description of

damage accumulation in these models is taken from the mathematical theory of queues, and

the process of accumulation is shaped by the balance between the rate of damage and rate of

repair. The model systems “die” at a fixed rate when the accumulated damage exceeds a thresh-

old, and if the rate of repair decreases in a roughly linear manner with age, mortality rates can

be shown to be exponential functions of age.

In the simplest instantiation of such queuing-based models, there are four parameters that

shape the relation between aging and mortality rate. The way in which mortality rate depends

on the parameters is shown to be independent of the details of how the system is implemented,

suggesting that model systems of this type could be useful in interpreting changes in real mor-

tality data.

The paper is organized as follows. First a model system is studied where damage accumula-

tion is modeled by an M/M/1 queue with time-changing repair (service) rate. This queuing

model is well understood, and the mortality rates are shown to be well approximated by an

exponential function of age. Second, it is shown that the relation between age and mortality is

approximately exponential also when more general queuing models are used to describe the

damage accumulation. Moreover, it is shown that these more general models can be parameter-

ized in the same way as the model based on M/M/1-queues, and the effects of the parameters are

the same in the two models. In the following sections numerical methods are used to study two

cases not covered by the theory. First the case of when rate of damage accumulation exceeds rate

of repair is considered. This is followed by a discussion of how heterogeneity can be introduced

in these models. Subsequently, historical mortality data from Sweden are interpreted in the light

of the damage accumulation models. In the Discussion, these model systems are related to some

previously suggested models of similar type. In the S1 Appendix, numerical simulations are used

to verify that the theoretical approximations accurately describe the dynamics of real systems,

and it is furthermore shown that the assumption of a hard threshold can be relaxed.

Damage accumulation modeled by an M/M/1 queue

In this section, a well-known model of queuing behavior, the M/M/1 queue, is used to imple-

ment a system that ages, and moreover dies with a rate which depends exponentially on age.

For an introduction to queuing theory see, for example, [14].
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Assume that damage to the system occurs according to a Poisson process with constant rate

λ (occurrence of damage corresponds to “arrival of customers” in queuing theory). Whenever

there is damage, a repair process starts, and the time it takes to repair the damage follows an

exponential distribution with rate parameter μ (repair corresponds to “service” in queuing the-

ory). Assume further that there is at most one repair process active at any time, implying that

subsequent damages might accumulate, even if λ<< μ; i.e., there might be a “queue” of dam-

age. This last assumption is made to simplify derivations but can be relaxed without changing

the results qualitatively, i.e., the results in this section hold also for M/M/c queues. Since dam-

age happen at random times, and take random amounts of time to repair, the accumulated

damage, Q(t) say, is a stochastic process on the non-negative integers (“queue length” in queu-

ing theory). If λ< μ then Q has a stationary distribution, and this distribution will play a cen-

tral role in the following. In this M/M/1 model, the stationary distribution of Q only depends

on the ratio of damage to repair rate, r¼
def
l=m (“traffic intensity” in queuing theory), and takes

the following simple form [14, p.62]:

PrðQ � kÞ ¼def PðQ � kÞ ¼ rk:

Fig 1 illustrates samples of Q(t) for three values of ρ and the insets show the corresponding

stationary distributions. It can be seen that as ρ! 1, it becomes more probable that the accu-

mulated damage (Q(t)) takes large values.

To turn this queuing model into a model of aging and death, two properties will be added.

First, the rate of the repair process is made to decrease as a function of age (i.e., time), and, sec-

ond, the risk of “death” will be linked to the accumulated damage Q(t).
To keep derivations simple, the following form for the decrease of μ is assumed:

mðaÞ ¼ m0 � ba: ð1Þ

Here μ0 and β are constants, with μ0 > λ, and a denotes age. Accordingly, the rate of repair is

decreasing linearly with age. Note that μ0 represents the initial repair capacity of the system, at

age zero. If, as is the case for many human populations, the exponential dependence between

mortality and age starts at an age a0 > 0, Eq 1 is replaced by μ(a) = μ0 − β(a − a0)+, where (x)+

denotes the positive part of x.

Fig 1. Sample traces of Q(t) for three different values of ρ (λ = 1000). Insets show the corresponding probability

mass functions.

https://doi.org/10.1371/journal.pone.0233384.g001
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If μ is a function of age, then the distribution of Q(t) will also depend on age, and when μ
changes, it will take some time before the distribution of Q conforms to the stationary distribu-

tion corresponding to the new value of ρ (see Fig 4 for an illustration). In fact, the time it takes

for the stationary distribution to be approached is a rapidly increasing function of ρ [e.g., 15].

To accommodate this fact, it is further assumed that the rate of change of μ is slow compared

to the time needed to approach the steady state distribution. This is achieved when the rate of

damage is high compared to the rate of change of μ, i.e., when λ>> β. With this assumption

in place, the stationary distribution of Q can be parameterized by age, P(Q(a)) as

PðQðaÞ � kÞ ¼ rðaÞk ¼def
l

mðaÞ

� �k

: ð2Þ

To link the accumulated damage to risk of dying, the latter is assumed proportional to the

probability of the accumulated damage exceeding a fixed threshold θ. In other words, the haz-

ard of death at age a, h(a) say, is given by

hðaÞ / PðQðaÞ � yÞ; ð3Þ

where the threshold, θ, is a free parameter of the model system. In the S1 Appendix it is shown

that similar behavior can be obtained with a soft threshold, a sigmoid function. The qualitative

behavior of the system does not depend on the constant of proportionality, and it is assumed

to be equal to one in the rest of this section. In applications, this constant is determined by the

time units used. Given this form of the hazard function, it follows, from standard survival anal-

ysis theory, that the corresponding probability density function, f(a) say, is given by

f ðaÞ ¼ rðaÞyexp �

Z a

a0

rðsÞyds

 !

; ð4Þ

[e.g., 16, Ch.1]. Here a0� 0 to indicate that in real data the exponential dependence between

age and mortality is often a restricted to a range of ages. Now we can state the

Main result. Under these assumptions it follows that the rate of dying increases approxi-
mately exponentially with the age of the system.

To see this, let Δ = μ0 − λ and use that

rðaÞ ¼
1

1þ
D � ba
l

:

Insert this in the expression for the probability of Q(a) (Eq 2) and take logarithms to yield

log PðQðaÞ � yÞ ¼ � y log 1þ
D � ba
l

� �

:

Taylor expansion of the logarithm gives,

log PðQðaÞ � yÞ ¼ y
ba
l
� y

D

l
þ higher order terms: ð5Þ

In the regime that is relevant here, say when P(Q(a)� θ)> 0.01, the higher order terms in the

above expression makes only a negligible contribution and can be ignored (see Fig 2 for an

example). Thus, in this range, the logarithm of P(Q) is very well approximated by a straight

line. In other words, the probability that the accumulated damage exceed a given threshold θ is
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an exponential function of age. Indeed, if c1 = exp(−θΔ/λ), and c2 = θβ/λ, we have

PðQ � yÞ ’ c1 expðc2aÞ; ð6Þ

or equivalently log(P)’ log(c1) + c2 a. Fig 2 illustrates how the error in the approximation

goes to zero as P(Q� θ)! 1.

Note that the assumption of a perfectly linear decrease of rate of repair (Eq 1) can be

relaxed. The decrease does not need to be deterministic as long as the average decrease is

roughly linear.

Effects of changes in parameters

The model system has four parameters: μ0, λ, β, and θ, and the way mortality rate depends on

these can be obtained by taking partial derivatives of P(Q) with respect to the parameters (e.g.,

using Eq 6). These dependencies are illustrated in Fig 3, which shows that changes in μ0 leads

to a proportional change in the hazard rates, i.e., the hazard rate ratios between two systems

that differ only in μ0 are constant. A change in the damage rate (λ) has similar effects (but with

opposite sign), whereas a change in β leads to hazard rate ratios that increase with age, and a

change in θ to hazard rate ratios that decrease with age.

Since the relation between age and log mortality rate is almost linear in this model, it can be

adequately be described by just two parameters (see Fig 2). This implies that the four parame-

ters of the model cannot be uniquely fit to a single set of data. For example, if μ0, λ, and β are

all multiplied by the same constant, P(Q), as given by Eq 6, will not change. However, the

point is not primarily to fit the model to a single set of data, but to interpret changes in mortal-

ity rates between different contexts in terms of parameters with a clear interpretation.

Damage accumulation modeled by a G/G/1 queue

To derive the approximate exponential dependence between age and mortality (Eq 6), it was

assumed that damage happened according to a Poisson process and that the repair times were

exponentially distributed. In this section it is shown that mortality rate is an approximately

exponential function of age also when these assumptions are relaxed.

So, assume that damage occurs according to a stationary stochastic process, where the time

intervals between damages are drawn from a distribution with mean value 1/λ and standard

deviation σD. Assume further that repair times are drawn from a distribution with age-depen-

dent mean value 1/μ(a) and standard deviation σR(a). Let ID and IR denote the square of the

Fig 2. Probability of Q(a)� θ as a function of age for a model with λ = 500, Δ = 50, β = 0.485/365, all in units of

per day, and θ = 80. True values from Eq 2 and approximation from Eq 6.

https://doi.org/10.1371/journal.pone.0233384.g002
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coefficient of variation of these distributions, e.g., ID = (λσD)2. When λ/μ! 1, it can be shown

that the stationary distribution of accumulated damage, for a fixed age, Q(a), is approximately

exponential [e.g., 17, Ch. 8]. Indeed, in this case we have that

PðQðaÞ � yÞ ’ exp � 2y
mðaÞ � l

IRmðaÞ þ IDl

� �

: ð7Þ

To show that this expression entails an approximate exponential dependence between age and

mortality rate, assume that ID does not depend (strongly) on age and use that

mðaÞ � l
IRmðaÞ þ IDl

¼
D � ba

IRðD � baÞ þ ðIR þ IDÞl

¼
D � ba
ðIR þ IDÞl

�
IRðD � baÞ

2

IRðIR þ IDÞlðD � baÞ þ ððIR þ IDÞlÞ
2
:

Fig 3. Effects of changes in the parameters on P(Q� θ), using Eq 2 with λ = 500, μ0 = 50, β = 0.485/365, θ = 80.

https://doi.org/10.1371/journal.pone.0233384.g003
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Next, we show that the second term on the right hand side in the above expression is smaller

than the first term and can be ignored when (μ − λ)! 0. To do this, let r denote the ratio

between the second and the first term, i.e.,

jrj ¼
IRðD � baÞ

IRðD � baÞ þ ðIR þ IDÞl
: ð8Þ

The absolute value used in this expression follows from the assumption that (Δ − βa)� 0. Eq 8

implies that |r|< (Δ − βa)/λ, showing that |r|! 0, when (Δ − βa)! 0, demonstrating that the

contribution of the second term can be ignored when (μ(a) − λ), and hence (Δ − βa) is small.

Consequently, in this regime, we can approximate Eq 7 by

PðQðaÞ � yÞ ’ exp � 2y
D � ba
ðIR þ IDÞl

� �

; ð9Þ

which shows that the probability of damage exceeding a given threshold is approximately an

exponential function of age. Note that Eq 9 express the same dependence between P(Q) and

the model parameters as does Eq 6. Furthermore, since the coefficients of variation is 1 for

both damage and repair distribution in the M/M/1 model above, the approximation in Eq 9

becomes, in this case, identical to that in Eq 6.

To verify that the theoretical approximations derived in this section accurately describe the

behavior of the model systems, direct numerical simulations of two systems were performed

and the results of these were compared to the theoretical approximations (see S1 Appendix).

Fig A2 in S1 Fig shows that the approximation of Eq 9, accurately captures the dependence

between age and hazard rate, in particular as the rate of damage approaches the rate of repair.

To sum up, there are two factors explaining why there is an exponential dependence

between age and mortality rate in these models. The first has to do with the shape of the sta-

tionary distributions of Q(t), geometric in the M/M/1 case, and exponential in the general

case. This is a property of the queuing models used to describe the damage accumulation. The

second factor is that the model systems are working in a regime where μ(a)! λ, i.e., where the

repair rate is approaching the damage rate. In this regime, the stationary distributions have an

approximately linear dependence on age. At this abstract level it is almost self evident that real

biological systems must also be operating in this regime as they age. Indeed, if the rate of repair

would continue to be much higher than the rate of damage, there would not be any accumula-

tion of damage, and consequently, no aging.

Behavior of models when λ > μ
To derive analytical results for the model systems it has, so far, been tacitly assumed that λ< μ,

i.e., that the rate of repair is higher than the rate of damage. When this condition fails, there is

no stationary distribution and the probability of Q exceeding any threshold becomes equal to

one. In other words, damage will accumulate without bounds and the probability that Q will

exceed a fixed threshold θ becomes independent of age. Since stationary theory cannot be used

to derive analytical expressions in this regime, numerical simulations (see S1 Appendix) were

used to illustrate the behavior. Fig 4 shows results for one set of parameters. It is clear that as ρ
gets close to 1, the simulated data starts deviating slightly from the theoretical prediction. This

is a consequence of that it takes more time to reach the stationary distribution when ρ! 1. It

is also clear from Fig 4 that the exponential increase in hazard rate, is seemingly completely

gone when ρ� 1, and the hazard of death becomes, to a first approximation, independent of ρ,

and hence age.
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Heterogeneity

The analytical results considered so far concerns the behavior of a large number of identical

units. In populations of biological organisms it is likely to exist differences between organisms

that affect their longevity. For example, females tend to outlive males in many animal species,

and various experimental manipulations have been shown to systematically alter longevity in

animal models [e.g., 2]. Such heterogeneity can easily be incorporated into the model systems

described here. For example, if the initial level or repair capacity, μ0, is a random variable such

that log(μ0) has a suitable gamma distribution, the resulting model would generate hazard

rates, as a function of age, almost identical to the, so-called, gamma-Gompertz model, in

which heterogeneity is modeled by a proportional scaling of the hazards [e.g., 18, 19]. A per-

haps more principled choice would be to let the initial repair capacity be normally distributed;

this would then instead imply a log-normal proportional frailty model. Another possibility is

to let the damage rate λ vary between units. Analytical results for model systems where param-

eters vary according to a normal distribution have not been derived yet, but using numerical

simulations, some consequences of heterogeneity is studied below.

A prominent feature of the gamma-Gompertz frailty model is that the hazard rates grow

less fast at older ages. The reason for this is that those that survive to older ages tend to have a

lower hazard than the average of the population [e.g., 20]. To show that this effect is also

observed when heterogeneity is introduced in the model systems considered here, numerical

simulations were run in which the initial repair rate μ0 was allowed to vary between units. In

Fig 5, hazard rates from these simulations are compared to the hazard rates from a model

Fig 4. Hazard rates as a function of ρ, i.e., (λ/μ), close to 1. The dashed region represents 95% confidence intervals

(from a Poisson approximation), and the orange line represents predictions from the theory (Eq 6). Model parameters

were: λ = 540, μ0 = 550, β = 0.52/365, θ = 100, and 4.0 × 105 realizations of the systems were run.

https://doi.org/10.1371/journal.pone.0233384.g004
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without heterogeneity. The hazard rates are very similar until age 75 after which the rates in

the population with heterogeneity show a slower increase. Similar results are obtained by

allowing λ to vary (not shown).

Heterogeneity in μ0 or λ makes sense in terms of interpretation. Differences in the repair

capacity between different individuals might be a result of genetic differences, and differences

in rate of damage might be caused by living conditions and/or lifestyle (e.g., smoking, drinking

alcohol). The effects of heterogeneity in other parameters is left for a separate communication.

As a phenomenological model of real data

In this section the model where damage accumulation is governed by an M/M/1 queue is fit to

historical mortality data from Sweden. The purpose is to illustrate how the system can be used

as a phenomenological model of real data, and thereby to aid in the interpretation. A more

detailed analysis and discussion of results will be communicated separately.

The data

Mortality data for persons born in Sweden were obtained from the “Swedish Book of Deaths”

issued by the The Federation of Swedish Genealogical Societies. This is a database compiled

from a range of sources and contains information on time and place of births and deaths for

persons that have died in Sweden since 1860. The coverage is almost complete.

Fig 5. Estimated hazard rates (points) for a model system with heterogeneity in μ0. The gray region represents 95%

confidence intervals (from a Poisson approximation), and the orange line represents hazard rates for a model system

without heterogeneity. Heterogeneity was modeled by sampling values of μ0 from a normal distribution with mean 550

and variance 4. Other model parameters were: λ = 500, β = 0.485/365, θ = 100. Results are based on 1.2 × 105 model

realizations.

https://doi.org/10.1371/journal.pone.0233384.g005
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Birth cohorts were formed for the two years 1885 and 1905, for men and women separately

(men 1885: N = 58044, 1905: N = 64602; women 1885: N = 57873), 1905: N = 63284). These

birth years were selected since it is known that the mortality rates for the 1905 cohort are sig-

nificantly lower than the rates of the 1885 cohort. Hazard rates were estimated with a resolu-

tion of 1 year. To find the models that best fitted these four sets of data, a two-step procedure

was used. First, a linear least squares fit was made to the log hazards for each cohort separately.

The linear fits were restricted to an age range of 55-99 in order to capture the interval in which

there is an exponential increase of mortality in these data, and to exclude older ages where the

uncertainties of the hazard-rate estimates are large. The parameters from the least squares fits

(two parameters per birth year and sex) were subsequently used to find the corresponding

parameters of the model systems. This was accomplished by solving numerically the following

system of equations for λ and θ:

co þ c155 ¼ y log
l

m0 � b55

� �

co þ c190 ¼ y log
l

m0 � b90

� �

;

where c0 and c1 are the intercept and slope from the linear least squares fit to the log hazards.

The other two model parameters, μ0 and β, were held fixed at 550 and 0.485/365. All computa-

tions were made in R [21].

Fig 6 shows hazard rates for the two birth years, for men and women separately. As is well

known, the mortality rates for women dropped for almost all ages (the spikes around 14 years

of age in the 1905 data, and 34 in the 1885 data, are attributed to the Spanish flu which hit Swe-

den in the fall of 1918). For men, mortality rates reduced for ages under 55, but did not change

much for older ages. The lower panels show the data restricted to ages� 55. The exponential

increase in mortality rates is captured by the model (solid lines). The parameters that best

describe these data show that the substantial decrease in hazard rates for women, after age 55,

is accounted for by an increase in threshold θ; the rate of damage, λ, remained almost exactly

the same in the two cohorts (Table 1). This increase in tolerance to damage is tentatively attrib-

uted to the the improvements in health care that occurred during the second half of the 20th

century, e.g., in availability of antibiotics [22], as these improvements must have benefited

those born 1905 more than those born 1885. An explanation for why mortality among men

did not decrease to the same extent, among those aged 55 and older, might be found in the dif-

ferent rates in cigarette smoking in these two cohorts, and consequences thereof. Cigarette

smoking became widespread among Swedish men in the 1940s, and were picked up by the two

birth cohorts to a different extent [23, 24]. For example, according to a 1955 national survey

on smoking and tobacco use, 41% of men aged 50-65 (i.e., including the 1905 birth cohort)

were smoking cigarettes, whereas only 20% of men older than 65 did (i.e., including the 1885

birth cohort). Smoking among women in the corresponding age groups were 20 and 11%

respectively [23]. A more careful investigation of these claims is left for a separate contribution.

However, the fact that the model could account for the substantial change in mortality seen in

women by a change in one sensible parameter is encouraging for further application to real

mortality data.

Discussion

The model systems introduced herein accumulate damage and die with a rate that depends on

the age of the system. If the decrease in the rate of repair is linear with age, mortality will

increase exponentially, similarly to what is observed in many biological systems. It was shown
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that the exponential increase is independent of the interval distributions governing the damage

and repair processes, demonstrating that this is a robust feature of these systems. The exponen-

tial dependence between age and mortality rates in these models is valid in a regime where the

rate of repair becomes similar to the rate of damage as the systems age. Since aging, in both

Table 1. Parameters of the models that best fit the data. The value of the other parameters were held fixed at: μ0 =

550, β = 0.485/365. The R2 column shows the R2 value calculated over the age range 55 to 99.

Birth year Sex λ θ R2

1885 W 498.1 96.1 0.997

1905 W 498.1 107.3 0.995

1885 M 499.0 95.5 0.998

1905 M 498.9 96.7 0.996

https://doi.org/10.1371/journal.pone.0233384.t001

Fig 6. Hazard rates estimated from mortality data from Sweden. Top panels show estimated mortality rates for men and women born 1885 and

1905. Shaded areas show extent of 95% confidence intervals of these estimates. Lower panels show the same data, but restricted to ages� 55. Solid lines

in lower panels show hazard rates from the model fits.

https://doi.org/10.1371/journal.pone.0233384.g006
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animals and humans, is associated with accumulation of damage [e.g., 2, 8–11], it is possible

that the exponential relation between age and mortality also in these cases results from a simi-

lar balance of damage and repair.

In the current form, these model systems have four parameters, all with clear interpreta-

tions: rate of damage accumulation, initial rate of repair, rate of decrease of repair rate, and a

threshold beyond which the accumulated damage can cause the system to die. Although it it

possible to express the dynamics of the model with fewer parameters, such reparameterization

would make the interpretation of the model harder. An important finding is that the way these

parameters affect the relationship between age and mortality is independent of the details of

the accumulation process. In other words, it is a generic feature of these systems. For example,

an increase in the damage rate will lead to a proportional increase of the mortality rate (see Fig

3) in all models of this type. This generic property suggests that similar parameter dependen-

cies might hold also in other (biological) systems. It was, for example, shown that the decrease

in mortality rates among Swedish women born 1905, compared to those born 1885, could be

well accounted for by an increase in just one parameter, θ, the threshold. This example also

illustrates how model systems, where parameters have an intrinsic meaning, can be used to

generate hypotheses about generative mechanisms, something that might be harder to do with

descriptive (statistical) models of the data.

Apart from the exponential dependence between aging and mortality, human mortality

data often show other regularities that a model should arguably be able to reproduce. One

common finding is that the exponential increase in hazard rates levels off at old age, i.e., the

increase in mortality with age, say after 95, becomes less fast (but this is not a universal finding,

see [25]). In the models introduced here, such leveling off is achieved naturally when the rate

of damage is close to, or surpasses, the rate of repair (Fig 4). Heterogeneity in the initial level of

repair provides another way in which this behavior can be generated (Fig 5). Another common

feature of human mortality data is a negative correlation between the intercept and slope when

the log hazard is modeled as a linear function of age (i.e., a straight line), the so-called Gom-

pertz model [26]. In the model systems considered here, such dependency is a consequence of

changes in model parameters that influence both the slope and intercept of the log hazard, see

Eq 6. For example, in populations were mortality rates change through a change in the thresh-

old, there will be a strong negative correlation between the intercept and slopes in the corre-

sponding Gompertz models. Consequently, these models give a functional explanation to why

such a dependency might be found in real populations [c.f., 27].

Below I first discuss some ways in which these models can be extended. Subsequently, two

conjectures concering the relation between parameters of the models and real data are put

forth. Hopefully this makes the connections to real systems more clear. The paper concludes

with a discussion of some related work.

Extensions

There are many ways in which the family of damage-accumulation models considered here

can be extended. One immediate extension would be to consider the accumulated damage, not

as an integer-valued random variable, but a continuous ditto. In fact, the diffusion approxima-

tion underlying Eq 7, is an instance of a reflected Brownian motion [17]. This means that

reflected (at zero) Brownian motion with a drift μ that is increasing as a function of age (ini-

tially μ< 0) provides an alternative model of damage accumulation. If μ is increasing linearly

with age, this model will also lead to exponentially increasing mortality rates. Discrete models

were used in this work because the parameters in these models are more intuitive, however, a

continuous formulation might be preferable for analytical work.
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Another way that the models could be extended would be to allow the rate of repair to

depend on the accumulated damage. Indeed, in real systems, it is likely that the decrease in the

efficiency of repair with age is itself a consequence of damage accumulation. If the rate of mor-

tality would show the same dependency on age in this case is not known, but it is likely that it

would be approximately true for certain types of dependencies.

Yet another extension concerns damage and repair processes that are non-stationary. If

changes in the properties of these processes are slow, compared to the average interval dura-

tion, the results will not change qualitatively [e.g., 28]. Indeed, the linear decrease in μ with

age, used in the models studied herein, is exactly such a slow change. If a model system with

faster changes in damage and repair would still show an exponential dependence between

mortality and age, or not, likely depends on the details of these changes.

To use the model systems studied here to model the mechanisms of aging in a particular

organism would require additional steps. The damage and repair in the model systems should

then be put in correspondence to some processes known to occur in the real system. In biolog-

ical systems accumulation of damage happens at many different levels of organization (e.g.,

organelles, cells, functional modules, organs, etc), at different time-scales, and probably with

different rates; and a biologically realistic model should be explicit about which levels are mod-

eled and how different levels interact. Future work will explore how hierarchical combination

of simple queuing models can be used to build more biologically realistic models of aging.

Two conjectures

The main aim of this work was to show that an exponential increase in mortality rates is a

generic consequence of damage accumulation in an abstract model system. Hopefully this the-

oretical work can contribute to more realistic models of biological mechanisms of aging. How-

ever, even at this abstract level it is possible to establish some tentative connections to real

mortality data and therefore to mechanisms of aging. To this aim I will propose two testable

conjectures regarding how established empirical findings relate to changes in model

parameters.

Two of the four model parameters are related to external conditions of life: the rate of dam-

age accumulation λ, and the threshold θ. It was already shown that the decrease in mortality

among women born in Sweden could be fully accounted for by an increase in the threshold

(Table 1). Exactly how different interventions translate to changes in the threshold is not

known, but an improvement of, and increased access to, health care should correspond to a

higher threshold. Thus, the increase in threshold found here is consistent with the marked

improvements in health care in Sweden during the 20th century. The damage rate λ was consid-

ered constant in the models, however, in real biological systems it is likely that the rate of dam-

age varies due to variations in external conditions. The first conjecture relates to this parameter:

C1 The observed seasonal variations in mortality [e.g., 29, 30] can be accounted for by seasonal

variations in the rate of damage accumulation.

A quantitative test of this conjecture is under way and will be communicated separately.

The other two model parameters, initial rate of repair, μ0, and rate of decay of the repair, β,

supposedly reflect intrinsic properties of the organisms. For example, these are the parameters

that would account for genetic differences in longevity in different populations. The amount

of variation of longevity that can be attributed to genetic factors (i.e., heritability) has been

shown to be in the order of 25 percent [31, 32]. If changes in μ0 or in β best account for these

inheritable differences in longevity is not known. However, by comparing mortality rates of a

population selected, on the basis of family data, to have longer life span, to rates from a
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population selected to have shorter life span, this question can be investigated empirically.

Indeed, the second conjecture is:

C2 The differences in mortality rates between two populations selected to have long and short

life spans, respectively, can be accounted for by a change in μ0.

This conjecture can be tested on data from twin studies, for example by comparing mortality

rates of those who had a twin sibling that died after reaching a given age (80 years say) with

those who’s twin siblings died before this age.

Relations to previous work

A number of model systems previously described also generate mortality rates that increase

more-or-less exponentially with age [e.g., 26, 33–37]. From a mathematical point of view, sev-

eral of these models are similar to the ones presented here in that they also model a state vari-

able that changes due to stochastic perturbations and the system dies when the state variable

exceeds some given level. In fact, one of the models considered by Sacher and Trucco [33] is a

one-dimensional Brownian motion with two absorbing boundaries, very similar, in kind, to the

reflected Brownian motion mentioned above. However, the continuous formulation of that,

and other, models makes it harder to interpret the model parameters in an intuitive way. For

example, in the models that are formulated in terms of diffusion equations [33, 35] there is no

natural connection between the drift term and the diffusion term. In the queuing framework

suggested here, these terms are intrinsically connected since they are derived from a common

underlying model. Furthermore, the discrete queuing-based models considered here arguably

provide a simpler explanation for the exponential relation between age and mortality rates.

All these models, both previously described and the ones introduced in this work, are

abstract in the sense of not being committed to any real system, and therefore it is not very

meaningful to compare them in terms of “best fitting the data” (most of them will fit mortality

data equally well), and the choice of model should instead be dictated by other criteria such as

interpretability and usefulness as a tool to understand and explain data. I hope that the relative

simplicity of the model systems introduced here, together with the ease at which they can be

analyzed, understood, and fit to data, are convincing arguments for them to become useful

complements to existing models.

In the present model there is a state variable, the accumulated damage, Q(t), the value of

which determines the probability of dying. What this state variable might correspond to in a

real aging organism remains to be determined. However, it is clear that it would have to be a

summary measure somehow capturing the state of the organism at a given time point. Interest-

ingly, there is a substantial body of work from Mitnitski, Rockwood and colleagues highly

related to this issue. In a series of papers they have introduced and evaluated what they refer to

as a “frailty index”, a composite measure of frailty, computed from a large number of frailty

indicators [e.g., 10, 38, 39]. They have shown that the frailty index predicts mortality with

higher accuracy than age alone, and have suggested that it could serve as a proxy for biological

age Mitnitski Rockwood2015. In modeling work from the same group, they have used a frame-

work very similar to the one proposed here to model how the frailty index evolves over time

[10, 40]. In particular, they use the average queue length to represent the frailty index. Future

work should explore the connection between Q(t) and frailty index in more detail.
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9. López-Otı́n C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013; 153

(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039 PMID: 23746838

10. Mitnitski A, Rockwood K. Aging as a Process of Deficit Accumulation: Its Utility and Origin. In: Yashin A,

Jazwinski S, editors. Aging and Health—A Systems Biology Perspective. vol. 40. Basel: Karger; 2015.

p. 85–98.

PLOS ONE A generic model of exponential increase in mortality with age

PLOS ONE | https://doi.org/10.1371/journal.pone.0233384 June 4, 2020 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233384.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233384.s003
https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.2307/2061656
https://doi.org/10.2307/2061656
http://www.ncbi.nlm.nih.gov/pubmed/9074828
https://doi.org/10.1098/rstb.2014.0379
https://doi.org/10.1126/science.2392681
http://www.ncbi.nlm.nih.gov/pubmed/2392681
https://doi.org/10.1016/j.cell.2005.01.027
https://doi.org/10.1016/j.cell.2005.01.027
http://www.ncbi.nlm.nih.gov/pubmed/15734677
https://doi.org/10.1016/j.cell.2013.05.039
http://www.ncbi.nlm.nih.gov/pubmed/23746838
https://doi.org/10.1371/journal.pone.0233384


11. Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of dam-

age accumulation in aging: Relevance for clearance of senescent cells. Aging Cell. 2019; 18(1). https://

doi.org/10.1111/acel.12841

12. Gorbunova V, Seluanov A, Mao Z, Hine C. Changes in DNA repair during aging. Nucleic Acids Res.

2007; 35(22):7466–7474. https://doi.org/10.1093/nar/gkm756 PMID: 17913742

13. Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschella G. DNA repair and

aging: the impact of the p53 family. AGING-US. 2015; 7(12):1050–1065. https://doi.org/10.18632/

aging.100858

14. Gross D, Shortie JF, Thompson JM, Harris CM. Fundamentals of Queueing Theory. 4th ed. Hoboken,

NJ: John Wiley & Sons, Inc.; 2008.

15. Abate J, Whitt W. Transient behavior of the M/M/1 queue: starting at the origin. Queuing Syst. 1987;

2:41–65. https://doi.org/10.1007/BF01182933

16. Kalbfleisch JD, Prentice RL. The Statistical Analysis Failure Time Data. 2nd ed. Hoboken, NJ: John

Wiley & Sons; 2002.

17. Newell G. Applications of Queueing Theory. 2nd ed. London: Chapman & Hall; 1982.

18. Vaupel J, Manton K, Stallard E. Impact Of Heterogeneity In Individual Frailty On The Dynamics Of Mor-

tality. Demography. 1979; 16(3):439–454. https://doi.org/10.2307/2061224 PMID: 510638

19. Vaupel JW, Missov TI. Unobserved population heterogeneity: A review of formal relationships. Demogr

Res. 2014; 31:659–686. https://doi.org/10.4054/DemRes.2014.31.22

20. Yashin A, Vaupel J, Iachine I. A Duality In Aging—The Equivalence Of Mortality Models Based On Radi-

cally Different Concepts. Mech Ageing Dev. 1994; 74(1-2):1–14. https://doi.org/10.1016/0047-6374(94)

90094-9 PMID: 7934200

21. R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from: https://

www.R-project.org/.

22. Hemminki E, Paakkulainen A. The Effect of Antibiotics on Mortality From Infectious Diseases In Swe-

den and Finland. Am J Public Health. 1976; 66:1180–1184. https://doi.org/10.2105/ajph.66.12.1180

PMID: 1008114

23. Svenska Gallup Institutet AB. Svenska folkets tobaksvanor. Stockholm: AB Svenska Tobaksmonopo-

let; 1955.

24. Socialstyrelsen. Tobaksvanor i Sverige. Socialstyrelsen; 1986. 1986:9.

25. Gavrilov LA, Gavrilova NS. New Trend in Old-Age Mortality: Gompertzialization of Mortality Trajectory.

Gerontology. 2019; 65(5):451–457. https://doi.org/10.1159/000500141 PMID: 31295741

26. Strehler B, Mildvan A. General Theory Of Mortality And Aging. Science. 1960; 132(3418):14–21.

https://doi.org/10.1126/science.132.3418.14 PMID: 13835176

27. Burger O, Missov TI. Evolutionary theory of ageing and the problem of correlated Gompertz parame-

ters. J Theor Biol. 2016; 408:34–41. https://doi.org/10.1016/j.jtbi.2016.08.002 PMID: 27503574

28. Newell G. Queues With Time-Dependent Arrival Rates. I. Transition Through Saturation. J Appl Probab.

1968; 5(2):436–451. https://doi.org/10.1017/S0021900200110113

29. Rau R. Seasonality in Human Mortality: A Demographic Approach. Berlin: Springer; 2007.

30. Ledberg A. A large decrease in the magnitude of seasonal fluctuations in mortality explains part of the

increase in longevity in Sweden during the 20th century. medRxiv. 2020.

31. Herskind A, McGue M, Holm N, Sorensen T, Harvald B, Vaupel J. The heritability of human longevity: A

population-based study of 2872 Danish twin pairs born 1870-1900. Hum Genet. 1996; 97(3):319–323.

https://doi.org/10.1007/BF02185763 PMID: 8786073

32. Hjelmborg J, Iachine I, Skytthe A, Vaupel J, Mcgue M, Koskenvuo M, et al. Genetic influence on human

lifespan and longevity. Human Genetics. 2006; 119(3):312–321. https://doi.org/10.1007/s00439-006-

0144-y

33. Sacher G, Trucco E. Stochastic Theory Of Mortality. Ann N Y Acad Sci. 1962; 96(4):985–1007. https://

doi.org/10.1111/j.1749-6632.1962.tb54116.x PMID: 14495830

34. Brown K, Forbes W. Mathematical-Model Of Aging Processes. J Gerontol. 1974; 29(1):46–51. https://

doi.org/10.1093/geronj/29.1.46 PMID: 4809664

35. Woodbury M, Manton K. Random-Walk Model Of Human Mortality And Aging. Theor Popul Biol. 1977;

11(1):37–48. https://doi.org/10.1016/0040-5809(77)90005-3 PMID: 854860

36. Economos AC. Rate of aging, rate of dying and the mechanism of mortality. Arch Gerontol Geriatr.

1982; 1:3–27. https://doi.org/10.1016/0167-4943(82)90003-6 PMID: 6821142

37. Gavrilov L, Gavrilova N. The reliability theory of aging and longevity. J Theor Biol. 2001; 213(4):527–

545. https://doi.org/10.1006/jtbi.2001.2430 PMID: 11742523

PLOS ONE A generic model of exponential increase in mortality with age

PLOS ONE | https://doi.org/10.1371/journal.pone.0233384 June 4, 2020 16 / 17

https://doi.org/10.1111/acel.12841
https://doi.org/10.1111/acel.12841
https://doi.org/10.1093/nar/gkm756
http://www.ncbi.nlm.nih.gov/pubmed/17913742
https://doi.org/10.18632/aging.100858
https://doi.org/10.18632/aging.100858
https://doi.org/10.1007/BF01182933
https://doi.org/10.2307/2061224
http://www.ncbi.nlm.nih.gov/pubmed/510638
https://doi.org/10.4054/DemRes.2014.31.22
https://doi.org/10.1016/0047-6374(94)90094-9
https://doi.org/10.1016/0047-6374(94)90094-9
http://www.ncbi.nlm.nih.gov/pubmed/7934200
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.2105/ajph.66.12.1180
http://www.ncbi.nlm.nih.gov/pubmed/1008114
https://doi.org/10.1159/000500141
http://www.ncbi.nlm.nih.gov/pubmed/31295741
https://doi.org/10.1126/science.132.3418.14
http://www.ncbi.nlm.nih.gov/pubmed/13835176
https://doi.org/10.1016/j.jtbi.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27503574
https://doi.org/10.1017/S0021900200110113
https://doi.org/10.1007/BF02185763
http://www.ncbi.nlm.nih.gov/pubmed/8786073
https://doi.org/10.1007/s00439-006-0144-y
https://doi.org/10.1007/s00439-006-0144-y
https://doi.org/10.1111/j.1749-6632.1962.tb54116.x
https://doi.org/10.1111/j.1749-6632.1962.tb54116.x
http://www.ncbi.nlm.nih.gov/pubmed/14495830
https://doi.org/10.1093/geronj/29.1.46
https://doi.org/10.1093/geronj/29.1.46
http://www.ncbi.nlm.nih.gov/pubmed/4809664
https://doi.org/10.1016/0040-5809(77)90005-3
http://www.ncbi.nlm.nih.gov/pubmed/854860
https://doi.org/10.1016/0167-4943(82)90003-6
http://www.ncbi.nlm.nih.gov/pubmed/6821142
https://doi.org/10.1006/jtbi.2001.2430
http://www.ncbi.nlm.nih.gov/pubmed/11742523
https://doi.org/10.1371/journal.pone.0233384


38. Mitnitski A, Song X, Skoog I, Broe G, Cox J, Grunfeld E, et al. Relative fitness and frailty of elderly men

and women in developed countries and their relationship with mortality. J Am Geriatr Soc. 2005; 53

(12):2184–2189. https://doi.org/10.1111/j.1532-5415.2005.00506.x PMID: 16398907

39. Rockwood K, Song X, MacKnight C, Bergman H, Hogan D, McDowell I, et al. A global clinical measure

of fitness and frailty in elderly people. Can Med Assoc J. 2005; 173(5):489–495. https://doi.org/10.1503/

cmaj.050051

40. Mitnitski A, Song X, Rockwood K. Assessing biological aging: the origin of deficit accumulation. Bioger-

ontology. 2013; 14(6, SI):709–717. https://doi.org/10.1007/s10522-013-9446-3 PMID: 23860844

PLOS ONE A generic model of exponential increase in mortality with age

PLOS ONE | https://doi.org/10.1371/journal.pone.0233384 June 4, 2020 17 / 17

https://doi.org/10.1111/j.1532-5415.2005.00506.x
http://www.ncbi.nlm.nih.gov/pubmed/16398907
https://doi.org/10.1503/cmaj.050051
https://doi.org/10.1503/cmaj.050051
https://doi.org/10.1007/s10522-013-9446-3
http://www.ncbi.nlm.nih.gov/pubmed/23860844
https://doi.org/10.1371/journal.pone.0233384

