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A B S T R A C T

Recent years have witnessed the expansion of tissue failures and diseases. The uprising of regenerative medicine
converges the sight onto stem cell-biomaterial based therapy. Tissue engineering and regenerative medicine
proposes the strategy of constructing spatially, mechanically, chemically and biologically designed biomaterials
for stem cells to grow and differentiate. Therefore, this paper summarized the basic properties of embryonic stem
cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. The properties of frequently used
biomaterials were also described in terms of natural and synthetic origins. Particularly, the combination of stem
cells and biomaterials for tissue repair applications was reviewed in terms of nervous, cardiovascular, pancreatic,
hematopoietic and musculoskeletal system. Finally, stem-cell-related biomanufacturing was envisioned and the
novel biofabrication technologies were discussed, enlightening a promising route for the future advancement of
large-scale stem cell-biomaterial based therapeutic manufacturing.

1. Introduction

Stem cell, a particular cell type with self-renewing ability, has the
potential to differentiate into different cell lineages and has gradually
become the most versatile and valuable cell source for organ trans-
plantation, disease treatment and cosmetology. Technically, the term
stem cell can be divided into three specific categories: embryonic stem
cell, induced pluripotent stem cell and adult stem cell, depending on the
cell's developmental potential. All of them play a crucial role in tissue
regeneration. However, some therapeutic defects such as low efficiency
of differentiation protocols, high risk of teratoma formation and poor
immune compatiblility [1] remain unsolved when the stem cells are
used alone. Therefore, a new reliable approach has been applied - the
introduction of advanced biomaterials.

Biomaterials are usually designed to possess appropriate biochem-
ical and biophysical properties - including benign molecular compat-
ibility, high porosity and suitable mechanical strength - mimicking the
microenvironment of natural extracellular matrix (ECM) [2]. Such an
artificial environment may either serve as a bio-adhesive surface for 2D
cell culture, for example hydrogel microarrays used for supporting stem
cell attachment and proliferation [3], or as 3D scaffold for a specific cell
type to interact with and to control their function, thereby inducing the
multi-spatial and temporal cellular processes of tissue formation and

regeneration. Compared to the conventional cell type-specific bioma-
terial [4], the novel stem cell-interacting biomaterial is designed to be
capable of meeting the need of diverse cell types due to the presence of
bioactive cues in the biomaterials [5].

Almost 140 different combinations between stem cells and bioma-
terials are reported in recent studies, and the efficiency and properties
of the cell-material interactions included morphology, vitality, cyto-
toxicity, apoptosis and proliferation [6]. As depicted in Fig. 1, the ul-
timate goal of the study is to identify materials that can regulate cell
function as well as to find the appropriate biomaterial-stem cell com-
bination for human body.

In this review we firstly outlined the various properties of stem cells
and biomaterials, respectively. We then summarized the innovative
application of biomaterial-stem cell interactions into clinical therapy
for tissue and organ regeneration.

2. Stem cell

The primary merit of stem cells is their infinite proliferation com-
petence. Due to their distinct proliferative properties, stem cell has also
been referred as an “undifferentiated” cell type. Whether the stem cells
remain self-renewal or turn into differentiated functional cells is mainly
determined by the intrinsic state or the microenvironment in which
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stem cells reside—niche [7]. Naturally, stem cell keeps the balance
between quiescence and activation. Considering the process of division,
it can be categorized into asymmetric division (a retained stem cell and
a daughter cell) and symmetric division (two daughter cells). Stem cells
can be specified as totipotent stem cells (capable of producing all cell
types of body), pluripotent stem cells (capable of producing all cells of
the embryo), multipotent stem cells (capable of producing cells im-
pacted by the microenvironment) and unipotent stem cells (capable of
producing only one or two types of cells).

In mammals, only zygotes and spores are totipotent, and they will
develop into embryonic lineages and extraembryonic lineages.
Extraembryonic cells form the placenta, whereas the inner cell mass
(ICM) becomes pluripotent, possessing the capacity to give rise to all
cell types of the body. When the ICM is isolated and cultured in vitro, we
can formulate embryonic stem cells (ESCs) that are able to generate
every cell type within the human body [8].

While pluripotent stem cells expand and differentiate, part of them
are maintained locally and have the ability to either self-renew or
generate specialized cell types for a confined tissue, making them
multipotent stem cells. Examples include neural stem cells, hemato-
poietic stem cell and mammary stem cell etc. [9–11], all of which play
important roles in both organogenesis and tissue regeneration. In gen-
eral, most adult stem cells (ASCs) are multipotent and have limited
potency and finite periods of regeneration. ASCs are derived from pa-
tient or their parent without ethical issues and are widely used for
therapy such as leukemia and radiotherapy [12,13]. Unlike the plur-
ipotent and multipotent stem cells, unipotent stem cells have the lowest
differentiation potential along only one lineage, however, the fact that
adult unipotent germline stem cells can give rise to reproducible
germline-derived pluripotent stem cells [14], addresses more potential
to the unipotent stem cells.

At the beginning of human developmental studies, researchers used
cells from teratocarcinomas, a cancer line derived from germ cells [15].
The problems, including out-of-control differentiation into multiple cell

types, called for a more feasible way to find tractable model for
studying human cells and disease in vitro. In following years, scientists
demonstrated that by using different transcription factors (e.g. Oct 3/4,
Sox 2, Klf4 and c-Myc), differentiated somatic cells could be repro-
grammed to become induced pluripotent stem cell (iPSC) [16]. These
iPSCs are reset to the pluripotent state primed for cloning and medical
treatment similar to that of the ESCs. Therefore, the complete plur-
ipotency of those reprogrammed cells broadened the source of stem
cells and promised the future of cell therapy.

A brief summary of ESC, ASC, and iPSC are described in Table 1.

3. Biomaterial for stem cell culture

Biomaterials serve as non-viable materials in medicine to repair
malfunctional tissues and organs. The past five decades have witnessed
tremendous growth in biomaterial science and engineering as a result of
vast investment in developing new products. Biomaterials comprise of
two species: natural and synthetic materials. As discussed earlier, a
specific environment is required for stem cell survival. Therefore, to
mimic the in vivo microenvironment, biomaterials open up a new
avenue for regulating stem cell fate via cell-matrix interactions.
Biomaterial scaffolds can provide cell adhesion sites and maintain the
merits of stem cells. In contrast to traditional 2D culture, the novel 3D
biomaterial scaffolds construct a more satisfactory microenvironment
for stem cells by including both chemical and physical signals across the
ECM. Upon well-designed configuration, scaffolds can directly regulate
cell signaling and trigger lineage-specific differentiation of stem cells by
chemical cues or cell-matrix interactions [24].

With the growing interest in utilizing biomaterial-based approaches,
the properties of the biomaterials were found to affect stem cell lineage
specification. Hence, surface, mechanical, electrical, electrostrictional,
morphological and chemical properties must be precisely considered
when designing a new scaffold [25]. After elaborate selections, the cell
adhesion, cell transportation, cell differentiation and matrix

Fig. 1. Schematic of stem cells and biomaterials application.
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organization can be modulated to direct stem cell differentiation.
Table 2 summarized typical biomaterials for stem cell culture and the
detailed properties of each category will be unfolded in the following
part.

3.1. Natural biomaterials

With the goal of mimicking the 3D ECM to regulate stem cell be-
havior, certain natural biomaterials have been adopted to support stem
cell proliferation and differentiation, including collagen, gelatin, hya-
luronic acid hydrogels, fibrin, glycosaminoglycans (GAGs), alginate,
matrigel, silk and hydroxyapatite (HA), etc. These materials exhibit
specific advantages, including similar mechanical and adhesive prop-
erties as the natural ECM, while batch variability, short degradation
period, difficulty in purification and quality control make up the main
disadvantages of these materials.

Collagen, present in all connective tissue, acts as main component of
ECM with superior biocompatibility, due to the fact that collagen-de-
rived acellular ECM would not cause serious adverse immune responses
[26]. Of note, the biodegradability of collagen makes it a better choice
in skin tissue restoration because of its high rate of degradation [27].
While it is the most abundant protein in animals, collagen is difficult to
obtain for research and clinical treatment, leading to the production of
recombinant collagen for unlimited supply [28]. Moreover, collagen-
based biomaterials are now used for cartilage regeneration treating
osteochondral defects [29] and cornea defects [30–32].

Extracted from cartilage, hyaluronic acid hydrogels (also known as
hyaluronan) serve as a native component and play an essential role in
cartilage homeostasis and biomechanical integrity, including morpho-
genesis, proliferation, cellular signaling and wound repair [33–35].
Hyaluronic acid hydrogels has been used in tissue repair and re-
generation as well as adriamycin-induced cytotoxicity prevention by
forming a bioartificial stem cell niche [35]. Hyaluronic acid hydrogels
were also photo-crosslinked for the application in chondrogenesis
where almost all of the encapsulated mesenchymal stem cells (MSCs)
survived [36].

Gelatin, derived from collagen, is now widely employed as a scaf-
fold material for cartilage tissue engineering due to its biocompatibility,
biodegradability and ability to form hydrogels [37]. Gelatin can be
functionalized with unsaturated methacrylamide to create covalently
bound hydrogels for encapsulating stem cells. Of note, gelatin presents
a better performance in biomechanical and biochemical properties
when compared with other frequently-used hydrogels like alginate and
agarose [38].

Matrigel is a soluble basement membrane extract from Engelbreth-
Holm-Swarm (EHS) murine sarcoma. It is composed of laminin, type IV
collagen, nestin, heparin sulfate glycoprotein, as well as growth factors
and matrix metalloproteinases. At room temperature, matrigel poly-
merizes to form a biologically active 3D matrix, which mimics the
structure, composition, physical properties and functions of the cell
basement membrane in vivo, benefitting the culture and differentiation
of cells in vitro [39–41].

Another classic tissue-derived biomaterial scaffold is made of fibrin,
which presents superior properties for providing a microenvironment
for stem cells. For instance, nerve growth factor β-NGF was covalently
incorporated with fibrin scaffold to produce neurons and oligoden-
drocytes [42,43]. However, plasmin inhibitor had to be co-operated to
avoid unexpected degradation of the 3D scaffold caused by the ESCs
[44].

3.2. Synthetic biomaterials

Although natural biomaterials have favored biocompatibility and
self-existing biosignals, the frail mechanical strength and difficulty in
modification limit their broader applications. To overcome these ob-
stacles, synthetic scaffolds have become a solution. As a designedTa
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component, the structure and relative mass of a synthetic biomaterial
can be controlled at will. Nevertheless, synthetic biomaterials are not
consummate for this application since they lack cell adhesion properties
and biological signals and thus cannot direct cell fate on their own.
Notably, biocompatibility and bioresorbability of the synthetic com-
posite frequently acts as the most essential hurdle in stem cell culture,
and many studies are being conducted to solve these issues.

3.2.1. Synthetic polymers
Polymers serve as the most prevalent type of biomaterials.

Commonly used polymers for stem cell culture include polylactic acid
(PLA), poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL),
polyethylene glycol (PEG), polyhydroxyl ethyl methacrylate (PHEMA)
and polyvinyl alcohol (PVA). Lactic acid polymers have a long appli-
cation history since their invention in the 1700s and are now widely
used in various fields [45]. PLA and PLGA exhibit superiority including
biocompatibility, biodegradability, bioresorbability, low im-
munogenicity and low toxicity over other synthetic polymers, making
them favorable materials as 3D scaffolds for applications in dentistry,
plastic surgery and so on [46]. With surface coating of polydopamine,
PLA has been proven to promote and regulate the human adipose-de-
rived stem cell adhesion, proliferation and differentiation [47]. PCL was
mixed with PLA to improve the thermal resistance and mechanical
properties of engineered tissues [48]. PEG is well accepted for human
MSC osteogenic differentiation, as PEG gels provide abundant inter-
space for nutrient and waste diffusion between stem cells and the ex-
tracellular matrix [49,50]. Moreover, glucosamine-modified PEG hy-
drogel for cartilage restoration has shown an enhanced
biocompatibility, while preventing fibrosis and hypertrophic cartilage
markers [51].

3.2.2. Synthetic ceramics
Calcium phosphate, bioactive glasses and calcium phosphate ce-

ments are common ceramic additives for directing stem cell differ-
entiation in the field of orthopedics, dentistry and bone tissue en-
gineering. Though ceramics have poor degradability and tensile
properties, the superior osteo-inductive and osteo-conductive char-
acteristics and mechanical properties make them popular in bone tissue
engineering. In order to enhance the initial mechanical strength and
provide sufficient stiffness for the bone recovery device, hydro-
xyapatite-based calcium phosphate and bioactive glasses are usually
added to form a composite for optimized osteo-fate directing [52,53].
The addition of bioceramics can be also used to enhance the porosity of
a polymer implant for improved nutrition and waste transport
throughout the scaffolds by introducing micro-/nanoscale voids char-
acteristic of the ceramics [54]. However, the use of a ceramic scaffold
can be sensitive. For example, while calcium phosphate cements pos-
sessed a unique injectable property and brilliant biocompatibility in

vivo, the release of phosphate from an unmodified scaffold lowered
medium pH and hampered cell proliferation in vitro [55]. By sintering
the scaffolds at a very high temperature, Link et al. [55] altered the
calcium phosphate content to a more stable form and the resulting
scaffolds improved the specification of osteoblast-like cells in vitro.
These results indicated that the physiochemical state of bioceramics
played a crucial part in cytotoxicity and both in vitro and in vivo per-
formance needed to be taken into account to comprehensively under-
stand the function of bioceramics for clinical application.

3.2.3. Synthetic metals
Titanium, titanium alloys, stainless steels and cobalt alloys are the

commonly used metals that contribute to bone regeneration, especially
for orthopedic and dental treatments. Stainless steel implants serve as
the most accepted materials because of easy procurement; however, it is
hard to control the cell-metal interactions on the surface of the mate-
rials due to non-specific protein adsorption and cell adhesion, which
leads to sub-optimal integration with the host tissue. A recent study
aimed to overcome these deficiencies by covalently tethering adhesive
peptides to functionalized stainless steel to control stem cell attachment
[56]. Another study for improving the biocompatibility of stainless
steels by utilizing ZrO2 and SiO2/ZrO2 coating showed that the pro-
liferation of stem cells was dependent on stainless steel scaffold surface
properties [57]. Titanium and tantalum demonstrated satisfactory
biocompatibility, anticorrosion and excellent mechanical properties
which could improve MSC multilineage differentiation in vitro by pro-
viding adequate plots for cell adhesion in 3D porous scaffolds [58]. In
addition to increasing cell viability, titanium and tantalum could also
conserve the immunophenotypic features of MSCs [59]. Moreover, a
tantalum film may be deposited onto titanium alloy (Ti6Al4V) by fil-
tered cathodic vacuum arc deposition (FCVAD) to enhance the me-
chanical and anticorrosion properties as well as cytocompatibility for
mammalian bone MSCs [60]. Another innovative study exploited a two-
layer coating comprised of a tantalum layer and a polymer-titanium
hybrid layer on medical devices to enhance the biocompatibility for
MSCs [61]. These results support that the titanium, tantalum, and their
alloys are suitable for the biomaterial scaffolds.

While metallic biomaterials stand out in compressive strength and
fatigue resistance, potential risks exist for current applications include
toxic ion release and non-degradable fixtures. Promisingly, magnesium
(Mg) and its alloys could serve as a novel substrate to settle these issues.
The elastic modulus and compressive yield strength of Mg is similar to
that of natural bone, so it can provide an imitative physical micro-
environment for cell culture. Furthermore, the magnesium cation is one
of the natural trace elements in human body and thus it is relatively
harmless upon degradation [62,63]. However, several parameters for
3D scaffold design in MSC differentiation need to be investigated in
detail, and more efforts are required to unveil the complex mechanism

Table 2
Biomaterials for stem cell culture.

Types Examples Properties Application

Natural biomaterial Collagen, hyaluronic acid, gelatin, laminin,
fibrin

Good biocompatibility Cartilage/bone repair
Less immune responsive Osteochondral repair
Self-existing biosignal Cornea repair
Short degradation period Nerve regeneration
Poor mechanical strength Coating matrix

Synthetic biomaterial Polymer PLA, PLGA, PCL, PEG, PVA, PHEMA, PMMA Easy modification
Properties can be designed

All kinds of stem cell culture and tissue
repair

Ceramic HA, TCP, bioactive glass Good mechanical strength
Poor degradability
Poor tensile property

Additives in bone tissue engineering

Metal Titanium, titanium alloy, stainless steel,
cobalt alloy

Good compressive strength Good fatigue
resistance
Non-degradable
Non-bioadhesive

Orthopedic and dental treatment
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[64] and the functional pathways of Mg and its alloys.

3.2.4. Synthetic graphene
Recently, one of the 2D complanate structure biomaterials, gra-

phene, has come into sight. Graphene has plenty of marvelous char-
acteristics such as adequate reaction area, active surface chemistry and
functional electrical/thermal conductivity [65,66]. Graphene and its
derivatives could serve as a biocompatible and biodegradable pre-
concentration platform for MSC growth and osteogenesis, through firm
non-covalent binding. The differentiation could be modulated by in-
teractions of growth factors and π–π stacking as well as electrostatic
and hydrogen bonding [67]. Interestingly, graphene and its derivatives
could also act as ultrasensitive bio-detection materials for im-
munosensors of the Nanog protein to quantify the pluripotency of stem
cells [68]. There have been studies demonstrating the merits of gra-
phene in stem cell culture; nevertheless, we have to admit that the
mechanism of stem cell-graphene interactions are barely understood
and there is still a demand for further studies to shift the graphene-
based stem cell niche from 2D planes to 3D structures.

4. Biomaterials & stem cell applications

Biomaterials play an essential role in the field of tissue engineering
and regenerative medicine. The diversity and versatility of these bio-
materials have promoted a bloom of development in the field. With the
increasing demand for tissue repair, a plethora of biomaterials are
modified and exploited in various applications with regard to specific
tissue type, as illustrated in Fig. 2 and listed in Table 3. In this section,
detailed applications of novel biomaterials to direct stem cells into
different lineages for tissue repair will be discussed accordingly.

4.1. Nerve tissue

Neurological diseases are a severe threat to human health: about
46.8 million people suffer from dementia and Alzheimer's Disease (AD)
and over 10 million patients were diagnosed with Parkinson's Disease
(PD) [95,96]. However, lacking the ability of spontaneous regeneration,
the repair/reconstruction of nervous system needs to be associated with
therapeutic intervention, in which nerve tissue engineering scaffolds
are designed to direct the formation of new neurons from stem cells in
vitro, for the replacement of damaged or malfunctional nerve tissue.

Natural biomaterials, such as collagen, alginate, gelatin, chitin,
elastin and hyaluronic acid, are widely used scaffold matrices for nerve
tissue repair due to their excellent biocompatibility and cell-adhesive
properties. For example, aligned and oriented 3D collagen hydrogels,
prepared by mechanical strain stimulation after gelation, were proven
to enhance neuronal growth compared to 2D culture and proven to
direct an elongated morphology of both single-cell neuron and nerve
tissue explant [97]. Scaffolds compatible with stem cells are favored as
they hold the potential of directing differentiation of stem cells into any
neural and glial cell type that are required in the treatment. Winter et al.
[69] devised transplantable tubular hydrogel-collagen micro-columns,
mimicking glial tubes, to guide nerve progenitor cells for central ner-
vous system regeneration. Moreover, collagen-based scaffolds have
been shown to preserve in a hypothermic condition for up to 4 days
without affecting cell viability and metabolic activity, indicating a
promising feasibility of clinical and commercial translation of this
system [98]. Nonetheless, natural scaffolds suffer from relatively-weak
mechanical properties, and thus synthetic biomaterials were introduced
into natural scaffold. For example, poly-(L-lactic acid)-co-poly-(3 ca-
prolactone) was mixed with collagen to form a nerve tissue-targeted
nanofibrous scaffold that enhanced the differentiation of MSCs into
neurons [70]. The incorporation of hyaluronic acid doped-poly (3,4-
ethylenedioxythiophene) (PEDOT-HA) nanoparticles into chitosan/

Fig. 2. Different models of biomaterials for various tissue types. A. Conduit-based scaffold for peripheral nerve regeneration; B. Encapsulation for cardiac tissue and
pancreatic islet regeneration; C. Co-culture of MSC and HSC for hematopoietic system repair; D. Bi-modal porous scaffold for bone/cartilage tissue regeneration.
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gelatin (CS/Gel) scaffold led to better mechanical properties and im-
proved substrate conductivity, enhancing the direction of synapse
growth [72].

The expanding demand for nerve injury treatment poses an increase
in the study of synthetic scaffolds, as they can overcome the problems
encountered by traditional allografts and autografts, including limited
availability and immune rejection. Synthetic scaffolds may be rationally
designed and engineered with suitable biodegradability, biocompat-
ibility, porosity, hydrophilicity and mechanical strength for the injured
site. The availability of different synthetic biomaterials with different
functions [99], including poly L-lactic acid (PLLA), PLA, PCL, poly-
glycerol sebacate, PLGA, poly-3-hydroxybutyrate (PHB), polyamide,
polydioxanone, poly-ε-caprolactone-co-ethyl ethylene phosphate
(PCLEEP), poly-D. L-lactide-co-caprolactone (PDLLCL), PVA, poly ac-
rylonitrile-co-methylacrylate (PAN-MA) and a copolymer of methyl
methacrylate and acrylic acid (PMMAAA), has enabled the incorpora-
tion of various neurotropic factors for neuronal repair. Of note, a con-
duit-based technology, a specific scaffold that could provide an ap-
propriate microenvironment for peripheral nerve regeneration over
long nerve gaps or in the case of large-sized nerves, has been an active
research area in both fundamental studies and clinical trials. In this
nerve conduit, the proximal and distal nerve stumps are plugged into
the two ends of the tube respectively, and axons are formed from the
proximal nerve and eventually germinated maturely at the end of the
distal nerve. Due to the restricted growth by encapsulated conduit, the
probability of immune rejection and neuromas formation will decrease.
For example, a gelatin cryogel 3D conduit was shown to recover the
transected peripheral nerve and reduce the risk of scarring other tissues
[100]. A hybrid structure guidance conduit by wrapping PLGA micro-
fiber bundles in a flat micro/nanostructured PLGA membrane was also
shown to increase cell proliferation and promote neurite outgrowth
[71]. In another in vivo test [73], collagen-fibrin conduit rods con-
taining Schwann cells increased axonal differentiation in the midsection
and distal part of the injured nerve after 4 weeks, providing strong
proof of peripheral nerve regeneration using conduit biomaterials.

4.2. Cardiovascular tissue

Cardiovascular disease is a leading cause of death in the world.
Patients suffering from ischemic heart disease including myocardial
infarction (MI), cardiac arrests and stable/unstable angina, increase
significantly along with the progress of tobacco, unhealthy living ha-
bits, overdrinking and other detrimental factors. Tissue engineering
serves as a reliable option to cure these disorders by exploiting bone
marrow-derived stem cells, ESCs, parthenogenetic stem cells and iPSCs.
While direct injection of cardiac stem cells have achieved some progress
in remuscularization of the heart, difficulties in increasing cell survival
and efficient tissue integration [101] call for functional biomaterials to
facilitate heart regeneration. The ideal scaffolds for cardiac tissue
should follow the nature of ECM and porous architecture for

muscularization and vascularization. The porous 3D architecture pro-
vides attachment sites for stem cells, promoting the interactions be-
tween implanted cells and the host tissue for vascularization [102].

The earliest attempt to retrieve normal heart tissue in vitro was at-
tained in 1994 by culturing chicken embryonic heart cells in collagen I
[103]. Afterwards, multiple natural (matrigel, collagen, fibrin, alginate,
hyaluronan, chitosan etc.) and synthetic (peptide-amphiphile nanofi-
bers, PEG hydrogels etc.) biomaterials were developed for treating in-
jured heart [104]. Even without cells, alginate [105], fibrin [106],
methylcellulose [107] and hyaluronic acid [108] themselves were re-
ported to restore heart function. Incorporation of follistatin-like 1 into a
collagen scaffold stimulated de novo cardiomyogenesis after MI in vivo
[109], further indicating that these acellular scaffolds could direct
cardiac fate and become a potential therapy for cardiac repair.

Considering the complexity of heart tissue, stem cell-based scaffold
is more efficient and attractive, and the field has become flooded by the
combination of hPSC-derived cardiomyocytes (CMs) and biomaterials.
Hydrogels were often applied for cardiac repair. Particularly, alginate
hydrogels were used to encapsulate stem cells for CM differentiation
with enhanced cell attachment and survival. Yu et al. [74] produced
Arg-Gly-Asp (RGD, major recognition receptor from adhesive ECM,
blood and cell surface proteins) modified alginate microspheres to en-
capsulate MSCs for cardiac regeneration. While both the encapsulated
MSCs and MSCs alone could induce similar angiogenesis, the former
showed long-term survival in the infarcted area. A study of ECM-de-
rived GFOGER hydrogels mimicking collagen adhesive site revealed
that induced cardiomyogenesis of cardiac progenitor cells was accom-
panied by the reduction of reparative growth factor release in vitro [75].
However, these hydrogels did not rescue cardiac function or reduce
reparative growth factor level in rats undergoing ischemia-reperfusion,
suggesting different mechanisms between in vivo and in vitro tissue re-
generation. Interestingly, 3D PEG hydrogels containing thiosulfate cy-
anide sulfur transferase (TST) were fabricated to catalyze H2S produc-
tion for a minimal ischemic effect and reperfusion damage in the
implant site while stimulating angiogenesis [110]. The increased pro-
liferation of human cardiac progenitor cells suggested the possibility of
endogenous gasotransmitter on cardiac regeneration. Likewise, a plenty
of studies aim to identify reliable stem cell-materials grafts for cardiac
repair, but a lack of mechanistic understanding of cardiac regeneration
slows down the pace in clinic study.

4.3. Pancreatic islet

Diabetes mellitus is one of the major non-communicable diseases
characterized by hyperglycemia. It is a serious and chronic disease that
could further lead to the dysfunction and damage of many other organs,
including eyes, ears, blood vessels, kidneys and nerves. There are three
forms of diabetes - Type 1, Type 2 and Gestational diabetes. Type 1
diabetes is mainly caused by the failure of pancreas to produce insulin
due to the loss of β cells from an autoimmunity, and therefore, the

Table 3
Biomaterials used in different tissue types for specific functions.

Tissue type Biomaterials Stem cell types Applications Ref.

Nerve tissue Collagen Nerve progenitor cell Central nerve regeneration [69]
Poly (L-lactic acid)-co-poly-(3 caprolactone) MSC To enhance differentiation into neurons [70]
PLGA KT 98 To increase proliferation rate [71]
PEDOT-HA PC12 To enhance synapse growth [72]
Collagen-fibrin Schwann cell Peripheral nerve regeneration [73]

Cardiovascular tissue Alginate MSC To encapsulate cells [74]
RGD peptide MSC To promote cell attachment [74]
GFOGER hydrogel Cardiac progenitor cell To induce cardiomyocyte differentiation [75]

Pancreatic islet Alginate, agarose, PEG, PLGA, PLLA Any iPSC, ESC To encapsulate cells [76–79]
Hematopoietic system Tropoelastin HSC To enhance proliferation [80]

Collagen HSC To modulate matrix elasticity [81]
Collagen, PEG, PCL HSC, MSC To support co-culture of HSC and MSC [82–84]
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regeneration of insulin-producing β cells holds the key in Type 1 dia-
betes treatment. Conventional methods including allo- and xeno-pan-
creatic islet transplantation often encounter with insufficient donors or
severe immune rejection. Alternatively, stem cell-derived pancreatic β
cells are considered as an unlimited source, and autologous patient-
specific iPSC-derived β cells are supposed to generate minor im-
munoreaction. Furthermore, semi-permeable porous scaffolds provide
better seeding and a protective microenvironment for pancreatic cells/
tissues. In conclusion, incorporation of pancreatic progenitor cells into
biomaterials for grafting without immunosuppression becomes an ideal
method in future diabetes treatment.

Encapsulation of islet cells in biomaterials, in which the en-
capsulated cells were isolated from the immune system, was widely
investigated to avoid auto-immune attack. Both Bratlie et al. [103] and
Scharp et al. [102] reviewed structural approaches for islet encapsula-
tion, and summarized the prevalent use of alginate, agarose, tissue-
engineered chondrocytes, polyacrylates and PEG to produce macro-/
micro-/nano-devices, conformal coating and layer-by-layer coating for
encapsulation. Upon linked with directing factors, these scaffolds could
specify pancreatic fate. A recent study invented an activin A-grafted
gelatin-PLGA nanoparticle (PLGA NP) scaffold to induce endoderm
formation from iPSCs in the precence of 2-(4-morpholinyl)-8-phenyl-
4H-1-benzopyran-4-one (LY294002) prior to pancreatic differentiation
[78]. This pioneering work proposed a guidance for the production of
pancreatic cells from iPSCs in polymer scaffolds. For example, stem cell-
derived β cells were encapsulated in TMTD (triazole-thiomorpholine
dioxide) modified alginates for in vivo glycemic control for 174 days
without exploiting imunosuppression [79].

Numerous pre-clinical trials using encapsulated stem cell-derived
human β cells were performed in non-immunosuppressed diabetic an-
imal models, yet few of them were successfully confirmed in clinical
human patients for the past three decades [111]. Scharp and Marchetti
[76] owed the difficulties in encapsulated islet clinical therapy to the
following cues: a) poor translation of treatment results obtained from
rodents to human, b) acute loss of encapsulated cells due to hypoxia, c)
transplantation antigen sensitization to the implant recipient, d) not
enough cell quantities implanted. While the first reason could only be
solved upon plenty of clinical human trials, the other three could be
overcome by proper design of the scaffold/cell composite. Most of the
unsuccessful islet implantations were caused by the low survival rate of
the cells due to poor vascularization around the implanted site [112].
Proper vascularization between encapsulated cells and host tissue can
be achieved by the directing function of engineered porous tunnels, or
by co-encapsulation of vascular cells [113,114]. Kaufman-Francis et al.
[115] co-cultured pancreatic islets, human umbilical vein endothelial
cells (HUVECs) and human fibroblast cells on highly porous PLLA/
PLGA scaffolds, leading to an increased insulin secretion by 50%, an
enhanced islet survival and the formation of functional tube-like en-
dothelial vessels.

4.4. Hematopoietic system

The hematopoietic system, comprised of bone marrow, spleen,
tonsils and lymph nodes, serves as a blood producer. Hematopoietic
stem cells (HSCs), residing in the bone marrow (main source) and cord-
blood, hold the proliferation and immune potential to generate all
cellular components to maintain the blood circulatory function. This
renders HSCs as an essential core for the transplantation treatment of
hematopoietic disorders and cancers [116]. However, the fate of a long-
term HSC includes four stages: self-renewal, differentiation, emigration
from bone marrow to blood and apoptosis [116]. Therefore the orga-
nization of hematopoiesis signaling pathways is rather complicated.
Cell to cell, cell to cytokine and cell to ECM interactions, as well as the
microenvironment parameters, such as O2 concentration, permeability,
transcription factors, cytokines, stability, etc., all devoted to the ex vivo
expansion of HSCs [117], shaping great challenges for the design of

biomaterials for hematopoietic system therapy.
HSCs were considered strongly related to bone component and Calvi

et al. [118] confirmed that osteoblastic cells were the regulatory com-
ponent in the HSC niche in vivo. In this sense, the ECM properties of
HSC were quite similar to that of osteoblasts. Nonetheless, while stiff-
ness was widely studied for bone scaffolds, recent research revealed an
emphasized impact of elasticity for the HSC expansion in biomaterials.
Hoist et al. [80] found that elimination of elasticity sensing ability of
HSCs could neutralize the proliferation enhancement on elastic bio-
materials. More recently, Choi et al. [81] fabricated collagen-coated
polyacrylamide scaffolds and discovered the spreading and morphology
of hematopoietic stem and progenitor cell (HSPC) were responsive to
the substrate elasticity, validating the important role of matrix bio-
physical properties in HSC survival. In addition, a 3D structure was
proved to be more beneficial for HSC expansion as compared to 2D
culture, since higher ratio of surface area to volume provided more
efficient cellular interactions [119].

Apart from substrate mechanical properties, mesenchymal stromal
cells also played a crucial role in HSC function [120], and therefore
attempts to co-culture HSC with stromal cells were broadly studied.
Collagen [82], PEG [83] and PCL [84] scaffolds were fabricated for the
co-culturing of HSC with stromal cells, regardless of their source, all of
which led to an improved proliferation of HSCs. Stromal cells were
often conceived as support biomaterial, mimicking the biological
component of HSC niche in bone marrow. Biological cues were further
incorporated in the scaffolds to direct HSC activity. Mahadik et al. [121]
used a methacrylamide-functionalized gelatin hydrogel to covalently
immobilize stem cell factors (SCF), which could selectively maintain
HSC multipotency. The incorporation of SDF-1α into PLGA scaffolds
was shown to improve HSC recruitment and reduce subsequent in-
flammatory responses [122]. In conclusion, specific biomaterials can be
tuned mechanically, chemically or biologically to meet the criteria for
the hematopoietic therapy.

4.5. Bone/cartilage tissue

Nowadays, aging and bone injuries have led to a prominent problem
of bone tissue loss. To address the clinical demand, a plethora of efforts
have employed tissue engineering approaches, comprised of biomater-
ials and stem cells, to promote bone and cartilage regeneration
[123–125].

Different cell types have been investigated for bone repair.
Straightforwardly, ESCs were cultivated on 3D osteoconductive scaf-
folds to form large and compact bone constructs primed for trans-
plantation [126]. Osteogenic potential of bone marrow-derived me-
senchymal stem cell MSC was also validated to become any bone/
cartilage component, including osteoblasts, chondrocytes, myocytes
and adipocytes [128]. While whether or not the age of the MSC donor
affects the cell viability and functionality still under debate [129,130],
the ‘aging’ of MSC itself in terms of reduced proliferation and differ-
entiation capacity [129], and its limited quantity in a body restricts its
large-scale applications. On this account, iPSCs [131] or adipose-de-
rived stem cell (ADSC) [132] were identified as a more reliable cell
source for bone regeneration. iPSCs surpasses the limitation of cell
quantities and age and may be applied to three strategies for bone re-
generation [131]: a) generating MSCs through an embryoid body (EB);
b) generating MSCs without an EB; c) generating bone tissue bypassing
MSC or EB. iPSCs were demonstrated to have similar or even superior
osteogenic capacity to MSC. On the other hand, ADSC is a specific type
of MSC but with distinct advantages over those derived from bone
marrow: better angiogenic and osteogenic properties, higher pro-
liferation and differentiation capacity, larger percentage of stem cell
progenitors in tissue [133–135] and most importantly, less affected by
the donor age [132,136]. The elevated angiogenesis and osteogenesis of
ADSCs rendered better performance in a pre-clinical bone allografting
trial [137].
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The basic design of biomaterials for bone/cartilage tissue en-
gineering emphasizes pore morphology and structure to direct osteo-
differentiation, which happen to be the most crucial characteristics of a
scaffold. Cells tend to attach, proliferate and migrate on pores larger
than 100 μm, and pores smaller than 50 μm are beneficial for nutrient
and waste transport [138,139]. Salerno et al. [140] found macro-por-
osity was favored by colonization of osteoblast MG63 in bi-modal
porous PCL scaffolds. Particularly, diameters in the range of
380–450 μm could promote chondrocyte and osteoblast growth, while
sizes ranging from 290 to 310 μm could accelerate bone differentiation
[141]. The introduction of osteo-inductive and osteo-conductive
structures into biomaterials has recently become a promising method to
produce heterogeneity in the structures, mimicking that of natural
bones [142]. For example, Rodrigues et al. [143] constructed a starch/
PCL scaffold containing an osteogenic layer and a chondrogenic layer
for improved osteoarthritic treatment.

Likewise, natural biomaterials, including collagen, gelatin [85],
hyaluronic acid [87], fibrin [88], alginate [144] et al., are widely re-
ported for bone tissue engineering. However, natural biomaterials are
often taken as a composite component merely to enhance biocompat-
ibility due to a strict demand of mechanical properties for bone tissue
engineering. Bioceramics such as HA, tricalcium phosphate and bioac-
tive glasses [89] are often used as additives to enhance their mechanical
properties, osteo-inductivity and osteo-conductivity. In addition, GAG
[90] was introduced to promote scaffold, cellular and biological cue
interactions as it has strong affinity to growth factors for directing cell
fate. PLA [91], PLGA [92], PCL [93] and polyurethane (PU) [94] are
popular synthetic biomaterials for bone/cartilage tissue engineering.
Among them, PCL stood out for its superior short-term and long-term
biocompatibility due to non-inflammatory and nontoxic degradation
products [145–147], unlike acid-releasing PLA and PLGA. Moreover,
the degradation of PCL was rather slow (> 1 year), matching the re-
growth of natural bones and its medical application was approved by
FDA [141].

5. Stem cell biomanufacturing

Biomanufacturing uses biological systems including enzymes, mi-
croorganisms, cells, tissues, plants and animals to manufacture com-
mercial products for agricultural, food, energy, material and pharma-
ceutical industries [148]. Biomanufacturing can be traced back to
1860s, when fermentation products appeared on the market [148].
Today, biomanufacturing can cover a wide range of chemical products
[149], regenerative medicine [150] and even metal biorefinery [151].
However, most of stem cell-associated biomanufacturing is limited to
the manufacturing or fabrication of tissue engineering devices. An ex-
ception was conducted by Google who invested €250,000 for a program
to make hamburgers from cow stem-cell-derived muscles [152]. While
the majority of literature relevant to biomanufacturing and stem cells
concentrates on the design of bioreactors [153–155] or product quality
control [156], those focusing on the large-scale production of stem-cell-
associated therapeutic products brought in the term biofabrication.

Biofabrication is a vigorous and young field that is capturing at-
tention in tissue engineering and regenerative medicine. Biofabrication
utilizes automated processes such as additive manufacturing technolo-
gies to produce 3D biomaterial-based cell culture systems [157]. Bio-
fabrication is characterized by cell-based building blocks, bio-inspired
fabrication methods and biological products [158]. Accordingly, the
bio-products of biofabrication are mostly hybrids of stem cells and
biomaterials, including scaffolds, microcarriers, microgels, etc. Because
the ultimate goal of biofabrication in tissue engineering and re-
generative medicine is to achieve a favored spatial organization of
constructs for stem cells to differentiate and mature on after im-
plantation, all of the cell types and biomaterials mentioned above can
be employed, and the focus of biofabrication becomes more of the
methodologies of ‘fabrication’ than on the selection of building blocks.

Bajaj et al. [159] reviewed common biofabrication techniques, in-
cluding solvent casting, particle leaching, freeze drying, gas foaming,
bioprinting and photolithography. Among these, novel techniques like
bioprinting and photolithography are legitimate approaches for bio-
fabrication as they allowed for the involvement of live cells. Likewise,
Groll et al. [157] categorized the biofabrication strategies (additive
manufacturing methodologies) into bioprinting and bioassembly based
on the organization mechanism of building blocks.

5.1. Bioprinting

The evolution of biofabrication was parallel with the development
of bioprinting [157]. The intimate relationship between the two
dimmed the inconsistent concepts and often misguided the public to
consider them as interchangeable. Actually, bioprinting is a frequently-
used strategy of biofabrication, defined as the process for patterning
and assembling cells, tissues, molecular cues and biomaterials [160].
The minimum fabrication unit of bioprinting is down to molecular level
and when cells, cell aggregates, biomaterials or bioactive molecules are
small enough, they are considered ‘bioink’ [161,162] and can be bio-
printed. There are two types of bioprinting featured by the printing
equipment: drop-based and extrusion. Drop-based bioprinting uses an
inkjet and deposits bioink dropwise to form a gel or solid scaffold
[161]. Extrusion bioprinting employs a mechanical extruder to con-
tinuously deposit bioink [163].

Bauwens et al. [164] bioprinted different sizes of hESC/poly (di-
methylsiloxane) (PDMS) composite and found that colonies containing
different germ-layer-biased hESCs had distinct differentiation capacity,
indicating a size-motivated effect of the bioprinting product. The size
control idea was further progressed by Dias et al. [165] using laser di-
rect-writing to print ESCs onto gelatin. Other than ESCs, iPSCs could
also be bioprinted into gelatin methacrylic (GelMA) microfibrous
scaffolds for formation of an endothelial-integrated myocardium by an
extruder [166] or into alginate hydrogels for hepatocyte differentiation
by a drop-based printing platform [167]. For the broad application in a
variety of tissue repairs, MSCs and tissue-specific progenitor cells were
bioprinted with regard to the target tissue. Gaebel et al. [168] co-seeded
human umbilical vein endothelial cells (HUVEC) with hMSCs onto a
urethane urea (PEUU) cardiac patch in a programmed pattern by a
laser-induced-forward-transfer (LIFT) cell printing technique and found
restored vessel function to the infarct area in mice. Koch et al. [169]
used the same technique to deliver fibroblasts with hMSCs onto a gold
sheet for skin formation. Gao et al. [170] bioprinted hMSCs together
with bioceramics to form poly (ethylene glycol) dimethylacrylate
(PEGDMA) scaffolds for bone/cartilage tissue repair. Ma et al. [171]
bioprinted hepatic progenitors, HUVECs and hMSCs onto GelMA and
glycidol methacrylate-hyaluronic acid (GMHA) chips to generate a liver
model for drug screening and pathophysiology studies. Huang et al.
[172] bioprinted epithelial progenitors with EGF onto gelatin alginate
substrate for sweat gland regeneration.

Bioprinting techniques are versatile for pluripotent, multipotent and
unipotent stem cell, and have a broad application. Gel-forming bio-
materials (alginate, PEG), together with solid-forming materials (PLGA,
PCL), bioactive ceramics and glasses, as well as growth factors can all
be used as bioink for a programmed printing process.

5.2. Bioassembly

Another biofabrication strategy is bioassembly. Unlike bioprinting,
bioassembly starts with large pre-formed cellular constructs such as
large cell aggregates, cell fibers, cell sheets and even microtissues.
Bioassembly refers to the automated assembly of pre-generated cellular
devices produced by cell driven self-organization or cell-material hy-
bridization technologies [157]. The minimum building block unit of
bioassembly is a pre-formed cellular device large enough for automated
assembly.
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The assembling unit can come in the form of microcarriers or mi-
crogels. Many researchers [173–175] demonstrated the long-term
maintenance, self-renewal capacity and pluripotency of hESCs cultured
on microcarriers. These microcarriers may be further assembled by
different methods for tissue engineering applications. For instance, Xie
et al. [176] employed a pressurized-CO2 assisted technique to assemble
PLGA microscaffolds containing ESCs layer by layer for tissue en-
gineering. The cells in microcarriers were not restricted to ESCs. The
same group also bioassembled hMSC microscaffolds and demonstrated
preserved protein and DNA activity [177]. Furthermore, Guduric et al.
used a PLA membrane with human bone marrow stromal cells and
endothelial progenitor cells for a layer-by-layer bioassembly [178].
After 7 days of culture, cell migration and osteoblastic differentiation
were observed, suggesting a potential application in bone tissue en-
gineering. In addition to cells, microtissues were also applied as
building blocks for bioassembly. Mekhileri et al. [179] pre-differ-
entiated chondrogenic microtissues, and sequentially plotted the mi-
crotissues and PEGT/PBT polymer scaffold layer-by-layer using a
fluidic-based bioassembly system. Comparable cell viability was ob-
tained between the bioassembled cell-biomaterial hybrids and micro-
tissues.

In summary, the evolution of bioassembly extends the working unit
of bioprinting to larger blocks, broadens the methodologies to organize
complex structures with a scaffold, and paves the way for scale-up in
biofabrication, thus making up to the stem-cell-associated biomanu-
facturing.

5.3. Scale-up production of stem cells

Stem cells outstand in future therapeutic applications. Nonetheless,
the realization of their full potential requires sufficient amount of stem
cells, and thus their large-scale production becomes an important issue
in stem cell engineering. As mentioned above, the manufacturing of
stem cell products often associates with bioreactors, while the complex
nature of stem cell culture has limited the direct transfer of 2D culture
conditions to 3D bioreactor production. Stem cell fate to either main-
tain pluripotency or differentiate is specified by the combinatorial in-
fluence of biochemical factors, cell-cell interactions, and cell-matrix
interactions in the culture environment. Stem cell fate can also be im-
pacted by the mechanical stimuli from its surrounding fluid when the
cells are introduced to bioreactors for scaling up. Kinney et al.180. re-
viewed and summarized the effect of hydrodynamic environments on
stem cell aggregation, metabolism and phenotype in suspension culture.
Importantly, they envisioned cell aggregates as a promising method for
large-scale cell production [181], while it remains challenging to
maintain the differentiation homogeneity of the stem cell aggregates
due to the altered cue profile caused by size effect. Biomaterials are
then introduced for more homogenous cell assembly [182] as they
could regulate stem cell expansion and differentiation by mechanically
interacting with cytoskeleton [183], or by harnessing the binding and
release of both exogenous and endogenous growth factors [184]. Of
note, the controlled spatial delivery of biochemical cues through bio-
materials could overcome the diffusion limitation and eliminate het-
erogeneity of stem cell aggregates [185]. In particular, natural or syn-
thetic microcarriers, with or without functional modification via
bioactive groups (DEAE, collagen) for better cell attachment [186],
were often applied in bioreactors to engineer stem cell proliferation and
differentiation [187,188]. Microencapsulation of stem cells using algi-
nate, agarose, or hyaluronic acid hydrogel was another biomaterial
application to avoid agglomeration while preserving cell-cell and cell-
matrix contact [187]. For instance, a series of scalable thermoreversible
PEG-based or hyaluronic acid-based hydrogel systems [189–191] have
been developed for cell spheroid encapsulation to protect cells from
hydrodynamic stresses and prevent excessive agglomeration, leading to
a 20-fold higher cell yield as compared to traditional suspension cul-
ture. While the introduction of microcarriers or microencapsulation

could solve one or several problems, they were not perfect solutions as
the biomaterials used may exert new problems, such as microcarrier
clumping, difficult monitoring and observing of culture condition, and
additional separation step of materials and cells [192].

Apart from cell expansion, large-scale generation and manu-
facturing of iPSCs from patient's somatic cells is another challenge for
personalized medicine [193,194]. The current manipulation process to
produce clinical-grade iPSCs is time-consuming, labor-intensive, and
expensive [195]. For example, the total cost reached up to $50,000 to
produce iPSCs for one patient to meet the clinical needs [196]. On this
account, Lin and his colleagues developed an alginate hydrogel tube
system (AlgTubes) to efficiently reprogram human fibroblasts into
iPSCs [195], which resulted in high purity of iPSCs that express plur-
ipotent markers OCT3/4, NANOG, ALP and SSEA4 on day 30 and
maintained a long-term (20 passages) pluripotency. This AlgTube
system was also applicable to other bio-manufacturing processes, such
as biofabrication [197]. The simplicity, good reproducibility, cost-ef-
fective and feasible integration of induction, expansion and differ-
entiation of AlgTubes enabled it a promising tool for future manu-
facturing of iPSCs to meet the various demand for personalized
medicine at larger-scale.

The preservation and transportation of large quantities of stem cells
represents another challenge in stem cell manufacturing. The afore-
mentioned AlgTubes proposed a simple transportation pattern in hy-
drogels but its preservation and storage capacity was not evaluated. Li
and co-workers discussed various cryopreservation bioprocesses [198]
and formulations [199] for large-scale banking of iPSCs, but similar
work was not conducted in other studies. Additionally, the online
monitoring of cell aggregates in bioreactors and the fact that different
cells require distinct culture patterns and quality control measurements
[180] make the design of a universal large-scale bioreactors an even
more challenging task, which requires a comprehensive master of the
stem cell production process, the follow-up transportation and pre-
servation process, and the rational bioreactor design. Even with these
challenges, the promise biomaterials hold for the stem cell manu-
facturing offers tremendous potential for expanding the scope of stem
cell-based therapies.

6. Conclusion

Stem cells are gaining attention due to their self-renewal ability and
capacity of differentiating into any specific cell type. Pluripotent,
multipotent and unipotent stem cells draw different interests in a
variety of applications, including drug screening, disease modeling and
regenerative medicine. However, immune sensitivity limits the appli-
cation of stem cells in clinical trials. With the aid of biomaterials, these
barriers can be overcome. Natural biomaterials are highly biocompa-
tible, while synthetic biomaterials can be rationally designed for a
particular purpose. The incorporation of stem cells into structured and
modified biomaterials increases the competence of restoring and re-
pairing dysfunction tissues. The well-organized spatial properties of a
biomaterial or scaffold in turn can provide a protective and sometimes
inducible microenvironment for the stem cells, mimicking the natural
ECM. The stem cell-biomaterial system has been applied to various
tissue treatments, including heart, nerve, pancreatic islet, hemato-
poietic system and bone. The appearance of biofabrication technologies
enables the precise design and scalable biomanufacturing of cell-based
scaffolds using program-controlled bioprinting or bioassembly.
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