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A network approach to topic models
Martin Gerlach1,2*, Tiago P. Peixoto3,4, Eduardo G. Altmann2,5

One of the main computational and scientific challenges in the modern age is to extract useful information from un-
structured texts. Topic models are one popular machine-learning approach that infers the latent topical structure of a
collection of documents. Despite their success—particularly of themost widely used variant called latent Dirichlet
allocation (LDA)—and numerous applications in sociology, history, and linguistics, topic models are known to
suffer from severe conceptual and practical problems, for example, a lack of justification for the Bayesian priors,
discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics. We
obtain a fresh view of the problem of identifying topical structures by relating it to the problem of finding com-
munities in complex networks. We achieve this by representing text corpora as bipartite networks of documents
and words. By adapting existing community-detection methods (using a stochastic block model (SBM) with non-
parametric priors), we obtain a more versatile and principled framework for topic modeling (for example, it auto-
matically detects the number of topics and hierarchically clusters both the words and documents). The analysis of
artificial and real corpora demonstrates that our SBM approach leads to better topic models than LDA in terms of
statistical model selection. Our work shows how to formally relate methods from community detection and topic
modeling, opening the possibility of cross-fertilization between these two fields.
INTRODUCTION
The accelerating rate of digitization of information increases the im-
portance and number of problems that require automatic organization
and classification of written text. Topic models (1) are a flexible and
widely used tool that identifies semantically related documents through
the topics they address. These methods originated in machine learning
and were largely based on heuristic approaches such as singular value
decomposition in latent semantic indexing (LSI) (2) in which one op-
timizes an arbitrarily chosen quality function. Only amore statistically
principled approach, based on the formulation of probabilistic gener-
ative models (3), allowed for a deeper theoretical foundation within
the framework of Bayesian statistical inference. This, in turn, leads
to a series of key developments, in particular, probabilistic LSI (pLSI)
(4) and latent Dirichlet allocation (LDA) (5, 6). The latter established
itself as the state-of-the-art method in topic modeling and has been
widely used not only for recommendation and classification (7) but
also for bibliometrical (8), psychological (9), and political (10) analysis.
Beyond the scope of natural language, LDA has also been applied in
biology (11) [developed independently in this context (12)] and image
processing (13).

However, despite its success and overwhelming popularity, LDA is
known to suffer from fundamental flaws in the way it represents text. In
particular, it lacks an intrinsic methodology to choose the number of
topics and contains a large number of free parameters that can cause
overfitting. Furthermore, there is no justification for the use of the
Dirichlet prior in the model formulation besides mathematical con-
venience. This choice restricts the types of topic mixtures and is not de-
signed to be compatible withwell-known properties of real text (14), such
as Zipf’s law (15) for the frequency of words. More recently, consistency
problems have also been identified with respect to how planted
structures in artificial corpora can be recovered with LDA (16). A sub-
stantial part of the research in topic models focuses on creating more
sophisticated and realistic versions of LDA that account for, for example,
syntax (17), correlations between topics (18), meta-information (such as
authors) (19), or burstiness (20). Other approaches consist of post-
inference fitting of thenumber of topics (21) or the hyperparameters (22)
or the formulation of nonparametric hierarchical extensions (23–25). In
particular, models based on the Pitman-Yor (26–28) or the negative bi-
nomial process have tried to address the issue of Zipf’s law (29), yielding
useful generalizations of the simplistic Dirichlet prior (30). While all
these approaches lead to demonstrable improvements, they do not pro-
vide satisfying solutions to the aforementioned issues because they share
the limitationsdue to the choice ofDirichlet priors, introduce idiosyncratic
structures to themodel, or rely on heuristic approaches in the optimiza-
tion of the free parameters.

A similar evolution from heuristic approaches to probabilistic
models is occurring in the field of complex networks, particularly in the
problem of community detection (31). Topicmodels and community-
detection methods have been developed largely independently from
each other, with only a few papers pointing to their conceptual simila-
rities (16, 32, 33). The idea of community detection is to find large-scale
structure, that is, the identification of groups of nodes with similar
connectivity patterns (31). This is motivated by the fact that these groups
describe the heterogeneous nonrandom structure of the network and
may correspond to functional units, giving potential insights into the gen-
erative mechanisms behind the network formation. While there is a
variety of different approaches to community detection, most methods
are heuristic and optimize a quality function, the most popular being
modularity (34). Modularity suffers from severe conceptual deficiencies,
such as its inability to assess statistical significance, leading to detection of
groups in completely random networks (35), or its incapacity in finding
groups below a given size (36). Methods such as modularity maximiza-
tion are analogous to the pre-pLSI heuristic approaches to topic models,
sharing many conceptual and practical deficiencies with them. In an
effort to quench these problems, many researchers moved to probabilistic
inference approaches, most notably those based on stochastic block
models (SBMs) (32, 37, 38), mirroring the same trend that occurred
in topic modeling.
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Here, we propose and apply a unified framework to the fields of
topic modeling and community detection. As illustrated in Fig. 1, by
representing the word-document matrix as a bipartite network, the
problem of inferring topics becomes a problem of inferring commu-
nities. Topic models and community-detection methods have been
previously discussed as being part of mixed-membership models (39).
However, this has remained a conceptual connection (16), and in prac-
tice, the two approaches are used to address different problems (32): the
occurrence of words within and the links/citations between documents,
respectively. In contrast, here, we develop a formal correspondence that
builds on the mathematical equivalence between pLSI of texts and
SBMs of networks (33) and that we use to adapt community-detection
methods to perform topic modeling. In particular, we derive a non-
parametric Bayesian parametrization of pLSI—adapted from a hierar-
chical SBM (hSBM) (40–42)—that makes fewer assumptions about the
underlying structure of the data. As a consequence, it bettermatches the
statistical properties of real texts and solvesmany of the intrinsic limita-
tions of LDA. For example, we demonstrate the limitations induced by
the Dirichlet priors by showing that LDA fails to infer topical structures
that deviate from the Dirichlet assumption. We show that our model
correctly infers these structures and thus leads to a better topic model
than Dirichlet-based methods (such as LDA) in terms of model selec-
tionnot only in various real corpora but also in artificial corpora generated
from LDA itself. In addition, our nonparametric approach uncovers to-
pical structures on many scales of resolution and automatically
determines the number of topics, together with the word classification,
and its symmetric formulation allows the documents themselves to be
clustered into hierarchical categories.

The goal of our study is to introduce a unified approach to topic
modeling and community detection, showing how ideas and methods
Gerlach et al., Sci. Adv. 2018;4 : eaaq1360 18 July 2018
can be transported between these two classes of problems. The benefit of
this unified approach is illustrated by the derivation of an alternative to
Dirichlet-based topic models, which ismore principled in its theoretical
foundation (making fewer assumption about the data) and superior in
practice according to model selection criteria.
RESULTS
Community detection for topic modeling
Here, we expose the connection between topic modeling and commu-
nity detection, as illustrated in Fig. 2. We first revisit how a Bayesian
formulation of pLSI assuming Dirichlet priors leads to LDA and how
we can reinterpret the former as a mixed membership SBM. We then
use the latter to derive a more principled approach to topic modeling
using nonparametric and hierarchical priors.
Topic models: pLSI and LDA
pLSI is a model that generates a corpus composed of D documents,
where each document d has kd words (4). Words are placed in the
documents based on the topic mixtures assigned to both document
and words, from a total of K topics. More specifically, one iterates
through all D documents; for each document d, one samples kd ~
Poi(hd), and for each word token l D {1, kd}, first, a topic r is chosen
with probability qdr, and then, a word w is chosen from that topic
with probability frw. If nrdw is the number of occurrences of word
w of topic r in document d (summarized as n), then the probability
of a corpus is

Pðnjh; q; fÞ ¼∏
d
hkdd e

�hd∏
wr

ðfrwqdrÞn
r
dw

nrdw!
ð1Þ

We denote matrices by boldface symbols, for example, q = {qdr} with
d = 1,…, D and r = 1,…, K, where qdr is an individual entry; thus, the
notation qd refers to the vector {qdr} with fixed d and r = 1,…, K.
Fig. 1. Two approaches to extract information from collections of texts. Topic
models represent the texts as a document-wordmatrix (how often each word appears
in each document), which is then written as a product of two matrices of smaller
dimensions with the help of the latent variable topic. The approach we propose here
represents texts as a network and infers communities in this network. The nodes con-
sists of documents andwords, and the strength of the edge between them is given by
the number of occurrences of the word in the document, yielding a bipartite multi-
graph that is equivalent to the word-document matrix used in topic models.
Fig. 2. Parallelism between topic models and community detection methods.
The pLSI and SBMs are mathematically equivalent, and therefore, methods from com-
munity detection (for example, the hSBM we propose in this study) can be used as
alternatives to traditional topic models (for example, LDA).
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For an unknown text, we could simply maximize Eq. 1 to obtain the
best parameters h, q, and f, which describe the topical structure of the
corpus. However, we cannot directly use this approach to model tex-
tual data without a significant danger of overfitting. The model has a
large number of parameters that grows as the number of documents,
words, and topics is increased, and hence, a maximum likelihood esti-
mate will invariably incorporate a considerable amount of noise.
One solution to this problem is to use a Bayesian formulation by pro-
posing prior distributions to the parameters and integrating over them.
This is precisely what is performed in LDA (5, 6), where one chooses
Dirichlet priorsDd(qd|ad) andDr(fr|br) with hyperparametersa and b
for the probabilities q and f above and one uses instead the marginal
likelihood.

Pðnjh; b;aÞ ¼ ∫Pðnjh; q; fÞ∏
d
DdðqdjadÞ∏

r
DrðfrjbrÞdqdf;

¼∏
d
hkdd e

�hd∏
wr

1
nrdw!

�

∏
d

G
�
∑radr

�
G
�
kd þ ∑radr

�∏
r

G
�
∑wnrdw þ adr

�
GðadrÞ �

∏
r

Gð∑wbrwÞ
G
�
∑dwnrdw þ ∑wbrw

�∏
w

G
�
∑dnrdw þ brw

�
GðbrwÞ

ð2Þ

If one makes a noninformative choice, that is, adr = 1 and brw = 1,
then inference using Eq. 2 is nonparametric and less susceptible to
overfitting. In particular, one can obtain the labeling of word tokens
into topics, nrdw , conditioned only on the observed total frequencies
of words in documents, ∑rnrdw, in addition to the number of topics K
itself, simply by maximizing or sampling from the posterior
distribution. The weakness of this approach lies in the fact that the Di-
richlet prior is a simplistic assumption about the data-generating process:
In its noninformative form, every mixture in the model—both of topics
in each document as well as words into topics—is assumed to be equally
likely, precluding the existence of any form of higher-order structure.
This limitation has prompted the widespread practice of inferring using
LDA in aparametricmanner bymaximizing the likelihoodwith respect to
the hyperparameters a and b, which can improve the quality of fit in
many cases. But not only does this undermine to a large extent the initial
purpose of a Bayesian approach—as the number of hyperparameters
still increases with the number of documents, words, and topics, and
hence maximizing over them reintroduces the danger of overfitting—
but it also does not sufficiently address the original limitation of the
Dirichlet prior. Namely, regardless of the hyperparameter choice, the
Dirichlet distribution is unimodal, meaning that it generates mixtures
that are either concentrated around the mean value or spread away
uniformly from it toward pure components. This means that for any
choice ofa and b, the whole corpus is characterized by a single typical
mixture of topics into documents and a single typical mixture of words
into topics. This is an extreme level of assumed homogeneity, which
stands in contradiction to a clustering approach initially designed to
capture heterogeneity.

In addition to the above, the use of nonparametric Dirichlet priors
is inconsistent with well-known universal statistical properties of real
texts,most notably, the highly skewed distribution of word frequencies,
which typically follows Zipf’s law (15). In contrast, the noninformative
choice of the Dirichlet distribution with hyperparameters brw = 1
amounts to an expected uniform frequency of words in topics and
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documents. Although choosing appropriate values of brw can address
this disagreement, such an approach, as already mentioned, runs con-
trary to nonparametric inference and is subject to overfitting. In the
following, we will show how one can recast the same original pLSI
model as a network model that completely removes the limitations de-
scribed above and is capable of uncovering heterogeneity in the data at
multiple scales.
Topic models and community detection: Equivalence between
pLSI and SBM
WeshowthatpLSI is equivalent to a specific formof amixed-membership
SBM, as proposed byBall et al. (33). The SBM is amodel that generates a
network composed of i=1,…,Nnodeswith adjacencymatrixAij, which
wewill assumewithout loss of generality to correspond to amultigraph,
that is, Aij D ℕ. The nodes are placed in a partition composed of B
overlapping groups, and the edges between nodes i and j are sampled
from a Poisson distribution with average

∑
rs
kirwrskjs ð3Þ

wherewrs is the expected number of edges between group r and group s,
and kir is the probability that node i is sampled from group r. We can
write the likelihood of observing A ¼ fArs

ij g, that is, a particular
decomposition of Aij into labeled half-edges (that is, edge end points)
such that Aij ¼ ∑rsArs

ij , as

PðAjk;wÞ ¼∏
i<j
∏
rs

e�kirwrskisðkirwrskjsÞA
rs
ij

Ars
ij !

�

∏
i
∏
rs

e�kirwrskis=2ðkiswrskis=2ÞA
rs
ii =2

Ars
ii =2!

ð4Þ

by exploiting the fact that the sumof Poisson variables is also distributed
according to a Poisson.

We can now make the connection to pLSI by rewriting the token
probabilities in Eq. 1 in a symmetric fashion as

frwqdr ¼ hwqdrfwr′ ð5Þ

where fwr′ ≡ frw=∑sfsw is the probability that the word w belongs to
topic r, and hw≡∑sfsw is the overall propensity with which the word
w is chosen across all topics. In this manner, we can rewrite the likeli-
hood of Eq. 1 as

Pðnjh;f′;qÞ ¼∏
dwr

e�lrdwðlrdwÞn
r
dw

nrdw!
ð6Þ

with lrdw ¼ hdhwqdrfwr′ . If we choose to view the counts ndw as the en-
tries of the adjacency matrix of a bipartite multigraph with documents
andwords as nodes, the likelihoodof Eq. 6 is equivalent to the likelihood
of Eq. 4 of the SBM if we assume that each document belongs to its own
specific group, kir = dir, with i = 1,…, D for document nodes, and by
rewritinglrdw ¼ wdrkrw. Therefore, the SBM of Eq. 4 is a generalization
of pLSI that allows the words and the documents to be clustered into
groups and includes it as a special case when the documents are not
clustered.
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In the symmetric setting of the SBM, we make no explicit distinc-
tion between words and documents, both of which become nodes in
different partitions of a bipartite network. We base our Bayesian for-
mulation that follows on this symmetric parametrization.
Community detection and the hSBM
Taking advantage of the above connection between pLSI and SBM, we
show how we can extend the idea of hSBMs developed in (40–42) such
that we can effectively use them for the inference of topical structure in
texts. Like pLSI, the SBM likelihood of Eq. 4 contains a large number of
parameters that grow with the number of groups and therefore cannot
be used effectively without knowing the most appropriate dimension of
the model beforehand. Analogously to what is carried out in LDA, we
can address this by assuming noninformative priors for the parameters
k and w and computing the marginal likelihood (for an explicit expres-
sion, see section S1.1)

PðAj�wÞ ¼ ∫PðAjk;wÞPðkÞPðwj�wÞdkdw ð7Þ

where �w is a global parameter determining the overall density of the
network. We can use this to infer the labeled adjacency matrix fArs

ij g,
as performed in LDA, with the difference that not only the words but
also the documents would be clustered into mixed categories.

However, at this stage, the model still shares some disadvantages
with LDA. In particular, the noninformative priors make unrealistic as-
sumptions about the data, where the mixture between groups and the
distribution of nodes into groups is expected to be unstructured.Among
other problems, this leads to a practical obstacle, as this approach has a
“resolution limit” where, at most, Oð ffiffiffiffi

N
p Þ groups can be inferred on a

sparse network with N nodes (42, 43). In the following, we propose
a qualitatively different approach to the choice of priors by replacing the
noninformative approach with deeper Bayesian hierarchy of priors and
hyperpriors, which are agnostic about the higher-order properties of the
data while maintaining the nonparametric nature of the approach. We
begin by reformulating the abovemodel as an equivalent microcanonical
model (for a proof, see section S1.2) (42) such that we can write the
marginal likelihood as the joint likelihood of the data and its discrete
parameters

PðAj�wÞ ¼ PðA; k; ej�wÞ ¼ PðAjk; eÞPðkjeÞPðej�wÞ ð8Þ

with

PðAjk; eÞ ¼ ∏r<sers!∏rerr!!∏irk
r
i !

∏rs∏i<jArs
ij !∏iArs

ii !!∏rer!
ð9Þ

PðkjeÞ ¼∏
r

er
N

� �� ��1

ð10Þ

Pðej�wÞ ¼∏
r≤s

�wers

ð�wþ 1Þersþ1 ¼
�wE

ð�wþ 1ÞEþBðBþ1Þ=2 ð11Þ

where ers ¼ ∑ijArs
ij is the total number of edges between groups r and s

(we used the shorthand er = ∑sers and kri ¼ ∑jsArs
ij ), PðAjk; eÞ is the
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probability of a labeled graph A where the labeled degrees k and edge
counts between groups e are constrained to specific values (and not their
expectation values), P(k|e) is the uniform prior distribution of the labeled
degrees constrained by the edge counts e, and Pðej�wÞ is the prior dis-
tribution of edge counts, given by amixture of independent geometric dis-
tributions with average �w.

The main advantage of this alternative model formulation is that it
allows us to remove the homogeneous assumptions by replacing the
uniform priors P(k|e) and Pðej�wÞ by a hierarchy of priors and hyper-
priors that incorporate the possibility of higher-order structures. We
could achieve this in a tractable manner without the need of solving
complicated integrals that would be required if introducing deeper
Bayesian hierarchies in Eq. 7 directly.

In a first step, we follow the approach of (41) and condition the
labeled degrees k on an overlapping partition b = {bir}, given by

bir ¼ 1 if kri > 0
0 otherwise

�
ð12Þ

such that they are sampled by a distribution

PðkjeÞ ¼ Pðkje; bÞPðbÞ ð13Þ

The labeled degree sequence is sampled conditioned on the frequency
of degreesnb

k inside each mixture b, which itself is sampled from its own
noninformative prior

Pðkje; bÞ ¼ ∏
b
PðkbjnbkÞPðnbkjeb; bÞ

� 	
Pðebje; bÞ ð14Þ

Where eb is the number of incident edges in each mixture (for detailed
expressions, see section S1.3).

Because of the fact that the frequencies of the mixtures and
those of the labeled degrees are treated as latent variables, this
model admits that group mixtures are far more heterogeneous
than the Dirichlet prior used in LDA. In particular, as was shown
in (42), the expected degrees generated in this manner follow a
Bose-Einstein distribution, which is much broader than the expo-
nential distribution obtained with the prior of Eq. 10. The asymptotic
form of the degree likelihood will approach the true distribution
as the prior washes out (42), making it more suitable for skewed
empirical frequencies, such as Zipf’s law or mixtures thereof (44),
without requiring specific parameters—such as exponents—to be
determined a priori.

In a second step, we follow (40, 42) and model the prior for the
edge counts e between groups by interpreting it as an adjacency matrix
itself, that is, a multigraph where the B groups are the nodes. We then
proceed by generating it from another SBM, which, in turn, has its
own partition into groups and matrix of edge counts. Continuing in
the same manner yields a hierarchy of nested SBMs, where each level
l = 1,…, L clusters the groups of the levels below. This yields a prob-
ability [see (42)] given by

PðejEÞ ¼∏
L

l¼1
Pðeljelþ1; blÞPðblÞ ð15Þ
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with

Pðeljelþ1; blÞ ¼∏
r<s

nlrn
l
s

elþ1
rs

� �� ��1

∏
r

nlrðnlr þ 1Þ=2
elþ1
rr =2

� �� ��1

ð16Þ

PðblÞ ¼ ∏rn
l
r!

Bl�1!

Bl�1 � 1
Bl � 1

� ��1 1
Bl�1

ð17Þ

where the index l refers to the variable of the SBM at a particular
level; for example, nlr is the number of nodes in group r at level l.

The use of this hierarchical prior is a strong departure from the non-
informative assumption considered previously while containing it as a
special case when the depth of the hierarchy is L = 1. It means that we
expect some form of heterogeneity in the data at multiple scales, where
groups of nodes are themselves grouped in larger groups, forming a hi-
erarchy. Crucially, this removes the “unimodality” inherent in the LDA
assumption, as the group mixtures are now modeled by another gen-
erative level, which admits as much heterogeneity as the original one.
Furthermore, it can be shown to significantly alleviate the resolution
limit of the noninformative approach, since it enables the detection of
at most O(N/logN) groups in a sparse network with N nodes (40, 42).

Given the above model, we can find the best overlapping partitions
of the nodes by maximizing the posterior distribution

PðfblgjAÞ ¼ PðA; fblgÞ
PðAÞ ð18Þ

with

PðA; fblgÞ ¼ PðAjk; e1;b0ÞPðkje1; b0ÞPðb0Þ �∏
l
Pðeljelþ1; blÞPðblÞ

ð19Þ

which can be efficiently inferred using Markov Chain Monte Carlo, as
described in (41, 42). The nonparametric nature of the model makes it
possible to infer (i) the depth of the hierarchy (containing the “flat”
model in case the data do not support a hierarchical structure) and
(ii) the number of groups for both documents and words directly from
the posterior distribution, without the need for extrinsic methods or
supervised approaches to prevent overfitting.We can see the latter inter-
preting Eq. 19 as a description length (see discussion after Eq. 22).

The model above generates arbitrary multigraphs, whereas text is
represented as a bipartite network of words and documents. Since the
latter is a special case of the former, where words and documents belong
to distinct groups, we can use the model as it is, as it will “learn” the
bipartite structure during inference. However, a more consistent ap-
proach for text is to include this information in the prior, since we
should not have to infer what we already know. We can perform this
via a simple modification of the model, where one replaces the prior for
the overlapping partition appearing in Eq. 13 by

PðbÞ ¼ PwðbwÞPdðbdÞ ð20Þ

where Pw(b
w) and Pd(b

d) now correspond to a disjoint overlapping
partition of the words and documents, respectively. Likewise, the
Gerlach et al., Sci. Adv. 2018;4 : eaaq1360 18 July 2018
same must be carried out at the upper levels of the hierarchy by repla-
cing Eq. 17 with

PðblÞ ¼ Pwðbwl ÞPdðbdl Þ ð21Þ

In this manner, by construction, words and documents will never be
placed together in the same group.

Comparing LDA and hSBM in real and artificial data
Here, we show that the theoretical considerations discussed in the pre-
vious section are relevant in practice. We show that hSBM constitutes a
better model than LDA in three classes of problems. First, we construct
simple examples that show that LDA fails in cases of non-Dirichlet topic
mixtures, while hSBM is able to infer both Dirichlet and non-Dirichlet
mixtures. Second, we show that hSBM outperforms LDA even in arti-
ficial corpora drawn from the generative process of LDA.Third,we con-
sider five different real corpora. We perform statistical model selection
based on the principle of minimum description length (45) and com-
puting the description length ∑ (the smaller the better) of each model
(for details, see “Minimum description length” section inMaterials and
Methods).
Failure of LDA in the case of non-Dirichlet mixtures
The choice of the Dirichlet distribution as a prior for the topic mixtures
qd implies that the ensemble of topic mixtures P(qd) is assumed to be
either unimodal or concentrated at the edges of the simplex. This is an
undesired feature of this prior because there is no reason why data
should show these characteristics. To explore how this affects the infer-
ence of LDA, we construct a set of simple examples with K = 3 topics,
which allow for easy visualization. Besides real data, we consider syn-
thetic data constructed from the generative process of LDA [in which
case P(qd) follows a Dirichlet distribution] and from cases in which
the Dirichlet assumption is violated [for example, by superimpos-
ing two Dirichlet mixtures, resulting in a bimodal instead of a uni-
modal P(qd)].

The results summarized in Fig. 3 show that SBM leads to better
results than LDA. In Dirichlet-generated data (Fig. 3A), LDA self-
consistently identifies the distribution of mixtures correctly. The SBM
is also able to correctly identify the Dirichlet mixture, although we
did not explicitly specify Dirichlet priors. In the non-Dirichlet syn-
thetic data (Fig. 3B), the SBM results again closely match the true
topic mixtures, but LDA completely fails. Although the inferred re-
sult by LDAno longer resembles the Dirichlet distribution after being
influenced by data, it is significantly distorted by the unsuitable prior
assumptions. Turning to real data (Fig. 3C), the LDA and SBM yield
very different results. While the “true” underlying topic mixture of
each document is unknown in this case, we can identify the negative
consequence of the Dirichlet priors from the fact that the results
from LDA are again similar to the ones expected from a Dirichlet
distribution (thus, likely an artifact), while the SBM results suggest
a much richer pattern.

Together, the results of this simple example visually show that LDA
not only struggles to infer non-Dirichlet mixtures but also shows strong
biases in the inference toward Dirichlet-type mixtures. On the other
hand, SBM is able to capture a much richer spectrum of topic mixtures
due to its nonparametric formulation. This is a direct consequence of
the choice of priors: While LDA assumes a priori that the ensemble of
topic mixtures, P(qd), follows a Dirichlet distribution, SBM is more
agnostic with respect to the type of mixtures while retaining its non-
parametric formulation.
5 of 11
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Artificial corpora sampled from LDA
We consider artificial corpora constructed from the generative process
of LDA, incorporating some aspects of real texts (for details, see
“Artificial corpora” section inMaterials andMethods and section S2.1).
Although LDA is not a good model for real corpora (as the Dirichlet
assumption is not realistic), it serves to illustrate that even in a situation
that favors LDA, the hSBM frequently provides a better description
of the data.

From the generative process, we know the true latent variable of each
word token. Therefore, we are able to obtain the inferred topical struc-
ture fromeachmethod by simply assigning the true labels without using
approximate numerical optimization methods for the inference. This
allows us to separate intrinsic properties of the model itself from ex-
ternal properties related to the numerical implementation.

To allow for a fair comparison between hSBM and LDA, we con-
sider two different choices in the inference of eachmethod, respectively.
LDA requires the specification of a set of hyperparametersa and b used
in the inference. While, in this particular case, we know the true hyper-
parameters that generated the corpus, in general, these are unknown.
Therefore, in addition to the true values, we also consider a nonin-
formative choice, that is, adr = 1 and brd = 1. For the inference with
hSBM,we only use the special case where the hierarchy has a single level
such that the prior is noninformative.We consider two different param-
etrizations of the SBM: (i) Each document is assigned to its own group,
that is, they are not clustered, and (ii) different documents can belong
to the same group, that is, they are clustered. While the former is
motivated by the original correspondence between pLSI and SBM,
the latter shows the additional advantage offered by the possibility
of clustering documents due to its symmetric treatment of words and
documents in a bipartite network (for details, see section S2.2).

In Fig. 4A, we show that hSBM is consistently better than LDA for
synthetic corpora of almost any text length kd = m ranging over four
orders ofmagnitude. These results hold for asymptotically large corpora
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(in terms of the number of documents), as shown in Fig. 4B, where we
observe that the normalized description length of eachmodel converges
to a fixed value when increasing the size of the corpus.We confirm that
these results hold across a wide range of parameter settings varying the
number of topics, as well as the values and base measures of the hyper-
parameters (section S3 and figs. S1 to S3).

The LDA description length SLDA does not depend strongly on the
considered prior (true or noninformative) as the size of the corpora in-
creases (Fig. 4B). This is consistent with the typical expectation that in
the limit of large data, the prior washes out. However, note that for
smaller corpora, the S of the noninformative prior is significantly worse
than the S of the true prior.

In contrast, the hSBM provides much shorter description lengths
than LDA for the same data when allowing documents to be clustered
as well. The only exception is for very small texts (m< 10 tokens), where
we have not converged to the asymptotic limit in the per-word descrip-
tion length. In the limit D→∞, we expect hSBM to provide a similarly
good or bettermodel than LDA for all text lengths. The improvement of
the hSBM over LDA in a LDA-generated corpus is counterintuitive be-
cause, for sufficient data, we expect the true model to provide a better
description for it. However, for a model such as LDA, the limit of suf-
ficient data involves the simultaneous scaling of the number of
documents, words, and topics to very high values. In particular, the gen-
erative process of LDA requires a large number of documents to resolve
the underlyingDirichlet distribution of the topic-document distribution
and a large number of topics to resolve the underlying word-topic
distribution.While the former is realized growing the corpus by adding
documents, the latter aspect is nontrivial because the observed size of
the vocabularyV is not a free parameter but is determined by the word-
frequency distribution and the size of the corpus through the so-called
Heaps’ law (14). Thismeans that, aswe grow the corpus by addingmore
andmore documents, initially, the vocabulary increases linearly andonly
at very large corpora does it settle into an asymptotic sublinear growth
A B C

Fig. 3. LDA is unable to infer non-Dirichlet topic mixtures. Visualization of the distribution of topic mixtures logP(qd) for different synthetic and real data sets in the
two-simplex using K = 3 topics. We show the true distribution in the case of the synthetic data (top) and the distributions inferred by LDA (middle) and SBM (bottom).
(A) Synthetic data sets with Dirichlet mixtures from the generative process of LDA with document hyperparameters ad = 0.01 × (1/3, 1/3, 1/3) (left) and ad = 100 × (1/3,
1/3, 1/3) (right) leading to different true mixture distributions logP(qd). We fix the word hyperparameter brw = 0.01, D = 1000 documents, V = 100 different words, and
text length kd = 1000. (B) Synthetic data sets with non-Dirichlet mixtures from a combination of two Dirichlet mixtures, respectively: ad D {100 × (1/3, 1/3, 1/3), 100 ×
(0.1, 0.8, 0.1)} (left) and ad D {100 × (0.1, 0.2, 0.7), 100 × (0.1, 0.7, 0.2)} (right). (C) Real data sets with unknown topic mixtures: Reuters (left) and Web of Science (right) each
containing D = 1000 documents. For LDA, we use hyperparameter optimization. For SBM, we use an overlapping, non-nested parametrization in which each document
belongs to its own group such that B = D + K, allowing for an unambiguous interpretation of the group membership as topic mixtures in the framework of topic models.
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(section S4 and fig. S4). This, in turn, requires an ever larger number of
topics to resolve the underlying word-topic distribution. This large
number of topics is not feasible in practice because it renders the whole
goal and concept of topicmodels obsolete, compressing the information
by obtaining an effective, coarse-grained description of the corpus at a
manageable number of topics.

In summary, the limits in which LDA provides a better description,
that is, either extremely small texts or very large number of topics, are
irrelevant in practice. The observed limitations of LDA are due to the
following reasons: (i) The finite number of topics used to generate the
data always leads to an undersampling of the Dirichlet distributions,
and (ii) LDA is redundant in the way it describes the data in this sparse
regime. In contrast, the assumptions of the hSBM are better suited for
this sparse regime and hence lead to a more compact description of the
data, despite the fact that the corpora were generated by LDA.
Real corpora
We compare LDA and SBM for a variety of different data sets, as shown
in Table 1 (for details, see “Data sets for real corpora” or “Numerical
implementations” section in Materials and Methods). When using
LDA, we consider both noninformative priors and fitted hyperparam-
eters for a wide range of numbers of topics. We obtain systematically
smaller values for the description length using the hSBM. For real
corpora, the difference is exacerbated by the fact that the hSBM is ca-
pable of clustering documents, capitalizing on a source of structure in
the data that are completely unavailable to LDA.

As our examples also show, LDA cannot be used in a direct manner
to choose the number of topics, as the noninformative choice system-
atically underfits (SLDA increases monotonically with the number of
topics) and the parametric approach systematically overfits (SLDA
decreases monotonically with the number of topics). In practice,
users are required to resort to heuristics (46, 47) ormore complicated
inference approaches based on the computation of the model evi-
dence, which not only are numerically expensive but can only be per-
formed under onerous approximations (6, 22). In contrast, the hSBM is
capable of extracting the appropriate number of topics directly from its
posterior distribution while simultaneously avoiding both under- and
overfitting (40, 42).

In addition to these formal aspects, we argue that the hierarchical
nature of the hSBM and the fact that it clusters words and documents
A

B

Fig. 4. Comparisonbetween LDAandSBM for artificial corporadrawn fromLDA.
Description length S of LDA and hSBM for an artificial corpus drawn from the gener-
ative process of LDA with K = 10 topics. (A) Difference in S, DS = Si − SLDA−trueprior,
compared to the LDA with true priors—the model that generated the data—as a
function of the text length kd=m andD = 106 documents. (B) Normalized S (per word)
as a function of the number of documentsD for fixed text length kd=m=128. The four
curves correspond to different choices in the parametrization of the topic models:
(i) LDAwith noninformative (noninf) priors (light blue, ×), (ii) LDAwith true priors, that
is, the hyperparameters used to generate the artificial corpus (dark blue, •), (iii) hSBM
withwithout clustering of documents (light orange,▲), and (iv) hSBMwith clustering
of documents (dark orange, ▼).
Table 1. hSBM outperforms LDA in real corpora. Each row corresponds to a different data set (for details, see “Data sets for real corpora” section in Materials
and Methods). We provide basic statistics of each data set in column “Corpus.” The models are compared on the basis of their description length S (see Eq. 22).
We highlight the smallest S for each corpus in boldface to indicate the best model. Results for LDA with noninformative and fitted hyperparameters are shown
in columns “SLDA” and “SLDA (hyperfit)” for different number of topics K D {10, 50, 100, 500}. Results for the hSBM are shown in column “ShSBM” and the inferred
number of groups (documents and words) in “hSBM groups.”
Corpus
 SLDA
 SLDA (hyperfit)
 ShSBM

hSBM
groups
Doc. W
ords

Word
tokens
10
 50
 100
 500
 10
 50
 100
 500
 Doc. W
ords
Twitter
 10,000
 12,258
 196,625
 1,231,104
 1,648,195
 1,960,947
 2,558,940
 1,040,987
 1,041,106
 1,037,678 1
,057,956
 963,260
 365
 359
Reuters
 1000
 8692
 117,661
 498,194
 593,893
 669,723
 922,984
 463,660
 477,645
 481,098
 496,645
 341,199
 54
 55
Web of Science
 1000
 11,198
 126,313
 530,519
 666,447
 760,114
 1,056,554
 531,893
 555,727
 560,455
 571,291
 426,529
 16
 18
New York Times
 1000
 32,415
 335,749
 1,658,815
 1,673,333
 2,178,439
 2,977,931
 1,658,815
 1,673,333
 1,686,495 1
,725,057
 1,448,631
 124
 125
PLOS ONE
 1000
 68,188
 5,172,908 1
0,637,464
 10,964,312
 11,145,531
 13,180,803
 10,358,157
 10,140,244
 10,033,886 9
,348,149
 8,475,866
 897
 972
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make it more useful in interpreting text. We illustrate this with a case
study in the next section.

Case study: Application of hSBM to Wikipedia articles
We illustrate the results of the inferencewith the hSBMfor articles taken
from the English Wikipedia in Fig. 5, showing the hierarchical
clustering of documents and words. To make the visualization clearer,
we focus on a small network created from only three scientific dis-
ciplines: chemical physics (21 articles), experimental physics (24 articles),
and computational biology (18 articles). For clarity, we only consider
words that appear more than once so that we end up with a network
of 63 document nodes, 3140 word nodes, and 39,704 edges.

The hSBM splits the network into groups on different levels,
organized as a hierarchical tree. Note that the number of groups and
the number of levels were not specified beforehand but automatically
detected in the inference. On the highest level, hSBM reflects the bi-
partite structure into word and document nodes, as is imposed in our
model.

In contrast to traditional topic models such as LDA, hSBM auto-
matically clusters documents into groups. While we considered articles
from three different categories (one category from biology and two
categories from physics), the second level in the hierarchy separates
documents into only two groups corresponding to articles about biology
(for example, bioinformatics or K-mer) and articles on physics (for ex-
ample, rotating wave approximation or molecular beam). For lower
levels, articles become separated into a larger number of groups; for ex-
ample, one group contains two articles on Euler’s and Newton’s law of
motion, respectively.
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For words, the second level in the hierarchy splits nodes into three
separate groups. We find that two groups represent words belonging to
physics (for example, beam, formula, or energy) and biology (assembly,
folding, or protein), while the third group represents function words
(the, of, or a). We find that the latter group’s words show close-to-
randomdistribution across documents by calculating the dissemination
coefficient (right side of Fig. 5, see caption for definition). Furthermore,
themedian dissemination of the other groups is substantially less random
with the exception of one subgroup (containing and, for, or which). This
suggests a more data-driven approach to dealing with function words in
topic models. The standard practice is to remove words from amanually
curated list of stopwords; however, recent results question the efficacy of
thesemethods (48). In contrast, the hSBMis able to automatically identify
groups of stopwords, potentially rendering these heuristic interventions
unnecessary.
DISCUSSION
The underlying equivalence between pLSI and the overlapping version
of the SBM means that the “bag-of-words” formulation of topical
corpora is mathematically equivalent to bipartite networks of words
and documents withmodular structures. From this, wewere able to for-
mulate a topic model based on hSBM in a fully Bayesian framework,
alleviating some of the most serious conceptual deficiencies in current
approaches to topic modeling such as LDA. In particular, the model
formulation is nonparametric, and model complexity aspects, such as
the number of topics, can be inferred directly from themodel’s posterior
distribution. Furthermore, the model is based on a hierarchical
Fig. 5. Inference of hSBM to articles from the Wikipedia. Articles from three categories (chemical physics, experimental physics, and computational biology). The first hier-
archical level reflects bipartite nature of the network with document nodes (left) and word nodes (right). The grouping on the second hierarchical level is indicated by solid lines.
We show examples for nodes that belong to each group on the third hierarchical level (indicated by dotted lines): For word nodes, we show the five most frequent words; for
document nodes, we show three (or fewer) randomly selected articles. For each word, we calculate the dissemination coefficient UD, which quantifies how unevenly words are
distributed among documents (60): UD = 1 indicates the expected dissemination from a random null model; the smaller UD (0 < UD < 1), the more unevenly a word is distributed.
We show the 5th, 25th, 50th, 75th, and 95th percentile for each group of word nodes on the third level of the hierarchy. Intl. Soc. for Comp. Biol., International Society for
Computational Biology; RRKM theory, Rice-Ramsperger-Kassel-Marcus theory.
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clustering of both words and documents, in contrast to LDA, which is
based on a nonhierarchical clustering of the words alone. This enables
the identification of structural patterns in text that is unavailable to LDA
while, at the same time, allowing for the identification of patterns in
multiple scales of resolution.

We have shown that hSBM constitutes a better topic model com-
pared to LDA not only for a diverse set of real corpora but also for
artificial corpora generated from LDA itself. It is capable of providing
better compression—as a measure of the quality of fit—and a richer
interpretation of the data. However, the hSBM offers an alternative to
Dirichlet priors used in virtually any variation of current approaches to
topic modeling. While motivated by their computational convenience,
Dirichlet priors do not reflect prior knowledge compatible with the
actual usage of language. Our analysis suggests that Dirichlet priors in-
troduce severe biases into the inference result, which, in turn, markedly
hinder its performance in the event of even slight deviations from the
Dirichlet assumption. In contrast, ourwork shows how to formulate and
incorporate different (and as we have shown, more suitable) priors in a
fully Bayesian framework, which are completely agnostic to the type of
inferredmixtures. Furthermore, it also serves as a working example that
efficient numerical implementations of non-Dirichlet topic models are
feasible and can be applied in practice to large collections of documents.

More generally, our results show how we can apply the same math-
ematical ideas to two extremely popular and mostly disconnected pro-
blems: the inference of topics in corpora andof communities in networks.
We used this connection to obtain improved topic models, but there are
many additional theoretical results in community detection that should
be explored in the topic model context, for example, fundamental limits
to inference such as the undetectable-detectable phase transition (49) or
the analogy to Potts-like spin systems in statistical physics (50). Further-
more, this connection allows the many extensions of the SBM, such as
multilayer (51) and annotated (52, 53) versions to be readily used for
topic modeling of richer text including hyperlinks, citations between
documents, etc. Conversely, the field of topic modeling has long
adopted a Bayesian perspective to inference, which, until now, has
not seen a widespread use in community detection. Thus, insights from
topic modeling about either the formulation of suitable priors or the
approximation of posterior distributions might catalyze the development
of improved statistical methods to detect communities in networks. Fur-
thermore, the traditional application of topic models in the analysis of
texts leads to classes of networks usually not considered by community
detection algorithms. The word-document network is bipartite (words-
documents), the topics/communities canbe overlapping, and thenumber
of links (word tokens) and nodes (word types) are connected to each
other throughHeaps’ law. In particular, the latter aspect results in dense
networks, which have been largely overlooked by the networks com-
munity (54). Thus, topic models might provide additional insights
into how to approach these networks as it remains unclear how these
properties affect the inference of communities in word-document net-
works. More generally, Heaps’ law constitutes only one of numerous
statistical laws in language (14), such as the well-known Zipf’s law
(15). While these regularities are studied well empirically, few attempts
have been made to incorporate them explicitly as prior knowledge,
for example, formulating generative processes that lead to Zipf’s law
(27, 28). Our results show that the SBM provides a flexible approach
to deal with Zipf’s law that constitutes a challenge to state-of-the-art
topic models such as LDA. Zipf’s law also appears in genetic codes
(55) and images (26), two prominent fields in which LDA-type
models have been extensively applied (12, 29), suggesting that the
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block-model approach we introduce here is also promising beyond text
analysis.
MATERIALS AND METHODS
Minimum description length
We compared both models based on the description length S,
where smaller values indicate a better model (45). We obtained S
for LDA from Eq. 2 and S for hSBM from Eq. 19 as

SLDA ¼ �lnPðnjh; b;aÞPðhÞ ð22Þ

ShSBM ¼ �PðA; fblgÞ ð23Þ

We noted that SLDA is conditioned on the hyperparameters b and a
and, therefore, it is exact for noninformative priors (adr = 1 and brd = 1)
only. Otherwise, Eq. 22 is only a lower bound for SLDA because it lacks
the terms involving hyperpriors for b and a. For simplicity, we ignored
this correction in our analysis, and therefore, we favored LDA. Themo-
tivation for this approach was twofold.

On the one hand, it offers a well-founded approach to unsupervised
model selection within the framework of information theory, as it
corresponds to the amount of information necessary to simultaneously
describe (i) the data when the model parameters are known and (ii) the
parameters themselves. As the complexity of the model increases, the
former will typically decrease, as it fits more closely to the data, while
at the same time, it is compensated by an increase of the latter term,
which serves as a penalty that prevents overfitting. In addition, given
data and two models M1 and M2 with description length SM1 and
SM2 , we could relate the difference DS≡SM1 � SM2 to the Bayes factor
(56). The latter quantifies howmuchmore likely onemodel is compared
to the other given the data

BF≡
PðM1jdataÞ
PðM2jdataÞ ¼

PðdatajM1ÞPðM1Þ
PðdatajM2ÞPðM2Þ ¼ e�DS ð24Þ

where we assumed that each model is a priori equally likely, that
is, P(M1) = P(M2).

On the other hand, the description length allows for a straightforward
model comparison without the introduction of confounding factors.
Commonly used supervised model selection approaches, such as per-
plexity, require additional approximation techniques (22), which are
not readily applicable to the microcanonical formulation of the SBM.
It is thus not clear whether any difference in predictive power would
result from the model and its inference or the approximation used in
the calculation of perplexity. Furthermore, we noted that it was shown
recently that supervised approaches based on the held-out likelihood
of missing edges tend to overfit in key cases, failing to select the most
parsimonious model, unlike unsupervised approaches that are more
robust (57).

Artificial corpora
For the construction of the artificial corpora, we fixed the param-
eters in the generative process of LDA, that is, the number of topics
K, the hyperparameters a and b, and the length of individual
articles m. The a(b) hyperparameters determine the distribution
of topics (words) in each document (topic).
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The generative process of LDA can be described in the following
way. For each topic r D {1,…, K}, we sampled a distribution over words
fr from a V-dimensional Dirichlet distribution with parameters brw for
w D {1,…,V}. For eachdocumentd D {1,…,D},we sampleda topicmixture
qd from aK-dimensionalDirichlet distributionwith parametersadr for r D
{1,…, K}. For each word position ld D {1,…, kd} (kd is the length of docu-
ment d), we first sampled a topic r* ¼ rld from amultinomial with param-
eters qd and then sampled awordw from amultinomial with parametersfr*.

We assumed a parametrization in which (i) each document has
the same topic-document hyperparameter, that is, adr = ar for d D
{1,…, D} and (ii) each topic has the same word-topic hyperparam-
eter, that is, brw = bw for r D {1,…, K}. We fixed the average prob-
ability of occurrence of a topic, pr (word, pw), by introducing scalar
hyperparameters a(b), that is, adr = aK(pr) for r D {1,…, K} [brw =
bV(pw) for w = 1,…, V). In our case, we chose (i) equiprobable topics,
that is, pr = 1/K, and (ii) empirically measured word frequencies from
the Wikipedia corpus, that is, pw ¼ pemp

w with w = 1,…, 95,129,
yielding a Zipfian distribution (section S5 and fig. S5), shown to be
universally described by a double power law (44).

Data sets for real corpora
For the comparison of hSBM and LDA, we considered different data
sets of written texts varying in genre, time of origin, average text length,
number of documents, and language, as well as data sets used in previ-
ous works on topic models, for example, (5, 16, 58, 59):

(1) “Twitter,” a sample of Twitter messages obtained from www.
nltk.org/nltk_data/;

(2) “Reuters,” a collection of documents from the Reuters financial
newswire service denoted as “Reuters-21578, Distribution 1.0” obtained
from www.nltk.org/nltk_data/;

(3) “Webof Science,” abstracts fromphysics papers published in the
year 2000;.

(4) “New York Times,” a collection of newspaper articles obtained
from http://archive.ics.uci.edu/ml;

(5) “PLOS ONE,” full text of all scientific articles published in 2011
in the journalPLOSONE obtained via the PLOSAPI (http://api.plos.org/)

In all cases, we considered a random subset of the documents, as
detailed in Table 1. For the New York Times data, we did not use any
additional filtering since the data were already provided in the form of
prefiltered word counts. For the other data sets, we used the following
filtering: (i) We decapitalized all words, (ii) we replaced punctuation
and special characters (for example, “.”, “,”, or “/”) by blank spaces so
that we could define a word as any substring between two blank spaces,
and (iii) we kept only those words that consisted of the letters a to z.

Numerical implementations
For inference with LDA, we used package mallet (http://mallet.cs.
umass.edu/). The algorithm for inference with the hSBM shown in this
work was implemented in C++ as part of the graph-tool Python library
(https://graph-tool.skewed.de).We provided code on how to use hSBM
for topic modeling in a GitHub repository (https://github.com/
martingerlach/hSBM_Topicmodel).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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Section S5. Empirical word-frequency distribution
Fig. S1. Varying the hyperparameters a and b in the comparison between LDA and SBM for
artificial corpora drawn from LDA.
Fig. S2. Varying the number of topics K in the comparison between LDA and SBM for artificial
corpora drawn from LDA.
Fig. S3. Varying the base measure of the hyperparameters a and b in the comparison between
LDA and SBM for artificial corpora drawn from LDA.
Fig. S4. Word-document networks are not sparse.
Fig. S5. Empirical rank-frequency distribution.
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