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ABSTRACT

Literature-described targets of herbal ingredients
have been explored to facilitate the mechanistic
study of herbs, as well as the new drug discov-
ery. Though several databases provided similar in-
formation, the majority of them are limited to litera-
tures before 2010 and need to be updated urgently.
HIT 2.0 was here constructed as the latest curated
dataset focusing on Herbal Ingredients’ Targets cov-
ering PubMed literatures 2000-2020. Currently, HIT
2.0 hosts 10 031 compound-target activity pairs with
quality indicators between 2208 targets and 1237
ingredients from more than 1250 reputable herbs.
The molecular targets cover those genes/proteins
being directly/indirectly activated/inhibited, protein
binders, and enzymes substrates or products. Also
included are those genes regulated under the treat-
ment of individual ingredient. Crosslinks were made
to databases of TTD, DrugBank, KEGG, PDB, UniProt,
Pfam, NCBI, TCM-ID and others. More importantly,
HIT enables automatic Target-mining and My-target
curation from daily released PubMed literatures.
Thus, users can retrieve and download the latest
abstracts containing potential targets for interested
compounds, even for those not yet covered in HIT.
Further, users can log into ‘My-target’ system, to
curate personal target-profiling on line based on
retrieved abstracts. HIT can be accessible at http:
//hit2.badd-cao.net.

INTRODUCTION

Being a rich source of drug candidates, herbal active ingre-
dients play a critical role in the development of new drugs.
From 1981 to 2019, 33.6% of the drugs approved by the
FDA were reported to be derived from natural products or
their derivatives (1). To better understand the interaction
between herbal compounds and molecular targets, the first
herbal-ingredient-target database, HIT, was established in
2010 via manual curation of 1301 literature-described tar-
gets for herbal compound from 3250 literatures, with con-
venient links to therapeutic targets database (TTD) and
Drugbank etc (2,3). The target information of HIT has
been extensively exploited to study the mechanism of nat-
ural compounds, as well as to make discoveries from herbal
medicine. For instance, based on HIT, Luo Y et al. revealed
the therapeutic mechanism of cryptotanshinone in the treat-
ment of liver cancer (4). And Wang et al. identified potential
targets for asthma according to the clinical efficacy of TCM
formulations (5).

During the past ten years (2011-2021), there was an ex-
plosive increase in the studies on the natural ingredients and
their targets. A number of databases were then constructed
covering herbal compound and target interactions. Notably,
a nice exemplary database for natural products, NPASS
(6), provides experimentally-determined quantitative activ-
ity records for natural products, including nearly 2,000
herbal ingredient-target pairs for about 700 herbal ingre-
dients. Other herbal databases also included important in-
formation of herbal ingredient-target pairs (7-11), but most
of them downloaded and incorporated early HIT data, ap-
pended with predicted targets, such as HERB, TCMID,
TCMSP and SymMap (7-10). These databases have greatly
enriched the target diversity for herbal ingredients. How-
ever, the literature-described targets of herbal ingredients
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being carefully curated, though valuable, remain limited
and need to be updated urgently and regularly.

Yet those fresh evidences of ingredient-target interactions
may be published in everyday-released literatures, while the
traditional databases have difficulties in keeping track of the
latest results. Users often need to take great efforts manually
searching the up-to-date literatures not yet covered by cur-
rent databases and dig targets out to tie up with database
items, which is highly time-consuming. Thus, it is necessary
to propose a new platform to provide not only the regularly
updated targets, but also the real-time checking for poten-
tial target from daily-released papers.

Here, we introduced such a platform of HIT 2.0 for the
above purpose. In this version, advanced text mining al-
gorithms and rigorous curation were comprehensively em-
ployed. In addition to calibrating HIT 1.0 data from liter-
atures between 2000 and 2010, our curation team made a
complete refreshment by adding literatures between 2010
and 2020, resulting in almost twice the data abundancy as
before, plus new features of target confidence indicators.
More importantly, the text-mining system of compound-
target suggestion is now open to users, where researchers
can retrieve the most-related literatures via ‘“Target-mining’
for any natural compounds. At last, HIT 2.0 provides an
on-line function of ‘My-target’ for personal curation and
downloading.

MATERIALS AND METHODS
Data source

Similar to HIT 1.0, the ingredient information was sourced
from the widely used TCM-ID database of the 2020 updated
version (12), which covers 2751 herbs and 7375 herb ingre-
dients. Compound aliases were derived from the Chemical
Abstracts Service (CAS). The same set of 59 keywords was
used as that in HIT 1.0 to describe interactions between
compounds and molecular targets (Supplementary Table
S1). Some keywords are nouns describing the interaction
(Type A), while the others (Type B) are phrases describing
the specific effect, such as ‘inhibit the activity of” proteins.

Text mining

Text mining of NLP was used to identify the targets of
herbal ingredients in the literature, with workflow being il-
lustrated as follows (Figure 1):

Stepl: Retrieve abstracts in PubMed containing key-
words of the name/alias of herb ingredients.

Step2: Annotate gene/protein entities in the abstract us-
ing PubTator Central (13), an automated annotation plat-
form for biomedical entities. These genes/proteins may
be targets of ingredients, and only abstracts containing
gene/protein entities will be retained.

Step3: Parse the full abstract into sentences. Screen out
those sentences based on either of below two rules. Rulel:
‘Compound name” AND ‘any word in type A’ AND ‘Gene’.
For instance, the sentence ‘EGCG is a novel Hsp90 in-
hibitor’. Rule2: ‘Compound name’ AND ‘any word in
type B interaction” AND ‘any word in type B effect’
AND ‘Gene’. For instance, the sentence ‘Procyanidin B2 di-
rectly inhibited MT1-MMP activity.’
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Step4: Use the Stanford Parser engine (14) to extract sen-
tence syntactic structure and grammatical relations (15).
Only those sentences are retained where ‘compound’, ‘gene’
and ‘keyword’ are detected in a directional dependency tree
path.

Manual curation

Finally, a curation team of 11 Ph.D. candidates reviewed 17
000 sentences, and each item was double checked by at least
two candidates. The entries with consistence from two cu-
rators were remained. While those of disagreement were re-
viewed by a third curator, with the final result being decided
by a majority vote.

RESULTS

The construction of HIT 2.0 was based on literature min-
ing and manual curation. In the part of literature min-
ing, PubMed abstracts were firstly retrieved containing key-
words of the name/alias of herbal ingredients. Then the ab-
stract was parsed into sentences and only those sentences
containing herbal ingredients, genes, and keywords were
kept for further curation. For convenience, an online plat-
form was set up where each curator has their own account.
Any time after log-in, curators can review the PubMed tasks
completed, and to-be-completed. Now the whole platform
has been opened as ‘Target-mining’ and ‘My-target’ system,
enabling users to identify those most related literatures and
keep close tracking of the latest targets for their interested
compounds.

Data updating

In this version, more advanced text-mining algorithms of
Natural language processing (NLP) and rigorous manual
curation were applied using the same set of keywords as that
of HIT 1.0 (16). NLP has been widely applied to biomedi-
cal text mining. Dependent syntactic analysis enables sen-
tence structure parsing to highlight the relationships be-
tween medical entities (15). The NLP algorithm is used
in HIT 2.0 to determine whether compounds may inter-
act with genes/proteins. Initially, 7100 abstracts were ob-
tained from PubMed after text-mining system. After the on-
line curation, a total of 10 031 compound-target pairs were
produced, involving 2208 molecular targets and 1,237 com-
pounds from 1250 herbs. Interestingly, 56 miRNA genes
have been included into our targeting list, mainly with
modes of up/down regulated genes.

The types of compound-target interactions cover 10 cate-
gories: indirectly inhibit/activate, up/down-regulated gene,
directly inhibit/activate, binders, enzyme substrates, en-
zyme products and other. Quality indicators of compound-
target interactions have been developed covering the nature
of the interaction, the number of literatures supporting the
same pair, and the citing reports of each literature. Based on
above, users can choose those preferred for further analysis.
Each compound-target pair can be viewed with a key de-
scription parsed from the sourcing literature. Compounds
are linked to PubChem (17) and ChEMBL (18) databases.
As for targets, Crosslinks have been made to databases of
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Figure 1. Workflow of HIT 2.0. (1, 2) Retrieve PubMed using different names of herbal ingredients. (3) Mine PubMed abstracts to identify gene/protein
entities. (4) Detect whether ‘compound’, ‘gene’ and ‘keyword’ are in a directional dependency tree path. 5&6. Manual check and complete the information.

TTD (2), DrugBank (3), KEGG (19), PDB (20), UniProt
(21), Pfam (22), NCBI, TCM-ID (12) and others for more
detailed information.

Compared to similar herb databases containing
literature-described targets, HIT 2.0 has doubled the
data abundancy of HIT 1.0, forming a nice complement
to the previous databases. Currently, it is also the largest
database in terms of curated ingredient-target pairs for
herbs, as Table 1 shows.

HIT 2.0 allows keyword search and compound similar-
ity search. The searching interface and results pages are
illustrated in Figure 2. Keyword search is available for
herb information [Chinese pinyin, Chinese characters, Latin
name and English name], ingredients information [differ-
ent names, CAS number and CID number] and target in-
formation [gene/protein name, gene symbol, UniProt ID].
Auto-completion and fuzzy search are supported for key-
word search. Besides that, similarity search can also be
made via compound structures, with a Tanimoto coeffi-
cient above 70% as a cut-off. Both the SMILES formula
and the artificially drawn structure by build-in software
Ketcher (https://lifescience.opensource.epam.com/ketcher/)
can be used as input.

Target-mining and My-target curation

As PubMed literatures are released every day, there is a con-
stant need for researchers to check the latest evidences after
2020 for their interested compound. So far, no software be-
comes available to mine the literatures containing potential
target-ingredient interactions. For the convenience of cura-
tion, two options have been provided for users.

Target-mining function was built-in enabling users to re-
trieve related PubMed abstracts published from 2010 till
the daily updates for any compounds (Figure 3A and B).
It was realized that the abstracts identified by text-mining
may contain false positives. Thus HIT 2.0 provides on-line
My-target curation function to further check the detailed
sentences in sourcing abstracts (Figure 3C). The sentences
containing interesting entities have been highlighted in dif-
ferent colors, so that key items can be easily spotted together
with the interaction types. A link to PubMed with full ab-
stract is also provided.

In brief, ‘Target-mining’” was designed to efficiently and
precisely retrieve those most-related abstracts based on our
empirically derived rules combined with advanced text-
mining algorithm. Via this, users can retrieve and download
the latest literatures for local checking. Alternatively, users
can choose ‘My-target curation’ to make curation on-line.
Each user has their own account. Anytime after log-in, users
can review the tasks completed and continue to finish the
full task.

DISCUSSION

Complement to other drug and drug-target databases,
herbal databases containing literature-described targets
have served as the primary source for mechanistic study
of natural products by providing rich sets of information
between medicinal herbs, active compounds and molecu-
lar targets under different experimental conditions. With
a steady literature accumulation describing new evidences
in the past decade, however, the previous versions need to
make timely updating to meet up with the pressing needs. In
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Table 1. Overview of the literature-described targets from peering databases
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Figure 2. Searching and resulting pages in HIT 2.0. (A) Database structure and data statistics. (B) Herbs can be searched via keywords such as Chinese
Pinyin, Chinese characters and Latin names. (C) Herbal ingredients can be searched via structure similarity or keywords of name, CID and CAS number.
(D) Targets can be searched via keywords of gene/protein name, gene symbol and Uniprot ID. (E) Detailed information of the targets. (F) Additional
targets of the compound. (G)  Literature evidence ’ provides the key descriptions parsed from sourcing literatures.

this paper, HIT 2.0 was thus constructed to maintain a regu-
lar updating by adding another ten years, marking as the lat-
est and the largest one regarding curated ingredient-target
pairs for herbs. Meanwhile, we set up Target-mining and
My-target curation system based on technology of natural
processing language, allowing researchers to keep tracking
the latest evidences and curate personal targets of interested

compounds at convenient time. The launch of HIT 2.0 will
be an important addition to bridge herbs ingredients and
FDA approved drugs via molecular targets and may facili-
tate the discovery of new druggable molecules, as well as to
identify potential therapeutic targets.

One key technology applied in HIT 2.0 was the auto
text-mining tools. Currently, there are several annotating
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Figure 3. Target-mining and My-target curation system. (A) The interface of Target-mining function. Compound name, MeSH ID and Pubchem ID can
be submitted to retrieve potential targets. (B) PubMed abstract retrieved by Target-mining. (C) The interface of My-target curation system.

tools to recognize the biomedical entities, such as PubTa-
tor Central (13), HunFlair (23), and ScispaCy (24). Among
them, PubTator Central was developed by NCBI to anno-
tate PubMed abstracts automatically and allows users to
download annotations in bulk via PubMed ID lists. In ad-
dition, the annotated genes have direct links to the Gene
database, which allows HIT 2.0 to access more details of the
targets without being installed. Considering the overall con-
venience, simplicity and complexity, PubTator central was
chosen for HIT 2.0.

Meanwhile, the last decade has witnessed an exten-
sive application of molecular targets into functional ex-
planation for herbal compounds. Though the reliability
of literature-evidenced targets may be more accurate than
computationally-predicted targets, it is aware that the re-
sults collected into HIT are mostly from in vitro rather than
in vivo experiments. In fact, these natural compounds are
likely metabolized into different forms which may change

the targeting profiles (25). Furthermore, the biological ac-
tivity of an ingredient is often related to not only the
group of molecular targets, but also the network interac-
tions among targets. In this sense, HIT 2.0 may serve as a
valuable start in deriving collective functions of herbal com-
ponents, particularly to herbs and herbal formulas. Towards
this direction, HIT will continue to enrich the data abun-
dancy and subsequent analysis to maintain high-quality re-
sources for domain research.
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