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Abstract: The β- and γ-secretase-driven cleavage of the amyloid precursor protein (APP) gives rise to
the amyloid β peptide, which is believed to be the main driver of neurodegeneration in Alzheimer’s
disease (AD). As it is prominently detectable in extracellular plaques in post-mortem AD brain
samples, research in recent decades focused on the pathological role of extracellular amyloid β

aggregation, widely neglecting the potential meaning of very early generation of amyloid β inside
the cell. In the last few years, the importance of intracellular amyloid β (iAβ) as a strong player
in neurodegeneration has been indicated by a rising number of studies. In this review, iAβ is
highlighted as a crucial APP cleavage fragment, able to manipulate intracellular pathways and foster
neurodegeneration. We demonstrate its relevance as a pathological marker and shed light on initial
studies aiming to modulate iAβ through pharmacological treatment, which has been shown to have
beneficial effects on cognitive properties in animal models. Finally, we display the relevance of viral
infections on iAβ generation and point out future directions urgently needed to manifest the potential
relevance of iAβ in Alzheimer’s disease.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that was first described
by the psychiatrist Alois Alzheimer in 1906 [1]. Today, it is the most common cause of
dementia and is clinically characterized by a progressive impairment of behavioral and
cognitive functions including memory, comprehension, language, attention, reasoning, and
judgment [2]. A central hallmark of the disease is the presence of amyloidogenic plaques,
formed by deposition, accumulation, and aggregation of the amyloid β peptide (Aβ) in
the brain. The second well-described pathophysiological characteristic are neurofibrillary
tangles, which result from hyperphosphorylation of the microtubule-associated Tau protein,
consequently leading to cytoskeletal changes in neurons [3]. Both events display a progres-
sive development, typically beginning in the entorhinal cortex in the hippocampus and
primarily affecting the medial temporal lobe and associative neocortical structures, whose
impairment causes the aforementioned symptoms due to neuronal cell death [4].

According to the amyloid hypothesis, amyloidogenic plaque formation is caused by
an imbalance in the production and accumulation of the Aβ peptide resulting from the
processing of the amyloid precursor protein (APP) [5]. In non-pathological conditions, the
transmembrane protein APP is predominantly cleaved by an α-secretase, thereby producing
fragments of different sizes, which are described to be non-cytotoxic [6]. In case APP is
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processed within the amyloidogenic pathway, sequential cleavage by β- and γ-secretase
causes the formation of 38–42 aa long amyloid peptide species believed to be secreted into
the extracellular space. These soluble monomeric forms are known to aggregate into soluble
oligomers, which then form insoluble fibrils that are finally deposited as amyloidogenic
plaques [7–9]. Although amyloid plaques were studied as the main pathological event in
AD, multiple lines of evidence (such as the accumulation of oligomeric species in animal
AD models disrupting synaptic plasticity and causing memory impairment) have pointed
to prefibrillar Aβ oligomer species playing a central role in AD pathogenesis. Due to its
potential relevance, the Aβ oligomer hypothesis and its possible implications have been
largely studied over the last several years [10].

More recently, the pathophysiological role of intracellular Aβ (iAβ) has aroused
increasing interest, as iAβ was found to affect intracellular pathways, pointing to a potential
relevance of iAβ accumulation for very early molecular aberrations that precede even
amyloid plaque and neurofibrillary tangle formation. Within this review, we highlight iAβ

as an intracellular modulator and pathological biomarker, illustrate iAβ genesis and drugs
affecting it, and address viral infections and their impact on iAβ generation.

2. Mechanisms of Intracellular Aβ Generation and Enrichment

While the mere presence of accumulated iAβ is accepted as an early occurring phe-
nomenon in AD preceding the extracellular accumulation of plaque-forming Aβ, less is
known about the mechanisms predominantly leading to the excessive accumulation within
cells, especially in neurons [11–15]. Accumulated iAβ can be considered as the result of
an imbalance between intracellular production of Aβ, the import of extracellular Aβ, and
the clearance of Aβ by diverse mechanisms. However, it remains elusive which pathways
play the dominant role in leading to excessive and toxic aggregation [16–24]. Accordingly,
a number of pathways have been studied with regard to their contribution to the internal-
ization of Aβ, thereby focusing on Aβ accumulation, reuptake, and clearance as the causes
for reaching toxic levels of iAβ.

New insights revealed that long iAβ isoforms, such as Aβ45, are remaining and
aggregating within neurons, while in contrast, shorter Aβ42 isoforms are secreted, resulting
in the surge of intracellular aggregation with time due to age-related changes in Aβ

processing [25]. Indeed, it was demonstrated that iAβ contains long Aβ45 peptides that
accumulate in mitochondria, endosomes, and autophagosomes, which increase with age
and upon glutamate treatment. It was speculated that age-related signaling for inhibition
of C-terminal trimming by γ-secretase increases Aβ45 levels whose hydrophobic properties
promote aggregation [25].

A closer look at the endocytic processing of Aβ suggests a mechanism of internal
accumulation that is not issued from the uptake of Aβ peptides but from the dysfunction of
metalloproteases of the endothelin-converting enzyme (ECE) family [26]. These enzymes
reside within exosomes and normally limit the accumulation of iAβ. Through the pharma-
cological inhibition of these metalloproteases, Aβ and iAβ levels were enriched in human
neuroblastoma SH-SY5Y cell lines, primary neurons, and organotypic brain slices from
an AD mouse model. Furthermore, iAβ oligomer formation was promoted in a process
independent of the internalization of secreted Aβ [26]. These findings suggest a crucial
role for multivesicular bodies, from which exosomes derive, as intracellular sites of Aβ

degradation by these enzymes. Thus, it was proposed that ECE dysfunction could lead
to the accumulation of intraneuronal Aβ aggregates and their subsequent release into the
extracellular space via exosomes [26].

Further, there is strong evidence that the reuptake of Aβ occurs primarily via the
endocytic pathways. Accordingly, it was demonstrated that soluble Aβ40 and Aβ42 primar-
ily use endocytosis as the major, possibly even the only, pathway of entry [27]. A strong
correlation of the peptides with lysosomes was observed, and Aβ42 uptake was two times
more efficient than Aβ1–40 uptake. However, both peptides have been shown to be largely
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using the same uptake paths, which are predominantly clathrin- and dynamin-independent
but actin-dependent [27].

Specifically, in neurons, FcγRIIb2, a variant of Fcγ-receptor IIb (FcγRIIb), holds a criti-
cal function for the neuronal uptake of pathogenic Aβ, as demonstrated in an AD mouse
model [28]. In more detail, it was postulated that the Fc(y)RIIb2-mediated oligomeric
Aβ42 uptake is involved in the di-leucine-dependent receptor-mediated endocytosis, which
resulted in the accumulation of excess oligomeric Aβ42 mainly in the lysosome. This uptake
was attenuated by TOM1, a FcRIIb2-binding protein that represses the receptor recycling,
which additionally enhances the hypothesis that FcγRIIb is responsible for iAβ neuronal
uptake and suggests a potential molecular mechanism underlying iAβ accumulation [28].

Finally, the accumulation of iAβ is associated with the glymphatic system, also known
as the paravascular pathway, primarily playing a pivotal role in the clearance of a major
fraction of extracellular Aβ, which is mediated by astroglia aquaporin 4 (AQP4) [29].
Based on studies in various mouse models, including brain aging, AD, and mild traumatic
brain injury [30–32], which found that glymphatic clearance malfunction is related to
mislocalization of AQP4 caused by reactive astrogliosis, the glymphatic clearance ability
among AQP4−/−/APP/PS1 mice, APP/PS1 mice, AQP4−/− mice, and wild-type (WT)
mice was compared. Moreover, the effect of selective elimination of microglial cells or
downregulation of apolipoprotein E (apoE) expression on the Aβ burden in the frontal
cortex was investigated. As a result, it was possible to demonstrate that AQP4 deletion
exacerbates glymphatic clearance impairment, accompanied by an increase in accumulation
of iAβ and apoE in the APP/PS1 brain, and the knockdown of apoE reduces iAβ levels in
APP/PS1 mice with or without AQP4 [29].

3. Intracellular Aβ Clearing by the Ubiquitin–Proteasome System

Ubiquitination, especially the ubiquitin–proteasome system (UPS), which plays a piv-
otal role in the prevention of iAβ deposition and the resulting influence on the cellular
burden, is directed by the ubiquitin E3 ligase enzymes [33,34]. While there are other mech-
anisms involved in the regulation of these proteins, the ubiquitination pathway is a central
process that involves the selection of key lysine residues of target protein E3 ligases for
ubiquitin attachment. The lysine components of proteins can act as a docking site for the
ubiquitin attachment, and depending on the type of poly-ubiquitin chains, the cellular
fate of the target protein is determined [35]. The Aβ production is influenced by amyloid
β precursor protein (AβPP) ubiquitination and proteasomal degradation of the β- and
γ- secretases. The structure of AβPP was modeled, and its topology was determined to
investigate the impact of lysine residues on AβPP stability and the resulting influence on
disease disposition [36]. It was found that K351 is the best target for AβPP ubiquitina-
tion, and also conserved amino acids were detected, which play a crucial role in AβPP
ubiquitination [36]. Furthermore, potential ubiquitination enzymes E1s, E2s, E3s, and deu-
biquitinating enzymes (DUBs) were identified, as well as their contribution to the complex
interplay in the AβPP ubiquitination process, illuminating the AβPP ubiquitination, as
well as the clearance of iAβ and possible targets for therapeutic approaches in AD [36–39].

4. Intracellular Aβ Affects Pathways Involved in Cellular Stress, Plasticity, and
Receptor Function

For decades, research on Alzheimer’s disease focused on the well-known late-stage
hallmarks, when cognitive symptoms arise. However, due to a continuing lack of effective
therapeutic treatment, the research focus has shifted to the early stages of AD in order
to understand the causative mechanisms of pathophysiological dysregulation and find
potential pharmacological targets. In this regard, the accumulation of iAβ has become
a highly relevant topic after different studies showed that it accumulates within neurons in
the very early stages of the disease, e.g., in transgenic mouse models and humans [16,40].
Investigations in the last 5 years reported toxic effects on multiple cellular pathways,
including calcium and synaptic dysregulation, inhibition of the ubiquitin–proteasome
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system, mitochondrial dysfunction, and activation of proinflammatory responses [41–43].
However, the underlying mechanism for the pathological effect of iAβ remains unclear.

Recent studies tested multiple approaches to assess calcium dysregulation as one of
the most commonly described mechanisms causing synaptic dysfunction and cell death
(Figure 1). Indeed, it was shown that iAβ42 aggregate formation is caused by the internaliza-
tion of extracellular Aβ after interaction with membrane receptors or membrane permeation
pathways [44]. Therefore, they designed a model to expose artificial membranes, isolated
mitochondria, and neuronal cells to Aβ42 toxic forms and mutant (non-aggregating) Aβ42
peptides. The authors demonstrated that these non-aggregating isoforms were able to
inhibit wild-type Aβ42 extracellular internalization, intracellular aggregation, and neuronal
toxicity [44]. Thereby, they firstly confirmed the already described ability of soluble Aβ42 to
interact with plasma membrane phospholipids, creating Ca2+ pores and thereby enhancing
a cytotoxic calcium influx [45]. A significant reduction in the Aβ42 toxic capacity was
shown using non-aggregating Aβ42 isoforms, pointing to a possible therapeutic target
for early AD-related events. Using the same approach, the authors also studied another
described iAβ42 effect, which is based on the oligomer–membrane interaction [16,46] that
presumably leads to iAβ42 internalization in mitochondria [47], interaction with apoptotic
proteins [48], reduction in the activity of respiratory enzymes such as cytochrome c oxidase
(COX) [49], and ultimately, mitochondrial damage and cell death [50,51]. Mutant iAβ42
was able to reduce the capability of iAβ42 to interact with the mitochondrial membrane,
impairing the iAβ42-mediated mitochondrial potential depolarization, decrease in COX
activity, and subsequent cell toxicity. In accordance with these results, a combination of
transcriptomic, proteomic, and metabolomic experiments indicated an intensive activation
in oxytosis/ferroptosis non-apoptotic cell death pathways, which was caused by an in-
crease in intracellular lipid peroxides and reactive oxygen species (ROS) in a high-level
iAβ model [52]. Endoplasmic reticulum oxidative stress response and/or mitochondrial
damage were proposed to be the main mechanisms contributing to the activation of oxyto-
sis/ferroptosis in the MC65 nerve cells [52].
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internalization of extracellular Aβ via endocytosis or receptor interaction, but also mitochondrial
uptake of long iAβ forms that are not secreted. Several studies have shown toxic effects on a number
of cellular pathways, including calcium and synaptic dysregulation, inhibition of the ubiquitin–
proteasome system, mitochondrial dysfunction, and activation of proinflammatory responses, result-
ing in cellular stress responses, and finally, apoptosis of the cell. (Created with BioRender.com).

Based on previous results in transgenic mice models for iAβ accumulation [53,54], it
was hypothesized that iAβ-induced BK channel suppression provokes a broadening of the
action potentials enhancing Ca2+ influx, leading to a dysregulation in Ca2+ homeostasis
and subsequent cell death (Figure 1). In their follow-up study, anti-APP or anti-Aβ-
oligomer antibodies were found to be sufficient to reverse BK channel suppression, pointing
to synergistic activity of both molecules, and driving attention to APP as a toxic agent.
Interestingly, in order to develop a complementary approach for the investigation of the
iAβ effect in Ca2+ homeostasis, Minicucci et al. designed a mathematical model [55]. They
validated previous results of an interaction between iAβ and PLC triggering the production
of IP3, which forces an abnormal release of Ca2+ from the ER after hyperactivation of IP3
receptors [56] (Figure 1). These studies on calcium dysregulation suggested a relevant effect
of iAβ in neuronal excitability.

5. Impact of Intracellular Aβ on the Neuronal Architecture

Fernandez-Perez et al. specifically studied the impact of Aβ oligomers in the nucleus
accumbens of double (APP/PS1) transgenic mice showing an increased iAβ accumulation.
The nucleus accumbens is a brain area very closely related to the main affected regions in
AD (such as the hippocampus and cortex) that plays a critical role in reward, cognition,
learning, and emotional behavior [57–59]. Electrophysiological recordings in dissociated
neurons and brain slices showed an association between iAβ and an increase in excitability
at resting conditions, or predisposition to firing, which was in agreement with previous
findings [60]. Additionally, a decrease in glycine receptors and postsynaptic markers was
observed that correlated with a decrease in miniature synaptic currents and gly-evoked
potentials together with a decrease in AMPA-evoked potentials. These results point to an
impairment in both inhibitory and excitatory synaptic transmission. Additional results
of the same group using AD brain-derived and synthetic Aβ oligomers after intracellular
supply on hippocampal neurons revealed an increase in synaptic transmission, excitability,
and neuronal synchronization. Interestingly, iAβ seemed to affect circuit levels, causing
a “functional spreading” of hyperexcitability. In addition, a post-synaptic potentiation in
AMPA currents by PKC-dependent mechanisms was reported. By analysis of synaptic
failure in a rat model, researchers found a reduction in memory-function-related gene
expression (Arc, c-fos, Egr1, and Bdfn) together with a blockage in CRTC1 translocation
in the hippocampus [61]. These results were in accordance with the synaptic plasticity
alteration by long-term potentiation (LTP) inhibition in the CA1 region of the hippocampus
and in the neocortex caused by iAβ accumulation [62]. Notably, behavioral tests performed
for visual discrimination, associative learning, and behavioral control showed severe
impairment in learning visual–reward association. Further experiments confirmed the
observed long-term memory and social behavior alteration in this model, which was
concomitant with an increase in transcript levels of synaptic plasticity and memory genes
such as Grin2b, Dlg4, Camk2b, and Syn1, emphasizing the role of iAβ in pre-plaque stages
of the disease.

Comparably, Ochiishi et al. studied the effect of iAβ from cellular to behavioral level
in a mice model designed to express a fusion Aβ-GFP protein without secretion signal
that therefore accumulates inside the neurons [63]. Notably, iAβ caused increased Tau
phosphorylation, altered spine morphology, and attenuated long-term-potentiation (LTP),
without plaque formation, atrophy, or neuronal cell death, compared with control mice.
Moreover, iAβ-carrying mice showed strong memory impairment at a young age but no
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alterations in locomotor activity, which is a common side effect observed in other AD mice
models. Their results reinforce the aforementioned iAβ toxicity against synaptic function
and subsequent memory impairment at a young age.

In addition to these findings, a role for iAβ42 in the disruption of axonal transport
and, therefore, dysregulation of neuronal synaptic transmission was shown involving the
mitogen-activated protein kinase (MAPK) [64]. In a biochemical characterization of iAβ

accumulation on MAPK and morphogenetic signaling, the authors were able to show that
increased iAβ42 expression leads to a significant reduction in ERK 1/2 phosphorylation
and increased bone morphogenetic protein-2-dependent Smad 1/5/8 phosphorylation.
Rescuing the iAβ42-mediated attenuation of MAPK signaling was possible with the small
molecule PLX4032, which is a downstream enhancer of the MAPK pathway.

6. Intracellular Aβ as Driver of Neuroinflammation

The role of the immune system and inflammation in early AD pathology has become
another intensively studied factor based on the evidence of inflammatory markers increas-
ing in patients months before the occurrence of extracellular plaques (Figure 1). In addition,
it was observed that Aβ42 treatment raises the inflammatory S100A9 signaling [65], which
further relegates the extracellular plaque formation to a less relevant position. It is, there-
fore, possible to consider iAβ accumulation, as well as inflammatory signaling molecules
such as S100A9 or IL-6, as causative for neuroinflammation in AD [65,66]. Indeed, upregu-
lation of key inflammatory mediators (including IL-6, CCL2, CCL3, and CSF-1) at transcript
and protein levels in Aβ-burdened (using extracts from pre-plaque APP transgenic rats)
hippocampal neurons, compared with those extracted from WT animals, was found in AD
transgenic animal models before plaque deposition [67]. The study also showed a corre-
lation between neuronal expression of chemotactic and proinflammatory molecules and
recruitment of activated microglia, highlighting the role of neurons as primary inflam-
matory agents in the early stages of the disease. These results were in accordance with
the previously described increased production of pro-inflammatory cytokines (such as
TNF-a and IFN-g) in CA1 neurons Aβ-burdened from a transgenic rat model for early
pre-plaque AD conditions [68]. Correspondingly, studies focusing on the role of microglia
demonstrated the preferential engagement of microglia with amyloid-burdened neurons
in the early stages of AD [69]. Using a pre-plaque mice model, it was observed that the
response of microglia to early amyloid accumulation translated into an increase in soma–
soma, process–soma, and process–neurite interactions, preferably occurring in iAβ-positive
neurons. Additionally, in microglia, phagocytic internalization on dendrites and axons was
observed. Interestingly, TREM2 was not found to be required for these early structural and
functional changes in microglia–neuron interactions, opposite to what is described for later
stages of the disease, when microglia’s main function is described to be the clearance of
amyloid species [70]. Similarly, an increase in necrotic markers has been noted in patients in
the early stages of AD development, further considering early occurring necrotic signaling
proteins such as phosphorylated MARCKS, activated by the HMGB1–TLR4 complex [71,72]
as an additional pathological mechanism.

7. Intracellular Aβ as a Spreading Pathological Marker

Recent studies demonstrated that iAβ is present in elevated amounts in cells of patients
affected by AD as one of the earliest pathologic markers preceding extracellular amyloid
formation [17,71,73,74]. In addition, a natural accumulation of iAβ in the brain was shown
to be age-dependent, indicating a higher risk to develop AD [75]. The relevance of iAβ

as a pathological marker was further strengthened by the finding that the peptide was
associated with cognitive impairment in familial AD (FAD) cases harboring a PSEN2
mutation [73,76]. Further, a connection of iAβ (and not plaque pathology) to cognitive
impairment has been proven (and reversed followed by passive immunization) using
anti-Aβ antibodies and genetic reduction in APP expression, reducing iAβ levels but
not affecting plaque pathology in the brain of an animal model [77–80]. Notably, the
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reduction in iAβ levels reduced synaptic deficits and cognitive impairments in mouse
models. These results yielded new studies regarding iAβ conglomerates and their spread.
Interestingly, it was demonstrated that brain extracts from AD mouse models are able to
induce iAβ conglomeration in 2D cell culture, subsequently inducing iAβ conglomeration
in other cells for at least 10 passages [73]. This suggests that iAβ possesses infectious prion-
like potency and induces a gain of function since iAβ is able to shift the balance toward
amyloidogenic instead of non-amyloidogenic cleavage, which was shown by further iAβ

accumulation [73,81,82]. Despite the prion-like potency, no prion protein typical proteinase
K resistance was present, rather an increased resistance against denaturing substances such
as SDS [73]. In summary, iAβ represents a potential new pathologic marker for AD. As it
precedes amyloid plaque formation, it allows earlier detection of the disease and enables
the follow-up of new disease-related findings and hypotheses.

8. Intracellular Aβ and Amyloidogenic Peptides in Viral Infections

Epidemiological studies indicated a link between lytic or latent viral infection and
an increased risk for amyloid-associated diseases, e.g., AD or diabetes mellitus (DM) [83–86].
Interestingly, in some cases, this risk was reduced upon antiviral therapy [87]. Several
viruses discussed in this context were also reported to specifically infect cell types with
relevance for the pathology of amyloid diseases. Herpes zoster virus (HZV), for instance,
infects different cell types that are also affected in AD, such as neurons and glia, and
DM such as pancreatic cells, indicating the possible contribution to the observed disease
phenotypes [88,89].

Apart from that, this connection also raises the question of whether these virally
induced diseases are amyloid diseases themselves. Varicella-zoster virus (VZV) infection of
quiescent primary human spinal astrocytes (qHA-sps) induced the production of intracel-
lular amyloidogenic proteins (intracellular amylin, APP, and/or iAβ, and amyloid, which
includes amyloid-like fibrillar structures, prefibrillar oligomers, and fibrils). Additionally,
conditioned media of infected astrocytes promoted the process of aggregation in uninfected
cells. An elevation of amyloidogenic protein levels was similarly reported in the plasma
of acute zoster patients and for the CSF from VZV vasculopathy patients, compared with
respective controls [90–92]. In addition to that, a significant enrichment of pathways asso-
ciated with amyloid-associated diseases was shown upon VZV infection of human brain
vascular adventitial fibroblasts (HBVAFs) [93]. The increased presence of amyloidogenic
peptides such as Aβ and iAβ in infected cells further emphasizes the hypothesis that VZV
vasculopathy is an amyloid disease.

Moreover, herpes simplex virus type 1 (HSV-1) viral DNA preferentially colocalized
with Aβ plaques in ADs patients’ brains [83], and promotion of extracellular Aβ and
iAβ accumulation, as well as Tau hyperphosphorylation, was observed in a variety of
in vitro models [86,94–100]. Accumulation of amyloid could, in part, create a cytotoxic and
proinflammatory environment, which could further affect neighboring cells by inducing
a potentiation of chronic inflammation as observed in most patients.

Intriguingly, mouse model experiments revealed a close link between viral infection,
the observed pathological changes, and cognitive impairment [101]. Therefore, besides
other influencing factors, viral infection with VZV or HSV-1 increased the toxic amy-
loid burden and contributed to amyloid-associated disease progression. Even though
amyloidogenic proteins were not detected extracellularly, increased intracellular amyloid
could be released to the extracellular space upon apoptosis, thus “seeding” extracellular
aggregation [16].

Contradictory to these results is a recent study that reported the absence of any signifi-
cant correlation between amyloidogenic protein expression, as well as Aβ deposition, in
the human brain of herpes simplex encephalitis patients. Additionally, a lack of specificity
of AD-related pathological hallmarks for HSV-1-infected cell types or areas was demon-
strated [102]. Consequently, the authors state that the vulnerability of the human CNS to
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virally induced neuropathology could be overestimated and suggest further analysis of
this effect in more patients.

All in all, there have been numerous studies demonstrating that viruses can indeed
promote the formation and accumulation of pathological features of amyloid diseases such
as iAβ, and therefore, viral infections could be potential risk factors for the development of
AD, DM, etc. The molecular basis of viral infection needs to be further investigated, as it
could be essential for the identification of potential therapeutic targets for amyloid diseases.
Nevertheless, recent opposing findings indicate that further investigation of the role of
viral infection in amyloid diseases is crucial for uncovering the molecular mechanism. In
order to properly address the question, human specimens particularly need to be the focus
of these examinations.

9. Intracellular Aβ as a New Target for Therapeutic Drug Treatment

The lack of full understanding of the complex pathology of AD has so far impeded
the development of efficient therapy and treatment options. Due to the seemingly complex
nature of AD, it is difficult to find a target for therapy and pharmaceutical agents, as there
are so many pathologic events coming along with AD. In addition, therapeutic drugs need
to be selected and developed to minimize side effects and limit toxicity while still being
able to pass the blood–brain barrier, which has led many promising candidates to fail on
the way to clinical applications [103–107]. Since the accumulation of iAβ occurs during the
very early stages of the disease, it might constitute a high-potential target for therapeutic
drugs, and inhibition or clearance of iAβ at early stages might prevent irreversible damage
to the neuronal cells in the brain, which could consequently slow down neurodegeneration.
This potential has been recognized by many who have tested different compounds on their
ability to target iAβ in AD treatment.

9.1. Bioactive Polyphenols

Notably, promising effects in iAβ clearance have been observed for naturally occur-
ring, bioactive polyphenols, more specifically flavonoids, which have shown in numerous
previous trials their antioxidant, anti-inflammatory, and autophagy-inducing properties
and, therefore, promise to be of great potential in iAβ-targeting drug treatment [108–120].
The exact mechanisms through which polyphenols exert these neuroprotective capacities
are not yet fully understood, though to some extent they can be led back to their aromatic
phenolic groups, due to which they contain a varying number of functional hydroxyl
groups that mediate their antioxidant effects by scavenging free radicals or by chelating
metal ions [121]. At the same time, they possess the ability to cross the blood–brain bar-
rier, which is a prerequisite for their pharmaceutical relevance [122]. The recognition of
this potential has, amongst others, led to a trial in which 11 different natural polyphenol
compounds were tested on their capability to reduce iAβ in genetically modified Saccha-
romyces cerevisiae, finding that a combination of baicalein and trans-chalcone significantly
reduces iAβ42 and cellular ROS induced by Aβ42 in a synergistic manner [123]. Supporting
this finding, it was reported that anthocyanin-enriched extracts from fruits of mulberry
(Morus alba Linn.) ameliorate the cytotoxicity induced by iAβ oligomers in a transgenic
mouse model [124]. Similarly, iAβ and oxidative stress were reduced in in vitro trials using
modified polyphenol compounds, e.g., a nitroxide spin label linked to amyloidophilic
fluorenes (spin-labeled fluorene, SLF) [125] or quercetin-modified gold–palladium nanopar-
ticles [126]. Another compound shown to be effective is menadione sodium bisulfate (MSB),
also known as vitamin K3, which is a less toxic analog of 1,4-naphthoquinone. MSB has
similarly shown efficient inhibition of iAβ in HEK293T cells expressing the familiar AD
Osaka mutation [127].

9.2. Cannabinoids

Another natural source for potential drug candidates in AD treatment is Cannabis sativa
whose potential for therapeutic use has in recent years been shifted increasingly into the fo-
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cus of research. Cannabis contains more than 100 kinds of cannabinoid compounds with the
major classes being ∆9-trans-tetrahydrocannabidiol (THC) and cannabidiol (CBD). The neu-
roprotective effect of THC against iAβ accumulation has already been evidenced in several
drug screening studies [43,128,129]. However, due to the psychoactive properties of THC,
other non-psychoactive classes of cannabinoids, as well as artificial cannabinoids, have
been tested as more suitable treatment options, and recent reports were able to demonstrate
promising neuroprotective effects with an especially prominent effect on the reduction
in iAβ [43,128,130]. Cannabinoids act as agonists on the cannabinoid receptors CB1 and
CB2, which are part of the endocannabinoid system (ECS) that is involved in a number of
important physiological processes such as memory and learning, brain plasticity, neuroin-
flammation, neuronal development, appetite regulation, etc. [131–134]. The ECS functions
through retrograde neurotransmission, which means that post-synaptic neurons release
endocannabinoids that bind (predominantly CB1 receptors) on the presynaptic neuron
resulting in inhibited presynaptic calcium channel activation and subsequent presynaptic
neurotransmitter release. The specific effect is then dependent on the neurotransmitter type
and the respective cell type and part of the nervous system [135]. The exact mechanisms
through which ECS is involved in neurotoxic processes, and in particular iAβ accumula-
tion, still remain objects of research; therefore, its role and the effect of cannabinoids in
neuroprotective mechanisms are also yet to be fully resolved.

9.3. Antibodies

Furthermore, several types of monoclonal antibodies have been developed that specif-
ically target soluble oligomeric forms of Aβ, which have been found to be the more toxic
species, compared with the actual amyloid plaques [136]. A strong candidate that even
reached the clinical phase, but failed due to adverse effects, is bapineuzumab [137]. Based
on the promising potential of bapineuzumab, researchers aimed at optimizing this ap-
proach by utilizing only the single-chain variable antibody fragment scFv-h3D6 derived
from bapineuzumab, which is directed against the five N-terminal residues of Aβ, and,
therefore, recognizes all the aggregation states of the peptide (monomers, oligomers, and
fibrils) [138]. The effect of scFv-h3D6 on amyloid pathology was tested in 5-month-old
3xTg-AD female mice with the result that scFv-h3D6 treatment dramatically reduced iAβ

amyloid pathology, resulting in preservation of cell density and amelioration of cognitive
disabilities, which once more points to the significance of iAβ as a target for AD treatment.
Interestingly, it was observed that the treatment was safe in terms of neuroinflammation
and kidney and liver function, whereas some effects on the spleen were observed [139].

9.4. Other Treatments

The fact that iAβ is a strong drug target candidate has further been proven by the
variety of substances that have been reported to reduce iAβ with accompanying neuropro-
tective effects. Interestingly, it was demonstrated that ablation of microglia by administra-
tion of colony stimulation factor 1 receptor (CSF1R) inhibitor PLX3397 led to a dramatic
reduction in iAβ and neuritic plaque deposition in a mouse model, pointing to a causal
relation between CSFR1 signaling and iAβ, which might reveal just another primary target
in the focus of iAβ [140].

All of these various and recent approaches demonstrate the rising attention for iAβ

as a target for the treatment of AD and have already proven a great potential for a range
of potentially strong drug candidates. However, the presented selection of recent studies
has been performed in vitro or in animal studies, and thus they need to be considered
with some caution, as their effects on humans, adverse and beneficial, remain unexplored.
However, even though we are still a long way from the actual application in humans, and
in the past, many promising drugs failed the clinical test in the end, iAβ-targeting drugs
have the potential to become the next big candidate in clinical AD treatment trials.
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10. Future Perspectives

Since iAβ precedes the extracellular accumulation of Aβ [16,40,141], a new hypothesis
had to be formulated, shifting from the classical “amyloid hypothesis” to the “intracellular
Aβ hypothesis” [71]. As demonstrated, many studies revealed evidence for iAβ being
a potent pathogenic agent. However, some results have to be addressed carefully, for
example, regarding the proper identification of iAβ since antibodies such as the widely
used 6E10 (targeting the N-terminus of Aβ) also recognize AβPP, also known as CTF99,
the first product of the amyloidogenic APP cleavage. This cross-reactivity renders the
isolated Aβ recognition difficult and gives ground for controversial discussion [142,143].
Future experiments need to unravel the relevance of iAβ exclusively, independent of
extracellular amyloid β generation and aggregation. It urgently needs to be resolved if
iAβ itself is sufficient to cause progressive neurodegeneration, and therefore, the use of
complex models such as animal or human organoid models is required. In more detail, it
needs to be understood, (1) which cells (which neuronal subtype) become iAβ-positive at
early stages, (2) whether these cells have a higher risk of degeneration, (3) how neighbored
cells react, (4) what the detailed molecular mechanisms in affected and neighbored cells
are, and (5) what role inflammation plays in this context. Solidified determination of iAβ

as an early pathogenic high-risk molecule with relevance for neurodegeneration will open
up a new research field focusing on iAβ or early downstream pathways as a target for drug
treatment approaches in order to fight AD and its tremendous symptoms.
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35. Suryadinata, R.; Roesley, S.N.; Yang, G.; Sarčević, B. Mechanisms of generating polyubiquitin chains of different topology. Cells
2014, 3, 674–689. [CrossRef] [PubMed]

36. Kumar, D.; Kumar, P. Integrated Mechanism of Lysine 351, PARK2, and STUB1 in AβPP Ubiquitination. J. Alzheimers Dis. 2019,
68, 1125–1150. [CrossRef]

37. Wang, H.; Saunders, A.J. The role of ubiquitin-proteasome in the metabolism of amyloid precursor protein (APP): Implications
for novel therapeutic strategies for Alzheimer’s disease. Discov. Med. 2014, 18, 41–50. [PubMed]

38. Thinakaran, G.; Koo, E.H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 2008, 283, 29615–29619.
[CrossRef]

39. Komander, D.; Clague, M.J.; Urbé, S. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol.
2009, 10, 550–563. [CrossRef] [PubMed]

40. Cuello, A.C.; Allard, S.; Ferretti, M.T. Evidence for the accumulation of Abeta immunoreactive material in the human brain and in
transgenic animal models. Life Sci. 2012, 91, 1141–1147. [CrossRef] [PubMed]

41. Bayer, T.A.; Wirths, O. Intracellular accumulation of amyloid-Beta—A predictor for synaptic dysfunction and neuron loss in
Alzheimer’s disease. Front. Aging Neurosci. 2010, 2, 8. [CrossRef] [PubMed]

42. Almeida, C.G.; Takahashi, R.H.; Gouras, G.K. Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the
ubiquitin-proteasome system. J. Neurosci. 2006, 26, 4277–4288. [CrossRef] [PubMed]

http://doi.org/10.1016/S0304-3940(01)01876-6
http://doi.org/10.1038/nrn2168
http://www.ncbi.nlm.nih.gov/pubmed/17551515
http://doi.org/10.1016/S0002-9440(10)64700-1
http://doi.org/10.1074/jbc.270.45.26727
http://www.ncbi.nlm.nih.gov/pubmed/7592902
http://doi.org/10.1016/S0021-9258(17)32449-3
http://doi.org/10.1073/pnas.90.5.2092
http://doi.org/10.1038/nm0997-1021
http://doi.org/10.1096/fj.01-0251com
http://www.ncbi.nlm.nih.gov/pubmed/11689470
http://doi.org/10.1016/S0306-4522(01)00460-2
http://doi.org/10.3233/JAD-190835
http://doi.org/10.1096/fj.201801319R
http://doi.org/10.1038/s41598-017-02227-9
http://doi.org/10.1523/JNEUROSCI.1996-17.2018
http://doi.org/10.1186/s13195-020-00688-1
http://www.ncbi.nlm.nih.gov/pubmed/33008458
http://doi.org/10.1002/ana.24271
http://www.ncbi.nlm.nih.gov/pubmed/25204284
http://doi.org/10.1016/j.nbd.2016.05.015
http://doi.org/10.1523/JNEUROSCI.3020-14.2014
http://doi.org/10.3389/fnmol.2016.00004
http://doi.org/10.1101/cshperspect.a004440
http://www.ncbi.nlm.nih.gov/pubmed/21441594
http://doi.org/10.3390/cells3030674
http://www.ncbi.nlm.nih.gov/pubmed/24987835
http://doi.org/10.3233/JAD-181219
http://www.ncbi.nlm.nih.gov/pubmed/25091487
http://doi.org/10.1074/jbc.R800019200
http://doi.org/10.1038/nrm2731
http://www.ncbi.nlm.nih.gov/pubmed/19626045
http://doi.org/10.1016/j.lfs.2012.05.020
http://www.ncbi.nlm.nih.gov/pubmed/22705309
http://doi.org/10.3389/fnagi.2010.00008
http://www.ncbi.nlm.nih.gov/pubmed/20552046
http://doi.org/10.1523/JNEUROSCI.5078-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16624948


Int. J. Mol. Sci. 2022, 23, 4656 12 of 16

43. Currais, A.; Quehenberger, O.; Armando, A.; Daugherty, D.; Maher, P.; Schubert, D. Amyloid proteotoxicity initiates an inflamma-
tory response blocked by cannabinoids. NPJ Aging Mech. Dis. 2016, 2, 16012. [CrossRef] [PubMed]

44. Oren, O.; Banerjee, V.; Taube, R.; Papo, N. An Aβ42 variant that inhibits intra- and extracellular amyloid aggregation and
enhances cell viability. Biochem. J. 2018, 475, 3087–3103. [CrossRef]

45. Oren, O.; Ben Zichri, S.; Taube, R.; Jelinek, R.; Papo, N. Aβ42 Double Mutant Inhibits Aβ42-Induced Plasma and Mitochondrial
Membrane Disruption in Artificial Membranes, Isolated Organs, and Intact Cells. ACS Chem. Neurosci. 2020, 11, 1027–1037.
[CrossRef] [PubMed]

46. Williams, T.L.; Serpell, L.C. Membrane and surface interactions of Alzheimer’s Aβ peptide-insights into the mechanism of
cytotoxicity. FEBS J. 2011, 278, 3905–3917. [CrossRef]

47. Hansson Petersen, C.A.; Alikhani, N.; Behbahani, H.; Wiehager, B.; Pavlov, P.F.; Alafuzoff, I.; Leinonen, V.; Ito, A.; Winblad, B.;
Glaser, E.; et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to
mitochondrial cristae. Proc. Natl. Acad. Sci. USA 2008, 105, 13145–13150. [CrossRef] [PubMed]
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