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The antioxidant response elements (AREs) play a significant role in occurrence of

oxidative stress and may cause multitudinous toxicity effects in the pathogenesis of a

variety of diseases. Determining if one compound can activate AREs is crucial for the

assessment of potential risk of compound. Here, a series of predictivemodels by applying

multiple deep learning algorithms including deep neural networks (DNN), convolution

neural networks (CNN), recurrent neural networks (RNN), and highway networks (HN)

were constructed and validated based on Tox21 challenge dataset and applied to

predict whether the compounds are the activators or inactivators of AREs. The built

models were evaluated by various of statistical parameters, such as sensitivity, specificity,

accuracy, Matthews correlation coefficient (MCC) and receiver operating characteristic

(ROC) curve. The DNN prediction model based on fingerprint features has best prediction

ability, with accuracy of 0.992, 0.914, and 0.917 for the training set, test set, and

validation set, respectively. Consequently, these robust models can be adopted to predict

the ARE response of molecules fast and accurately, which is of great significance for the

evaluation of safety of compounds in the process of drug discovery and development.

Keywords: antioxidant response elements (AREs), deep learning, toxicity, prediction, machine learning

INTRODUCTION

Antioxidant response elements (AREs), a series of momentous regulators of redox homeostasis
and activators of cytoprotection during oxidative stress, can be activated by the exogenous
sources of oxidative stress to participate in a variety of diseases ranging from cancer to
neurodegeneration diseases (Raghunath et al., 2018). AREs are crucial in a variety of physiological
functions and interact with numerous transcription factors to arrange the expression of a batch
of cytoprotective genes in a spatio-temporal manner (Ney et al., 1990). More specifically, AREs
profoundly contribute to the pathogenesis and progression of carbohydrate metabolism, cognition,
inflammation, iron metabolism, metastasis, reduced nicotinamide adenine dinucleotide phosphate
(NADPH) regeneration, lipid metabolism, and tissue remodeling (Hayes and Dinkova-Kostova,
2014). As such, AREs are the vital targets of the signal transduction pathway in eukaryotic
cells responded to oxidative stress and the prevention of potential chemical toxicity. Therefore,
determining if one compound can activate AREs is crucial for the assessment of potential risk
of compound.
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Generally, the in vitro and in vivo evaluations of interactions
between a large number of compounds and the AREs are
expensive, time-consuming and labor intensive. Relatively, the
in silico approaches can be used as an alternative way to predict
if a compound can activate AREs with lower cost. Based on
the advantages of in silico approaches, some machine learning-
basedmethods have been proposed to predict the AREs activators
in the environment (Huang et al., 2016). However, there are
some problems to be solved in the development of prediction
model, such as high false positive and low precision. Several
model optimization strategies were also applied, such as bagging,
consensus modeling, and feature selection (Drwal et al., 2015;
Filip, 2015; Abdelaziz et al., 2016; Gergo, 2016; Yoshihiro, 2016).
Although these strategies can be effective on some degree, the
predictive performance of traditional machine learning-based
methods still needs to be improved. Undoubtedly, the process
of feature filtering avoids dimensional disasters, but results in
the loss of relevant information. One of the most promising
models for AREs’ response prediction is the DeepTox developed
by Mayr et al. (2016). Based on the Tox21 challenge data, they
used deep neural network methods to predict AREs’ response.
The best model has the area under the Receiver Operating
Characteristic (ROC) curve (ROC-AUC)with 0.840 and balanced
accuracy with 0.677 on the validation set. Moreover, othermodels
based on traditional machine learning methods, such as random
forest (RF), support vector machine (SVM) and Naive Bayesian
etc., displayed ROC-AUC ranging from 0.768 to 0.832 and the
balanced accuracy ranging from 0.519 to 0.729 (Huang et al.,
2016). From above all, themore reliable models for the prediction
of AREs’ response are still needed.

Recently, deep learning (Lecun et al., 2015), as a promising
machine learning method, has been applied in a wide range
of fields, such as physics, life science and medical science
(Gulshan et al., 2016). There were also some researches in
biology (Mamoshina et al., 2016; Dang et al., 2018; Hou et al.,
2018) and drug design areas (Gawehn et al., 2016; Hughes
and Swamidass, 2017). Furthermore, deep learning methods
have been also applied in small molecule toxicity assessment
(Blomme and Will, 2016). For example, deep neural networks
(DNN) was applied to predict drug-induced liver injury (Xu
et al., 2015; Fraser et al., 2018). Convolution neural networks
(CNN) was applied to predict the acute oral toxicity (Xu et al.,
2017). Relative to other machine learning methods, deep learning
methods (Wu and Wei, 2018) have some special advantages. For
example, deep learning does not require feature selection, which
can make the maximum use of extracted molecular features.
Secondly, deep learning integrates a multi-layered network that
enables the integration and selective activation of molecular
features to avoid overfitting problems. Thirdly, deep learning
includes many different network structures and can analyze and
classify the problems from different perspectives. All of these
suggests that the emerging deep learning algorithms may help
us build more reliable models to predict AREs’ response of the
studied compounds.

In this study, to build more reliable prediction model of
AREs’ response, a series of deep learning methods including
deep neural networks (DNN), recurrent neural network (RNN),

highway networks (HN), convolution neural networks (CNN)
were applied on a large date set (Tox21 challenge data) including
8,630 compounds. For comparison, the traditional machine
learning methods, random forest (RF) and support vector
machine (SVM), were also applied to predict AREs’ response.

MATERIALS AND METHODS

Data Collection and Preparation
Tox21 challenge data1 (shown in Supporting Information)
was used to build model. The structures of compounds
was downloaded from PubChem2 according to the SID of
compound. The AREs’ response of compound was detected by
CellSensor ARE-bla HepG2 cell line (Invitrogen), which was
widely used to analyze the Nrf2/antioxidant response signaling
pathway. To get the reliable data, each compound was tested
in parallel by measuring the cell viability using CellTiter-Glo
assay (Promega, Madison, WI) in the same wells. According
to the test results, the molecules were categorized as “active,”
“inactive,” or “inconclusion.” To keep the built models reliable,
the molecules with label of “inconclusion” were removed. The
three-dimensional conformations of molecules play a pivotal
role in the development of prediction model (Foloppe and
Chen, 2009). Therefore, all compounds used in this study were
initially subjected to full geometry optimization in LigPrep
(Schrödinger, 2015). During the geometry optimization, the
energy minimization was carried out using OPLS2005 force field
(Kaminski et al., 2001). The inorganic compounds, mixtures,
counterions, tautomers, and the duplicates were removed to
make sure each compound has only one optimized conformation.
The ionizable groups were taken into consideration and the
distinct conformations were produced with the pH window of
7.0 ± 0.2. In particular, the molecules were deleted if there
were some unreasonable or improper structures. After these
pretreatments, the remaining compounds include 1,136 active
and 6,299 inactive compounds.

Molecular Representation
The conventional molecular descriptors and molecular
fingerprint features calculated by DRAGON 7.0 software
(Kode srl, 2017) were used to describe the structural features
of studied compounds. The calculated molecular descriptors
include 0D (constitutional descriptors), 1D (functional groups
counts, atom-centered fragments), 2D, and 3D-descriptors.
The descriptors with missing values were removed. After this
procedure, the number of remained molecular descriptors was
5,024. In general, the chemical features shared with those most
active samples would be recognized to develop predictionmodels
in the construction phase, while other chemical features shared
with the least active molecules would be removed in order to
avoid the complexity and increase the efficiency of models. The
most relevant descriptors correlated with ARE toxicity were
selected by Gini Index3.

1https://tripod.nih.gov/tox21/challenge/data.jsp
2https://pubchem.ncbi.nlm.nih.gov/
3https://en.wikipedia.org/wiki/Gini_coefficient
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TABLE 1 | The statistical summary of the data sets.

Training set Test set External validation set

Activation 756 190 190

Inactivation 4,199 1,050 1,050

Molecular fingerprints (FPs) encode the structural
information of a molecule by exploding its structure in all
the possible substructure patterns. By this method, a molecule
is described as a binary string of substructure keys. Different
substructure patterns with SMARTS lists are predefined in a
dictionary, within which substructures are created as atom-
centered fragments using a variant of Morgan’s extended
connectivity algorithm. For a SMARTS pattern, if a substructure
was presented in the given molecule, the corresponding bit
was set to “1” and otherwise set to “0.” In this study, the 1,024
bits extended connectivity fingerprints (ECFP) (Rogers and
Hahn, 2010) were calculated by the DRAGON 7.0 program
(Kode srl, 2017).

Data Splitting
To build the reliable model, the representative data set should
be selected to build and test model. For this aim, we divided
the data set into training set, test set and validation set with
the ratio of 4:1:1 by the Kennard and Stone algorithm (Kennard
and Stone, 1969) by considering the structural features and
activity of compound. The statistical summary of the data set was
presented in Table 1. To show the distribution of compounds in
training set and test set , principal component analysis (PCA)4

was performed based on the fingerprint features of compounds
and the obtained results were shown in Figure 1, indicating that
the compounds in training set and test set are well-distributed in
the whole compound space.

Machine Learning Methods
Recently, deep learning (Lecun et al., 2015) algorithms have been
widely applied in a variety of areas and gave promising results
(Mamoshina et al., 2016). Deep learning methods comprise
a lot of architectures, such as deep neural networks (DNN),
recurrent neural network (RNN), highway networks (HN), and
convolution neural networks (CNN). The principle of the used
deep learning methods was described as below. Due that the RF
(Breiman, 2001) and SVM (Mavroforakis and Theodoridis, 2006)
have been introduced elsewhere, here, their principle was not
given again.

DNN Classifier

The DNNs (Lecun et al., 2015) are developed from the structure
of artificial neural networks with a large number of hidden layers.
In the canonical deployment, the data are fed into the input
layer and then transformed in a non-linear way through multiple
hidden layers, and the final results are calculated and produced
to the output layer. Neurons of hidden and output layer are
connected to all neurons of the previous layer’s. Each neuron

4https://en.wikipedia.org/wiki/Principal_component_analysis

FIGURE 1 | The distribution of samples in the training set and test set by

principle component analysis (PCA) based on the molecular fingerprint

features.

FIGURE 2 | The structure of deep neural network (DNN). Neurons are

represented by circles. The colored circles indicate the activated neurons while

the circles without color are inactivated neurons. In addition, the arrows

represent heavy-weight transmissions between neurons, and the dashed

arrows mean the invalid neuronal connections.

calculates a weighted sum of its inputs and applies a non-linear
activation function to generate its output as shown in Figure 2.

HN Classifier

The HNs (Srivastava et al., 2015) allows unimpeded information
flow across several layers on information highways. The
architecture is characterized by the use of gating units learning
to regulate the flow of information through a network. HNs
increases the possibility of studying extremely deep and efficient
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architectures for that it can be trained hundreds of layers directly
with a variety of activation functions.

RNN Classifier

RNNs (Williams and Zipser, 1989) dedicates to process sequence
data as it delivers state-of-the-art results in cursive handwriting
and speech recognition. Its recent application in protein intrinsic
disorder prediction demonstrated its significant ability to capture
non-local interactions in protein sequences (Hanson et al.,
2017). RNN processes an input sequence one element at a
time, maintaining in its hidden units as a “state vector” that
implicitly contains information about the history of all the
past elements of the sequence. However, the training process
becomes problematic for the backpropagated gradients either
grow or shrink at each time step. After a batch of time steps
they typically exploded or vanished (Hochreiter, 1991; Bengio
et al., 2002). To solve the problem, a strategy was developed to
augment the networks with an explicit memory-the long short-
term memory (LSTM) networks. LSTM networks define special
hidden units to remember the inputs for a long time (Hochreiter
and Schmidhuber, 1997). A special unit called the memory cell
acts like an accumulator or a gated leaky neuron. The cell has
a connection to itself, so it copies its own real-valued state
and it also accumulates the external signal at the same time.
This self-connection mechanism decides whether to clear the
content of the memory according to the other units states. LSTM
networks have subsequently proved to be more effective than
conventional RNNs, especially in several layers for each time step
(Graves et al., 2013).

CNN Classifier

The CNNs (Krizhevsky et al., 2012) is a kind of multi-layer
neural networks designed to process data fed in the form
of multiple arrays. CNNs can exploit the property of many
compositional hierarchies natural signals, owing to its ability
of extracting higher-level features from lower-level ones. The
architecture of typical CNN consists of three types of layers,
which are convolutional, pooling, and fully-connected layers.
Units in a convolutional layer are organized in feature maps.
Each unit is connected to local patches of feature maps as well
as previous layer through a set of weights called filter bank. After
the process of convolutional layer, the new feature maps are
obtained by applying a non-linear activation function, such as
ReLU. The pooling layer is utilized to create an invariance filter
to get small shifts and distortions by reducing the dimension
of the feature maps. Each feature map of a pooling layer is
connected to its preceding corresponding convolutional layers.
The pooling layer computes the maximum of local patch of
units in each feature map. And then the convolution and
pooling layers are stacked by one or more fully-connected
layers aiming to perform high-level reasoning feature generation
(Hinton et al., 2012; Zeiler and Fergus, 2014).

The Implementations of Machine Learning
Methods
For deep learning methods, the MinMaxScaler was utilized to
transform features, by which each feature was scaled into a given

range between zero and one. The nodes in the network used both
rectified linear units (ReLUs) and tanh functions as activation
functions. The dropout algorithm (Hinton et al., 2012; Dahl et al.,
2014) and L2 regularization were used to prevent overfitting. The
model was trained using Adam (Adaptive Moment Estimation)
optimizer (Tieleman and Hinton, 2012). Xaiver initialization was
applied to initialize the parameters (Glorot and Bengio, 2010; He
et al., 2015). Grid search method was employed to search the
best hyperparameters. It should be noted that CNN model was
built based on fingerprint features but not the descriptors, for
the reason that CNN could only process highly correlated local
regions of input sequences (Lecun et al., 2015). The other models
were constructed based on both fingerprints and descriptors. All
Deep Learning methods were implemented in Deep Learning
framework of Tensorflow (version 1.5.0). All deep learning
methods had 3 layers and with dropout rate of 0.1. The loss
function was cross entropy. The other hyperparameters of the
deep learning methods are listed in Table 2. The RF and SVM
proceeded in Python scikit-learn (version 0.19.0) (Pedregosa
et al., 2011). There were 80 trees in RF models. For SVMmodels,
the kernel function was set as polynomial with gamma 0.1.

The Evaluation of Model Performance
The performance of generated models was evaluated by several
statistic metrics, such as sensitivity (SE), specificity (SP), accuracy
(ACC), Matthews correlation coefficient (MCC) (Fang et al.,
2013), F1-score, and Precision. The formulas are shown as below:

SE =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FN × FP

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

F1 =
2TP

2TP + FP + FN

Precision =
TP

TP + FP

Where TP, TN, FP, and FN refer to the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
All these various validation requirements have been suggested
to evaluate the model performance. The Receiver Operating
Characteristic (ROC) curve and the area under ROC curve
(ROC-AUC) were also calculated to evaluate the predictive ability
of built model.

RESULTS AND DISCUSSION

Performance Evaluation of
Descriptors-Based Classification Models
In this study, firstly, we employed various algorithms to
build classification models based on molecular descriptors. The
statistical evaluation of these models on the training set, test set
and validation set are summarized in Table 3. For clarity, we have
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TABLE 2 | The hyperparameters of deep learning methods.

Models Activation_function Number of hidden units Learning rate Dropout rate L2 weight decay Epoches

DNN Tanh, relu, softmax 5,024, 32, 32 0.00001 0.1 0.01 30,000

HN Tanh, relu, softmax 5,024, 32, 32 0.0001 0.1 0.01 3,000

RNN Tanh, relu, softmax 5,024, 32, 32 0.0001 0.1 0.01 3,000

CNN Relu, relu, softmax Patch size 10*10 0.0001 0.1 none 2,000

TABLE 3 | The performance of constructed models based on the general molecular descriptors.

Methods Group TP TN FP FN SE SP MCC F1 Precision ACC ROC_AUC

RF Tr 723 4,186 13 33 0.9563 0.9969 0.9638 0.9692 0.9823 0.9907 –

Tst 75 1,050 0 115 0.3947 1.0000 0.5965 0.5660 1.0000 0.9073 0.8055

Val 73 1,049 1 117 0.3842 0.9990 0.5828 0.5530 0.9865 0.9048 0.8298

SVM Tr 751 3,689 510 5 0.9934 0.8785 0.7198 0.7447 0.5956 0.8961 –

Tst 93 933 117 97 0.4895 0.8886 0.3631 0.4650 0.4429 0.8274 0.7755

Val 98 958 92 92 0.5158 0.9124 0.4282 0.5158 0.5158 0.8516 0.7659

DNN Tr 525 4,161 38 231 0.6944 0.9910 0.7766 0.7961 0.9325 0.9457 –

Tst 75 1,046 4 115 0.3947 0.9962 0.5766 0.5576 0.9494 0.9040 0.8281

Val 64 1,047 3 126 0.3368 0.9971 0.5321 0.4981 0.9552 0.8960 0.8573

HN Tr 704 4,158 41 52 0.9312 0.9902 0.9270 0.9380 0.9450 0.9812 –

Tst 99 1,043 7 91 0.5211 0.9933 0.6627 0.6689 0.9340 0.9210 0.7942

Val 95 1,031 19 95 0.5000 0.9819 0.6008 0.6250 0.8333 0.9081 0.8267

RNN Tr 693 4,151 48 63 0.9167 0.9886 0.9127 0.9259 0.9352 0.9776 –

Tst 120 964 86 70 0.6316 0.9181 0.5320 0.6061 0.5825 0.8742 0.8287

Val 110 949 101 80 0.5789 0.9038 0.4628 0.5486 0.5213 0.8540 0.8122

FIGURE 3 | Radar plot of the descriptors-based classification models.

grouped all the metrics by training, test and validation sets and
presented them as radar plots. A perfect score on all metrics
would be represented by a circle the size of the complete plot.
The shape of the plots can also be indicative of the quality of the
models. The larger the circle is, the better the model is. The radar
plots of ARE toxicity model based on the structural descriptors
are shown in Figure 3.

For the training set, all models gave very good SE, SP, MCC,
F1-score, Precision, and ACC values. It should be noted that

the SVM model showed lowest precision while DNN model
exhibited lowest SE level. For the test and validation set, the
indexes of all models exhibited a similar tendency, which tends
to predict the compounds as inactivation due to the imbalanced
distribution of active and inactive compounds. Among these
models, the RNN model gave the highest SE value, while other
indicators were not so well. It is worth noting that all indexes of
the HN model were better than other models. In addition, the
ROC-AUC is critical index for models performance and the ROC
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FIGURE 4 | ROC curve of descriptors-based model (the left one is test set, the right one is validation set).

TABLE 4 | 20 molecular descriptors selected by the RF method and Gini index analysis.

Name Meaning Bolck Sub-block

TPC Total path count Walk and path counts ID numbers

piPC09 Molecular multiple path count of order 9 Walk and path counts Multiple path counts

PCR Ratio of multiple path count over path count Walk and path counts ID numbers

ChiA_G Average Randic-like index from geometrical matrix 3D matrix-based descriptors Geometrical distance matrix (G)

Eig02_EA (bo) Eigenvalue n. 2 from edge adjacency mat. weighted by bond order Edge adjacency indices Eigenvalues

StCH Sum of tCH E-states Atom-type E-state indices E-State sums

piPC08 Molecular multiple path count of order 8 Walk and path counts Multiple path counts

SM12_AEA (ri) Spectral moment of order 12 from augmented edge adjacency mat.

weighted by resonance integral

Edge adjacency indices Spectral moments

SpDiam_B (m) Spectral diameter from Burden matrix weighted by mass 2D matrix-based descriptors Burden matrix weighted by mass (B (m))

SM13_AEA (ri) Spectral moment of order 13 from augmented edge adjacency mat.

weighted by resonance integral

Edge adjacency indices Spectral moments

P_VSA_e_1 P_VSA-like on Sanderson electronegativity, bin 1 P_VSA-like descriptors Sanderson electronegativity

GATS4s Geary autocorrelation of lag 4 weighted by I-state 2D autocorrelations Geary autocorrelations

SM02_AEA (bo) Spectral moment of order 2 from augmented edge adjacency mat.

weighted by bond order

Edge adjacency indices Spectral moments

SM5_B (e) Spectral moment of order 5 from Burden matrix weighted by

Sanderson electronegativity

2D matrix-based descriptors Burden matrix weighted by Sanderson

electronegativity (B (e))

TDB01i 3D Topological distance based descriptors—lag 1 weighted by

ionization potential

3D autocorrelations TDB autocorrelations

Eta_betaS_A Eta sigma average VEM coun ETA indices Basic descriptors

P_VSA_ppp_ar P_VSA-like on potential pharmacophore points, ar—aromatic atoms P_VSA-like descriptors Potential Pharmacophore Points

SM5_B (i) Spectral moment of order 5 from Burden matrix weighted by

ionization potential

2D matrix-based descriptors Burden matrix weighted by ionization

potential (B (i))

SM4_B (v) Spectral moment of order 4 from Burden matrix weighted by van der

Waals volume

2D matrix-based descriptors Burden matrix weighted by Van der Waals

volume (B (v))

piPC02 Molecular multiple path count of order 2 Walk and path counts Multiple path counts

of all models are shown in Figure 4. For the test set, the RNN
exhibited highest ROC-AUC (0.829), while for the validation set,
DNN gave the highest ROC-AUC value of 0.857. Compared with
the previous models, our models displayed a higher ROC value
and ACC values.

In general, the DNN model performed well for the external
validation set predictions from the ROC-AUC metric, while the

HN exhibited the higher ACC (0.908) than DNN as well as the
MCC and F1 with 0.601 and 0.625, respectively. The RF model
gave higher SP (0.999) and Precision (0.986). On the contrary, the
RNN method gave higher SE value (0.579) than other models.

We further analyzed what kinds of molecular properties will
affect the ARE toxicity of compounds. The Gini index was
applied to sort the importance of molecular descriptors. The

Frontiers in Chemistry | www.frontiersin.org 6 May 2019 | Volume 7 | Article 385

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bai et al. Predicting AREs’ Response by Deep Learning

FIGURE 5 | The frequency of fingerprints occurred in compounds.

TABLE 5 | The performance of constructed models based on the fingerprints.

Methods Group TP TN FP FN SE SP MCC F1 Precision ACC ROC_AUC

RF Tr 723 4,191 8 33 0.9563 0.9981 0.9678 0.9724 0.9891 0.9917 –

Tst 88 1,045 5 102 0.4632 0.9952 0.6269 0.6219 0.9462 0.9137 0.9613

Val 86 1,047 3 104 0.4526 0.9971 0.6277 0.6165 0.9663 0.9137 0.9241

SVM Tr 756 4,159 40 0 1.0000 0.9905 0.9699 0.9742 0.9497 0.9919 –

Tst 55 1,040 10 135 0.2895 0.9905 0.4525 0.4314 0.8462 0.8831 0.8967

Val 61 1,036 14 129 0.3211 0.9867 0.4650 0.4604 0.8133 0.8847 0.9049

DNN Tr 725 4,190 9 31 0.9590 0.9979 0.9686 0.9732 0.9877 0.9919 –

Tst 107 1,044 6 83 0.5632 0.9943 0.6977 0.7063 0.9469 0.9282 0.9607

Val 106 1,046 4 84 0.5579 0.9962 0.7020 0.7067 0.9636 0.9290 0.9167

HN Tr 743 4,172 27 13 0.9828 0.9936 0.9691 0.9738 0.9649 0.9919 –

Tst 116 1,017 33 74 0.6105 0.9686 0.6415 0.6844 0.7785 0.9137 0.9329

Val 119 1,021 29 71 0.6263 0.9724 0.6652 0.7041 0.8041 0.9194 0.8794

RNN Tr 670 4,157 42 86 0.8862 0.9900 0.8982 0.9128 0.9410 0.9742 –

Tst 106 1,026 24 84 0.5579 0.9771 0.6291 0.6625 0.8154 0.9129 0.9296

Val 100 1,011 39 90 0.5263 0.9629 0.5585 0.6079 0.7194 0.8960 0.8534

CNN Tr 746 4,169 30 10 0.9868 0.9929 0.9692 0.9739 0.9613 0.9919 –

Tst 86 1,037 13 104 0.4526 0.9876 0.5851 0.5952 0.8687 0.9056 0.9329

Val 92 1,032 18 98 0.4842 0.9829 0.5917 0.6133 0.8364 0.9065 0.8967
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FIGURE 6 | Radar plot of the fingerprints-based classification model.

FIGURE 7 | ROC curve of fingerprints-based model (left: test set, right: validation set).

top 20 descriptors and their corresponding meanings are shown
in Table 4. From the information of selected descriptors, it is
clearly that the walk and path count descriptors hold a great
impact on the ARE toxicity of compound. The 3D matrix-based
descriptors, the edge adjacency indices as well as the atom-
type E-state indices are also significant for the ARE toxicity
of compound. Besides, the 2D matrix-based descriptors and
2D autocorrelations P_VSA-like descriptors also have a close
correlation with ARE toxicity of compound.

Performance Evaluation of
Fingerprints-Based Classification Models
In addition to the general molecular descriptors, the molecular
fingerprint is another effective method to represent the structural
features of molecules. A typical frequency of fingerprints
occurred in the 1,024 bins of the compounds in the data set
is shown in Figure 5. The fingerprints features were applied to
build the six models including DNN, HN, RNN, CNN, RF, and
SVM. The results are presented in Table 5 and the radar plots are
presented in Figure 6.

For the training set, 5 out of all 6 models performed very well,
except for the RNN method. According to the prediction results

for test set, the value of SP, ACC, and precision were relatively
stable, while the SE, F1-score and MCC showed different
performance. The HNmodel exhibited the highest SE value while
the SVM gave the lowest one. For the validation set, HN also
performed better than other models on SE. As shown in Figure 7,
all 6 models presented good ROC and large ROC-AUC, which
were better than descriptor-based models. RF model has the

highest ROC-AUC with 0.924 better than the DNN model with
0.917. However, the ACC of RF was lower than DNN model. But

for the external validation set, Deep Learning methods had better

generalization ability. Overall, the fingerprints-based models can
give better prediction results than those based on molecular

descriptors. The fingerprints of compounds were more useful

than the descriptors for ARE toxicity prediction of compounds.
Compared with the traditional machine learning methods,

deep learning methods had better learning ability and they
could extract the inherent characteristics of the data. For the

models based on the molecular descriptors, DNN showed

highest ROC_AUC and ACC, while the HN exhibited the
best SE performance. Considering the fingerprints features, the
performance of DNNmodel was still well and HN showed higher
SE than other models.
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TABLE 6 | The reported top 10 prediction models of ARE toxicity prediction in Tox

21 challenge data set.

Methods ROC-AUC Balanced accuracy

DNN based on FPa 0.917 0.777

Bioinf@JKU 0.840 0.677

Bioinf@JKU-ensemble4 0.832 0.716

Bioinf@JKU-ensemble3 0.832 0.650

Bioinf@JKU-ensemble2 0.830 0.729

Bioinf@JKU-ensemble1 0.827 0.650

AMAZIZ 0.805 0.715

Microsomes 0.804 0.605

T 0.801 0.696

NCI 0.783 0.711

dmlab 0.768 0.519

aFP means Fingerprints.

The Comparisons Between Our Models
and Other Models
We also compared the performance of our models with other
reported models5. For the ARE toxicity prediction of Tox21
challenge data, the deep neural network models developed by
Mayr et al. (2016) gave the best prediction results compared
with other models. The best results they obtained had ROC-
AUC 0.840, Balanced Accuracy 0.677 for the validation set. Other
models displayed ROC-AUC ranging from 0.768 to 0.832 with
the balanced accuracy between 0.519 and 0.729 using traditional
machine learning methods, such as RF, SVM, and Naive Bayesian
(shown in Table 6). Compared to their models and other models,
our prediction models can give better prediction results. For the
validation set, our best DNN model had ROC-AUC 0.917 and
Accuracy 0.929.

5https://tripod.nih.gov/tox21/challenge/leaderboard.jsp

CONCLUSIONS

In this study, multiple deep learning algorithms were used
to predict the ARE toxicity of compounds based on two
kinds of molecular features including the general molecular
descriptors and fingerprints. The DNN model based on
fingerprints had an outstanding performance with ROC-
AUC 0.917 and ACC 0.929, while the DNN model based
on the general molecular descriptors had relative lower
predictive ability with ROC-AUC 0.857 and ACC 0.896,
suggesting that the fingerprints can represent the structural
features of compounds related to their ARE toxicity more
comprehensively. Compared with the traditional machine
learning model, the deep learning models had much better
predictive ability. Our constructed accurate predictive models
on ARE toxicity will be valuable to the assessment of toxicity
of compounds.
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