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Genetic encodings and their particular properties are known to have a strong influence on
the success of evolutionary systems. However, the literature has widely focused on
studying the effects that encodings have on performance, i.e., fitness-oriented studies.
Notably, this anchoring of the literature to performance is limiting, considering that
performance provides bounded information about the behavior of a robot system. In
this paper, we investigate how genetic encodings constrain the space of robot phenotypes
and robot behavior. In summary, we demonstrate how two generative encodings of
different nature lead to very different robots and discuss these differences. Our principal
contributions are creating awareness about robot encoding biases, demonstrating how
such biases affect evolved morphological, control, and behavioral traits, and finally
scrutinizing the trade-offs among different biases.
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1 INTRODUCTION

There are two main classes of genetic encodings, namely, direct encodings and indirect encodings;
the latter are also known as generative encodings. Direct encodings represent each phenotype
component independently in the genotype. Conversely, generative encodings allow the reuse of
genotype portions that code for similar or identical phenotype components. When working with
evolutionary algorithms, it is well known that an encoding benefits from a high locality (Gottlieb and
Raidl, 1999; Rothlauf and Goldberg, 1999; Rothlauf and Goldberg, 2000). This means that small
changes in the genotype should result in smooth changes to the phenotype, and thus smooth changes
to the fitness (Jones and Forrest, 1995). The lack of such a property could cause good quality parents
to produce very low-quality offspring, thus leading to local optima around these parents. In
particular, generative encodings often present a low locality (Gottlieb and Raidl, 2000; Rothlauf
andOetzel, 2006; Rothlauf, 2006). This scenario is undesirable, once generative encodings afford very
desirable properties, like reuse and regularity (Doursat et al., 2013). Reuse is of utmost importance
because it allows simplifying the optimization problem by solving small parts and then reusing them
together in different contexts. For instance, while only 30.000 genes code all traits of the human body
(Deloukas et al., 1998), our brain by itself has trillions of neurons (Dellaert, 1995). Because of this
reuse capacity, evolution can, for example, discover a limb only once and regularly repeat this limb
multiple times in the body of a creature. The importance of reuse is corroborated by research on
modularity and its relevance for evo-devo (Bolker, 2000; Kuratani, 2009).

For the evolution of robots, generative encodings are commonly employed, sometimes focusing
on the controller (Harding and Miller, 2005), and sometimes evolving both morphology and
controller (Jelisavcic et al., 2018). In his seminal work, Sims applied directed graphs to conjointly
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evolve morphology and controller of virtual creatures (Sims,
1994). Since then, many other examples have appeared in the
literature investigating diverse topics, like body-brain co-
evolution itself (Hornby and Pollack, 2001), soft-robots
(Cheney et al., 2014), physical robots (Lee et al., 2013),
reconfigurable organisms (Kriegman et al., 2020),
environmental influences (Auerbach and Bongard, 2014),
developmental neural controllers (Kodjabachian and Meyer,
1998), and even encodings that use low-level abstractions from
biology (Bongard, 2002). Among all this literature, the two
generative encodings most commonly used to evolve robots
are CPPNs (Stanley, 2007; Stanley et al., 2009) and L-Systems
(Lindenmayer, 1968).

With respect to encoding comparisons, studies in the literature
have been excessively focused on performance (Komosiński and
Rotaru-Varga, 2001; Yosinski et al., 2011; Collins et al., 2019),
i.e., fitness-oriented studies. This is the case from simple
encodings (Janikow and Michalewicz, 1991) for solving
classical problems like the Knapsack (Colombo and Mumford,
2005), to neuroevolution (Gruau et al., 1996; Siddiqi and Lucas,
1998) and also complex applications like evolving robot
morphologies coupled with controllers (Hornby et al., 2003).
While scarce, a few studies extended their investigations to
aspects beyond performance. For instance, two different
studies (Veenstra et al., 2017; Veenstra et al., 2019) compared
performance when using a direct and a generative encoding, but
constraining body development to different limits of body parts,
and showed that the generative encoding is more efficient in the
initial stages of evolution. Furthermore, it has been demonstrated
that though CPPNs are able to produce more regularity,
i.e., repetitions in the phenotype, than a direct encoding, the
bias of the CPPNs towards regularity can be a complication for
applications that require some level of irregularity (Clune et al.,
2011). Another interesting study (Tarapore and Mouret, 2015)
discusses the trade-off between performance and phenotypic
variation. Notably, this focus of the literature on performance
is limiting, considering that performance provides bounded
information about the behavior of a robot system.

It is relevant for our discussion to mention that an encoding
and its operators influence which phenotypes have more
probability of being sampled. This may impose a space
topology where some parts are more easily accessible than
others, which may naturally result in biases (Komosiński and
Rotaru-Varga, 2001). Importantly, such biases can be associated
with the low locality previously discussed and can have a powerful
effect in constraining searches in different ways. Considering that
two given encodings may produce different search spaces, they
may present different phenotypic constraints, despite acting upon
the same design space. This means that the choice of a particular
encodingmay be a limiting factor for a given application that does
not suit the imposed constraints. For example, the effect of
environmental influences on robot traits was investigated
(Miras and Eiben, 2019), demonstrating the difficulty of
inducing phenotypic differentiation through environmental
changes. In fact, despite some environmental changes having
caused clear degradation in evolvability, in some cases robots still
converged to the same phenotype. Although this study was not

conclusive about why this happened, another study hypothesized
that this could be due to limitations of the encoding (Miras et al.,
2020). Finally, and on the other hand, the existence of a
constrained space could, for a particular application, be
actually desirable.

In this paper, we investigate the effects of generative encodings
on evolved robots beyond performance, analyzing phenotypic
and behavioral traits. Our main contributions are a) create
awareness about robot encoding biases, b) demonstrate how
such biases affect evolved morphological, control, and
behavioral traits, c) scrutinize the trade-offs among different
biases, and d) demonstrate a mechanism to evade undesired
biases.

2 SYSTEM DESCRIPTION

Our experiments were realized using a simulator called Gazebo,
interfaced through a robot framework called Revolve (Hupkes
et al., 2018). Here, we refer to both morphology (body) and
controller (brain) as the phenotype of a robot.

2.1 Robot Morphology
Each morphology phenotype is composed of modules (Auerbach
et al., 2014) as shown in Figure 1, and the shape of the
morphology is determined by evolution. Each module has a
cuboid shape and has slots where other modules can attach.
The morphologies can only develop in two dimensions, that is,
the modules do not allow attachment to the top or bottom slots,
but only to the lateral ones. There are five different types of
modules: core components, bricks, vertical joints, horizontal
joints, and touch sensors. Any module can be attached to any
module through its slots, except for the touch sensors, which
cannot be attached to joints. Each module type is represented by a
distinct symbol, and these symbols are used in the genotype
encodings.

Previous work (Jelisavcic et al., 2017) demonstrated that this
modular robot system functions in real hardware. Each module
can be 3D printed, while the assembling of the modules and
electronic parts (servos, sensors, board, etc.) is made manually.
Production tutorials can be found in the link http://robogen.org/
docs/video-tutorials.

2.2 Robot Controller
Each controller phenotype is a hybrid artificial neural network
(Figure 1), which we call Recurrent Central Pattern Generator
Perceptron (Miras et al., 2020). By hybrid we mean that we
combine concepts from 1) CPGs, by having oscillator neurons; 2)
Perceptrons, by having inputs connected to a single layer of
neurons; 3) Recurrent neural networks, by allowing these neurons
to have recurrent connections. In practice, the oscillator neurons
generate a constant pattern of movement, and the sensor inputs
can be used either to reduce or to reinforce movements, while the
influence of these inputs can be remembered from each previous
oscillation cycle. Every aspect of the network is defined by
evolution, and the network is formed by two types of nodes:
input nodes associated with the sensor modules; and oscillator
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neuron nodes associated with the joint modules. For every joint in
the morphology, there exists a corresponding oscillator neuron in
the network, whose activation function is defined by Eq. 1, which
represents a sine wave defined by amplitude, period, and phase
offset parameters. This activation function adjusts the output to
fit the range of our servo motors, as proposed in (Hupkes et al.,
2018).

O � 0.5 − a
2
+ sin((2*π/p)*(t − ppo))) + 1

2
*a, (1)

where, t is the time step, a is the amplitude, p is the period, and o is
the phase offset. The parameters a, p, and o can vary from 0 to 10.

The different oscillator neurons can not be directly
interconnected, and every oscillator neuron may or may not
possess a direct recurrent connection. Additionally, for every
sensor in the morphology, there exists a corresponding input in
the network, and each input might connect to one or more
oscillator neurons.

3 METHODOLOGY

3.1 Encodings
In independent experiments, we utilized two different types of
generative encodings, namely: CPPN and L-System. Note that
while the terms “encoding” or “representation” may or may not
include both the genotype and its decoding (Eiben and Smith,
2003), also known as genotype-phenotype mapping, here we
consider that it includes both. Because we, naturally, designed
our own decodings for the CPPN and the L-System, it would be
more precise referring to them as CPPN-based and L-System-
based encodings. Nevertheless, for the sake of simplicity, we refer
to them as simply CPPN and L-System.

3.1.1 Compositional Pattern Producing Network
In this case, the robot genotypes are represented using
compositional pattern producing networks (CPPNs) (Stanley,
2007; Stanley et al., 2009), conjointly encoding both
morphology and controller. A CPPN is a neural network that
evolves to have multiple layers with diverse activation functions

and is used to generate structures. A structure is generated by
inputting the network with a context related to the structure, for
instance, coordinates, and then using the outputs of the network
to define the building blocks of this structure. Figure 2 shows an
example of CPPN and the substrate that it intends to populate.
The substrate is a 2D grid representing the robot morphology and
has multiple cubes so that each cube may contain a module or
not. The size of the substrate equals z2, and here we define z � 9,
having the central cube always containing the head. Using the
CPPN to define a morphology or controller trait is called
querying, and it means inputting the normalized coordinates
of a cube to the CPPN, so to use its outputs to define a trait.
Additionally to the coordinates, the distance d between the center
and the queried cube is also inputted. The possible outputs of the
CPPN are the types of modules to be placed in a cube (or if the
cube is supposed to stay empty), and parameters for the
controller. In practice, the module selected by each query is
the one with the highest value outputting from its respective
neuron. As for the parameters of the controller, they are used
exactly like they are outputted by the network.

The querying happens in two stages, and some inputs and
outputs may be ignored depending on the stage. Stage one: 1) the
querying starts from the head, as a turtle-reference is set to the
central cube; 2) clockwise around the turtle-reference cube, every
direction around it is recursively queried using X and Y
destination; 3) the recursion stops when reaching the limits of
the substrate, or when encountering a cube that is already
occupied; 4) when a module is queried to be placed into an
empty cube, if the new module is attachable to the module in the
turtle-reference cube then they become attached, and the turtle-
reference moves to the new module; 5) if the new module is a
joint, the parameters for the controller are plugged to the
controller accordingly, otherwise they are ignored. Stage two:
1) extra queries are made to define the weight between sensors
and joints when these modules have already been queried, where
X and Y origin represent a sensor and X and Y destination
represent a joint; 2) to query the weight of a recurrent connection
of a joint X and Y must be provided as the same for origin and
destination; 3) the parameter weight must be above 0.05 for a
connection to be created.

FIGURE 1 | In the first box, the robot modules: Core-component, which carries the controller electronic board (C); Structural brick (B); Active hinges with servo
motor joints in the vertical (A1) and horizontal (A2) axes; and Touch sensor (T). The polygons above the pictures of the modules are used to illustrate robot parts in the
results section, and the letters are used to represent themodules in the robot encoding. Modules C and B have attachment slots on their four lateral faces, and A1 and A2
have slots on their two opposite lateral faces; T has a single slot, which can be attached to any slot of C or B. In the second box, an example of a robot (top-down
view) before the simulation starts, while in the third, the same robot during a simulation. In the final box an example of a controller of a robot that has a single sensor and a
single joint: the network controller has a single oscillator neuron (with a recurrent connection), and a single input.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6723793

Miras Influence of Encodings on Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


In the initialization, the CPPNs have no hidden neurons, and
the inputs fully connect to the outputs using random weights
drawn from a normal distribution with μ � 0 and σ � 1, while the
activation functions are also randomly chosen. The activation
functions utilized were sigmoid, sinusoid, Gaussian, tanh,
absolute, and inverse. The reproduction is made by copying a
parent sampled using a binary tournament and then mutating it
with a probability of 80%. When selected to be mutated, a
genotype can go through multiple different mutations, with
probabilities: 50% for adding a new connection, 50% for
deleting a connection, 20% for adding a new node, 20% for
deleting a node, and 80% for mutating any weight, 50% for
changing any activation function. More details about these
operators can be found in (Stanley and Miikkulainen, 2002).

3.1.2 L-System
In this case, the robot genotype is represented using an L-System
(Lindenmayer, 1968), conjointly encoding both morphology and
controller. L-Systems are parallel rewriting systems composed by
a grammar defined as a tuple G � (V ,w, P), where,

• V, the alphabet, is a set of symbols containing replaceable
and non-replaceable symbols.

• w, the axiom, is a symbol from which the generative process
starts.

• P is a set of production-rules for the replaceable symbols,
having one production-rule paired with each replaceable
symbol.

The particular encoding and decoding design for the current
robot system were proposed and studied in (Miras et al., 2018b;
Miras et al., 2020). In summary, each genotype is a distinct
grammar instance, making use of the same alphabet. The
alphabet is formed by symbols that represent types of
morphological modules as well as commands for assembling
modules and commands for defining the structure of the

controller. In the decoding process, the grammar uses its
production-rules to grow from its axiom into a more complex
string of symbols, and finally, these symbols are translated into
morphology and controller components. To initialize a genotype,
for each production-rule, exactly one symbol is drawn uniformly
random from each of five categories of symbols in the alphabet.
This process is repeated s times, being s sampled from a uniform
random distribution ranging from 1 to e. The crossover
probability is 80%, and is done by uniformly random selecting
full production-rules from the parents. The mutation probability
of a genotype is 80%, so that one uniformly-randomly chosen
production rule is mutated. For this production-rule, there is an
equal chance of adding, deleting, or swapping one random
symbol from a random position of it. More details about the
operators can be found in (Miras et al., 2020), while the only
parameter we used differently is the maximum number of groups
of symbols e � 3, and the maximum number of modules m � 81.
This was done to allow the L-System robots to grow as large as the
CPPN robots can grow, given the substrate size of the CPPN.

3.2 Robot Traits
To access the phenotypic and behavioral traits of the populations
we utilized a set of trait descriptors proposed by (Miras et al.,
2018b; Miras et al., 2020), where more details about them can be
found. The descriptor Stability of Speed was proposed in the
current paper. Importantly, with the term “behavior”, we mean
what results from the interaction between the phenotype (body
and brain) and the environment.

3.2.1 Behavioral Traits
1. Speed: Describes the speed (cm/s) of the robot along the

x axis.
2. Balance: Describes the rotation of the robot in the x–y

dimensions, so that perfect Balance belongs to both pitch
and roll being equal to zero. The higher the Balance, the less
rotated the center of the robot is. The center is defined as the

FIGURE 2 | (A)Didactical example of CPPN: inputs are the coordinates of the substrate, while outputs are used to definemodules to be placed in the substrate and
also the parameters of the controller. (B) Morphology substrate.
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center of mass of the head-link: the union of the head and a
possible group of non-actuated modules connected directly
to it.

3. Stability of Speed: Describes the stability of robot behavior
in regard to speed. This value represents the difference
between the speed of a robot on two occasions, and is
defined by Eq. 2:

s � sd − ss (2)

where ss is the speed of the robot using the standard evaluation
time, and sd is the speed of the robot using double this time.
“Standard” means this evaluation time was used during the
evolutionary process. The closer this value is to zero, the more
stable the behavior of speed is. Being stable means that the robot
speed on one occasion is not different than the speed in another
occasion, even if this second occasion is a longer period of time.

3.2.2 Phenotypic Traits
1. Size: Total number of modules in the morphology.
2. Proportion: The 2D ratio of the morphology.
3. Limbs: The number of extremities of a morphology relative

to its body size.
4. Length of Limbs: Describes how extensive the limbs of the

body are.
5. Joints: Describes how movable the body is.
6. Symmetry: Describes the reflexive symmetry of the body

around the head.
7. Coverage: Describes how full is the rectangular envelope

around the body.
8. Branching: Describes how the attachments of the modules

are grouped in the body, accounting for the ones that have
module attachments to all of its slows.

9. Average Period: Describes the average of the parameter
Period among the oscillators of the controller. The higher
this value, the slower the oscillation pattern, and thus slower
the movement of the motors.

3.3 Evolution
We use overlapping generations with a population size μ � 100.
In each generation, λ � 50 offspring are produced. From the
resulting set of μ parents plus λ offspring, 100 individuals are
selected for the next generation using binary tournaments.

The evolutionary process is divided into three stages: 1)
primary initialization: happens in generation 0, using the
initialization operators of each encoding; 2) secondary
initialization: happens from generation 1 to 49, optimizing for
morphological novelty; 3) optimization: happens from generation
50 to 149, optimizing for speed. During the optimization, each
robot was evaluated for 30 s. Finally, for each encoding, the
experiment was repeated independently 20 times. A summary
of the parameters for the evolutionary algorithm is provided here:

• Population size 100
• Offspring size 50
• Number of generations 150

• Experiment repetitions 20
• Evaluation time 30

The secondary initialization stage is inspired by (Buchanan
Berumen et al., 2020), with the optimization searching for
morphological novelty using Novelty Search (Lehman and
Stanley, 2008). In this case, the fitness function is defined as
N � n, where n is a measure of novelty which is calculated as the
average distance to the k-nearest neighbors of an individual, for
which k � 10 and the distance is the Euclidean distance regarding
the following morphological descriptors: Branching, Limbs,
Length of Limbs, Coverage, Joints, Proportion, and Symmetry.
The set of neighbors for the comparison is formed by the current
population, plus an archive, to which every new individual has a
5% probability of being added, with the individuals added to the
archive remaining in it until the end. This step of search space
exploration is important because, in the forthcoming analysis, it
will help to demonstrate that the observed biases are not simply
fruit of an unlucky or biased initialization.

As for the optimization stage, the optimization concerns
increasing speed in a task of directed locomotion on a plane
terrain. The fitness function utilized is defined by Eq. 3:

f1 �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sx if sx > 0,
sx
10

if sx < 0,

−0.1 if sx � 0,

(3)

where sx is the speed of the robot. This function measures the
speed of the robots (only) in the x axis. Additionally, it has
penalties for robots that do not move, or that go to the wrong
direction.

3.4 Abortion Mechanism
The abortion mechanism acts upon the reproduction operator of
the encodings and is employed in only one of two types of
experiments we carry out in this paper, aiming to evade the
encoding biases. The mechanism is described hereby: 1) sample
c � 50 children of a parent; 2) measure the distance between each
child and the parent using the Euclidean distance among the same
descriptors utilized for the measure of novelty; 3) choose one
child to be born and abort all the others; 4) the child chosen to be
born is the child closest to the parent, as long as it is not
identical—if every child is identical choose a random child.
This means that a total of 250 children are sampled in the
reproduction step of each generation, while only 50 are
ultimately born to be evaluated.

Moreover, to simplify the comparison between parent and
child, we eliminate the crossover operator (if existent), and
therefore reproduction is performed by copying the parent
and mutating it with probability of 100%.

3.5 Experimental Setup
We conducted two types of experiments using the same setup,
except that in experiment 2 the abortion mechanism of the
previous section is employed. Both experiment 1 and
experiment 2 are divided into two sub-types, one using the

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6723795

Miras Influence of Encodings on Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


CPPN encoding and another using the L-System encoding.
Figure 3 illustrates the different experiments carried out. The
code to reproduce all experiments is available on https://github.
com/ci-group/revolve/releases/tag/Frontiers21constrained_1.1.

4 RESULTS AND DISCUSSION

Hereby we analyze the influence of the two encodings on
phenotypic and behavioral traits of the robot populations
resultant from our experiments.

4.1 Novelty and Behavior
We start by analyzing morphology holistically, comparing the
multidimensional morphological novelty in the populations
evolved using each encoding (Figure 4, top). This measure
indicates how different from each other these individuals are
within their populations. The same measure of novelty utilized to
evolve the initial populations is applied here, but discarding the
archive from the set of neighbors. The reason for not considering
the archive is that we are now interested in the present diversity
levels of the populations, and not in the history of the novelty
search. The novelty in generation 0 is lower with the CPPN than
with the L-System. This is true for the median as well as for the
first and third quartile, and the difference is most intense for the
first quartile. Moreover, even after evolving the populations
towards morphological novelty, novelty is still lower with the
CPPN. Though the two encodings naturally present an
improvement in novelty in generation 49, this novelty is
significantly lower with the CPPN for both median and first
quartile. Finally, around 25 generations after switching the fitness
from novelty to speed, which happened from generation 50 on,
novelty dropped to zero in both the CPPN and the L-systems
populations, and remained there for the median and first quartile.
This drop seems to be caused by selection pressure for some given
morphological traits. As for the third quartile, though novelty is a
little higher with the CPPN, this novelty is deceiving and, as we
are going to discuss soon, has a severe impact on the performance.
The heat-maps of Figure 5 show that differently from the
L-System, the CPPN presents in most generations some robots

with extremely low or large size. Note that though these robots are
different from the rest, they are not functional. In the column
“Gen 149/worst” of Figure 6 we see that they often have no joints
and are either blobs or only-head robots, which seems to be a
consequence of a particular bias that will be discussed in the next
section. As can be seen, the CPPN presents a higher
morphological bias, i.e., often discovering very similar
morphologies, that starts at the initialization and persists
throughout the search to some extent. Nevertheless, these
higher levels of morphological novelty of the L-System did not
prevent its populations from converging morphologically almost
as soon as the CPPN populations.

Turning now to the performance on the task (speed), the two
encodings exhibit a drastic difference (Figure 4, middle), with
CPPN robots being on average more than three times slower for
the median and third quartile. This difference is even more severe
for the first quartile, where the CPPN has an average very close to
zero. This first quartile difference seems to stem from
dysfunctional robots discussed in the previous paragraph.
Interestingly, both encodings present cases of “extreme runs,”
meaning runs with an average very far from the averages of the
other runs (Figure 7).

While speed is a behavioral trait that we directly optimize
through the fitness function, let us now observe a behavioral trait
that emerged to accomplish the task, despite not having been
directly optimized: Balance (Figure 4, bottom). This trait is
interesting, because it can partially describe the gaits of the
robots, and they happen to be very different when using each
encoding. For median and both quartiles, whereas from the start
CPPN presents and maintains almost maximum Balance,
L-System quickly drops down to an average of around 0.7,
and maintains that until the end. This distinction is
corroborated when observing the robot gaits of the best
individuals of the populations. A video with some of the best
robots of the experiments can be seen and in Supplementary
Material and here: https://www.youtube.com/watch?
v�tZQ1dUoNHJY&feature�youtu.be. L-System robots most
often locomote by rolling forward over their bodies, and only
sometimes by rowing—simultaneously stroking with multiple
limbs. In contrast, CPPN robots never roll, but most often

FIGURE 3 | Illustration of the experimental setup.
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row or walk. Note that rolling is a gait with low Balance, because
by rolling the robot rotates its center. On the other hand, walking
and rowing have a higher Balance, keeping the center relatively
stable and producing a coordinated gait. This particular
behavioral divergence is very relevant to our discussion
because it helps us to elaborate on the trade-off between using
each of the two studied encodings. Although the L-System robots
perform better on the task, as measured by speed, their gaits are
somewhat “reckless”. By reckless, we mean that their gaits are

defined by messy irregular patterns of body motion. Though this
recklessness may not necessarily be a problem, it is not hard to
imagine a situation in which this would be concerning. For
instance, the rolling robots have their heads often rotating and
sometimes bashing them against the floor. Given that in our case
the head carries the processing board, this rolling gait could
increase the chance of damaging this board. Beyond this
hypothesis, the irregularity in the gaits of the L-System
snakes has a much more severe implication. During the

FIGURE 4 |Distributions of novelty and behavioral traits for the populations. The aggregation of measures happens in two levels: Firstly, the plots on the left, middle,
and right regard aggregations within the population of each run using the first quartile, median, and third quartile respectively. Secondly, the lines represent the median
among the runs while the clouds around it represent their first and third quartile. The red arrows point to the p values of Wilcoxon tests comparing the two encodings in a
given generation. NS means non-significant. Note that there is no behavioral data before generation 50, when robots were evolved for morphological novelty only.
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FIGURE 5 | (A) Distribution of phenotypic traits for the populations. Aggregations and tests are the same as in Figure 4. (B) The heat-maps display the values for
the robot traits of every robot in every generation, including three example runs.
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optimization stage, the life-time of a robot is short, even though
after deployment this lifetime would probably be much longer.
Therefore, it is inherently desirable to have robots in the
population that behave well during a short life-time, and that
do not suffer significant degradation of their behavioral quality
if their life-time is stretched longer. Nevertheless, when
analyzing the stability of the behavior of speed with each
encoding, we realize the L-System robots are very unstable
(Figure 8). The measurements done with Eq. 2: show that
while the CPPN robots have average stability close to zero,
L-System robots have average stability close to −2. This means
that while the CPPN robots present little difference in quality
when living a longer lifetime, the L-System robots are in average
2 cm/s slower.

4.2 Phenotypic Traits
As opposed to the previous section, here we analyze the
independent phenotypic traits and their relations to behavioral
traits. Figure 5 shows the distributions of four morphological
traits and also one trait of the controller. Looking at these curves,
what is most striking is that L-System robots are always different
from CPPN robots, and this happens in all of the three stages of
our evolutionary process: primary initialization, secondary
initialization, and optimization. Additionally, in all cases
except Size, traits that started at a higher value with one of the
encodings remained higher until the end. For instance, Symmetry
was lower with the L-System than with the CPPN at generation 0,
generation 49, and generation 149. In the final populations,
L-System robots were much larger, less proportional, less

FIGURE6 | Top-down 2D illustration of robots in different stages of the evolutionary process. Gen 0: random robot from primary initialization. Gen 49: random robot
from secondary initialization. Gen 149/best: best robot after optimization. Gen 149/worst: worst robot after optimization. Images size was adjusted to fit the cells.
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symmetrical, had fewer limbs, and a slower oscillation pattern. To
illustrate better, Figure 9 depicts the relationship between
phenotypic and behavioral traits. The density contours show
that the L-System spreads not only to different areas, but to
vaster areas of the space. Corroborating this observation, for all
traits, the quartile deviations from the medians among the runs
are wider for the L-System (Figures 4, 5). This means that with
the CPPN, more often an evolutionary run converges to the same
type of robot.

Considering the search chronologically, firstly we see changes
in the average traits from generation 0 to generation 49—this is
the case for traits that were included in the definition of novelty
and used during the secondary initialization (Figure 5). These
changes are reflections of the Novelty Search attempt to find
diversity. Secondly, when optimization is taking place, we see all
averages quickly dropping or increasing until stagnation. As
expected, this agrees with the previously discussed averages of
morphological novelty, in the sense that morphological
convergence does happen. On the other hand, the curves of
speed have not stagnated yet after the end of the evolutionary
process. It is relevant to mention that, given that all phenotypic
traits have converged but the speed continues to grow, we are led
to conclude that what is still being optimized are traits that are not
captured by our current trait measures. Moreover, because
through visual inspection we see that most robots have
converged to a particular body shape, as we will discuss soon,
this speed growth can most likely be attributed to changes in
combinations of control parameters, which happen to be less
intelligible and thus harder to observe.

We shall now inspect closer the appearance of the robot
morphologies. Figure 6 displays examples of robots in each of
the evolutionary stages. We see that after the optimization stage,
the L-System often produces I-shape robots, i.e., “snakes,” while

CPPN often produces cross-shape robots, i.e., “spiders.”
Moreover, the best robot and worst robot from a run
frequently look the same or very similar with the L-System. By
contrast, in most cases with the CPPN, the worst robot is a
dysfunctional robot characterized by a blob or an only-head
robot. This supports our previous observations about the
CPPN maintaining a (deceiving) slightly higher diversity by
sampling simple dysfunctional robots. Another aspect to note
is that in the primary initialization the CPPN already frequently
produces spiders and simple dysfunctional robots, though this
happens less frequently after the secondary initialization. The
same can be said about the L-System, but the simple
dysfunctional robots are accompanied by snakes instead of
spiders. Notably, while with the L-System it is unclear why
simple dysfunctional robots are produced so often right from
the initialization, in the case of the CPPN this phenomenon is
more simply explainable. Because the CPPNs are randomly
initialized—before any optimization takes place, it is very easy
to obtain a neural network that (almost) always outputs (almost)
the same results regardless of the inputs. In our particular case,
outputting always the same results means the same module gets
selected to be placed in every position of the substrate. Finally,
given the nature of our decoding and how the modules are
allowed to attach, when this happens, the most common
morphologies inevitably become something close to or exactly
like 1) spiders—when the joint neuron always has the highest
value, 2) blobs - when the block neuron always has the highest
value, 3) only-head—when the “no module” neuron always has
the highest value, and 4) only-head with sensors—when the
sensors neuron always has the highest value. See illustrations
in Figure 6, run 11 generation 0 for spider, run 15 generation 149/

FIGURE 7 | Average speed among runs: for each run, includes all robots
of the final generation (149) aggregated using the median. Number above box
is the p value of a Wilcoxon test.

FIGURE 8 | Average stability of speed among runs: for each run,
includes all robots of the final generation (149) aggregated using the median. A
marker above boxes represents a p < 0.001 for a Wilcoxon test.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 67237910

Miras Influence of Encodings on Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


worst for blob, run 16 generation 0 for only-head, and run 19
generation 0 for only-head with sensors.

4.3 Encoding Biases
So far we described the traits of robots produced by each
encoding, and how they are biased. Let us now watch closely
what these biases are, by inspecting the exploration of the search
space (Miras et al., 2018b). Figure 10 displays the robots most
commonly born during the secondary initialization stage of the
evolutionary process when the population was being evolved
towards novelty. This way, there was no selection pressure for
convergence, but divergence. However, while a perfectly unbiased
search would result in cubes being uniformly visited, what we see
is an exceedingly skewed distribution, with some cubes having an
extremely higher frequency than most others. In practice, this
means that a small number of morphology shapes are born much
more often than most other shapes. Note that though with both
encodings we get skewed distributions, the very highest
frequencies in the L-System cubes are lower than the ones
within the CPPN cubes. Observing the robots at the top of the
histograms we see that, with both encodings, these most
commonly born shapes are very simple, have few modules,
and are often dysfunctional. In the case of the CPPN though,
one of these very often born robots has a shape that is not so
simple neither dysfunctional, i.e., the spider.

At this stage, our observations begin to suggest that the
predominance of the spiders after the optimization stage when
using the CPPN is due to this bias. We could reason that if spiders

continue to be so commonly born despite the efforts of Novelty
Search, then it may also persist despite the efforts of a task
optimization. Beyond that, because the other most frequently
born shapes are simply dysfunctional, this grants the spiders even
more advantage for the task of locomotion. As for the L-System,
the most commonly born shapes are often dysfunctional as well,
but the large snakes predominant after optimization are never
part of these most commonly born shapes discussed in the
analysis above. Nevertheless, the high frequency of the
dysfunctional shapes may grant the snakes as much advantage
as it does to the spiders. The difference is that the spiders have the
extra advantage of being part of the most commonly born shapes
themselves. The observation that large snakes are not part of the
most commonly born shapes like spiders invites us to wonder
whether the eventual dominance in the population of the large
snakes is not simply a product of the bias, but of genuine selection
pressure for rolling snakes in the current environment and task.
Corroborating this thought, related work (Miras et al., 2018a)
using the current L-System has shown that it is possible to obtain
very diverse populations by combining the fitness of speed with
rewards for diversity and the growth of limbs. They demonstrated
that this way, though populations of robots become diverse to the
point of resembling animal-like bodies and gaits, these robots
were dramatically slower than the snakes. Moreover, let us
remember that the spiders are also dramatically slower than
the snakes. Another interesting aspect to be considered is that
though a medium size snake (four joints) is present as the third
most common robot with the CPPN, snakes never take over after

FIGURE 9 | Density of robots for pairs of traits: includes all robots from each final generation (149) of each run all together.
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the optimization. Perhaps what explains that is the fact that
spiders are born even more often, or even it could be that four
joints are not enough for an effective gate. Still, a more plausible
explanation may be that the best shape is never defined simply by
a bias, but by the interaction of the search space and the task.

To conclude this section, we will investigate possible reasons
for the observed biases. In Figure 11 we see examples of robots
that were alive in generation 59. We chose a generation belonging
to the optimization stage so that we could see examples of the
“champion” robots, but we did not choose a too late generation so
that we could still see their parents differing from them. What is
prominent in these genealogy illustrations is how easy it is to
transition from a simple dysfunctional shape into amore complex

shape, and vice versa. In particular, it seems possible to transition
from heads, blobs, etc. directly into spiders. For the sake of
simplicity, in the case of the L-System that uses two parents,
we depicted only one random parent. In any case, it is also
possible that a small body shape has a child that is a large snake
and vice versa. This effect of having non-smooth transitions
between parent and child is called a low locality. This means
that the heritability of bothmethods is not good enough, and then
too often small changes in the genotype have enormous effects on
the phenotype. We consider this to be a bias resulting from the
interaction between the encodings with their reproduction
operators, and advocate that awareness about this type of bias
must be created.

FIGURE 10 | Robots most frequently sampled by the reproduction operators during the secondary initialization. Each bar in the histogram represents how many
times robots that fit into that cube were ever sampled (born). Each cube is part of a large multidimensional cube where each dimension is one of the morphological traits
divided into 100 bins. The robots on the top of the plot are the representative of the cubes with the highest frequency (ordered from higher to lower). Each histogram
concerns one random run. Plots were scaled in x and y to 300 and 100 respectively.

FIGURE 11 | Examples of robot genealogy. From left to right, robots go from younger to older. The youngest robots were randomly sampled from generation 59 of
a random run. The red arrows point out non-smooth morphological transitions from parent to child.
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4.4 Effects of Abortion
The mechanism of abortion from experiment 2 had more
interesting effects on the L-System than on the CPPN. As
displayed by Figure 12, complex morphologies emerged with
the L-System in some of the runs. Note that by complex, we mean
that through visual inspection the shapes appear to be less simple,
e.g., multiple limbs to different directions and with different sizes,
resulting in walking gaits (as seen in the previous video). Though
large snakes are still predominant among the runs, this type of
complex morphology was never found with the L-System in
experiment 1. With the CPPN, on the other hand, no complex
shape emerged in any of the runs. Spiders are still almost always
produced, though here they happen more often to be semi-
spiders than in experiment 1. Figure 13 provides comparisons
between the robots traits of experiment 1—presented
earlier—and robot traits of experiment 2 using each encoding.
These comparisons support our visual inspection, showing that
some robot traits of the populations have changed when using the
abortion mechanism. With the L-System, now robots are less
actuated and have more limbs—note that the p-value for Limbs is
slightly above the convention, but becomes quite below it after
outliers are removed using the interquartile range. With the
CPPN, an increase in limbs and decrease in joints happens as
well, with an additional decrease in proportion. This agrees with

our observation of the CPPN producing semi-spiders more often
than before. As far as performance is concerned, there was a
significant drop in speed with both encodings, although this drop
was much more dramatic with the CPPN. The knowledge derived
from the current experiments does not allow us to formulate
clearly a reason for this drop. Still, it seems reasonable to consider
that this drop is related to having eliminated the crossover of the
L-System and increased mutation probability to the maximum
for both encodings. This can be said because preliminary tests
have demonstrated that, in terms of performance, the L-System
benefits from crossover, while the CPPN benefits from not having
crossover and using the mutation probability of experiment 1.
The results achieved by this mechanism of abortion are very
preliminary, and do not permit drawing strong conclusions.
Nevertheless, the purpose of this analysis is to illustrate an
alternative to tackling the biases discussed in this paper,
considering that the design of an unbiased encoding is still a
great challenge.

5 CONCLUSION

In this paper, we experimented with two different generative
encodings, namely, CPPN and L-System, and investigated their

FIGURE 12 | Best robots after optimization in experiment 2.
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effects on phenotypic and behavioral robot traits. For robot
encodings, we learned that there is a tendency for the two
encodings to sample robots with certain traits more often than
others, and that the type of robots which are selectively sampled
differs between the two encodings. This type of bias derives
from the interaction between the encoding with its initialization
and reproduction operators. Our results demonstrated that
both encodings generate biased samples of robots. More
importantly, these biases have a very diverse nature and
influence the production of very distinct types of robots.
Fundamentally, this observation invites us to reflect on the
trade-off that is imposed by such differentiation in the
constrained space of each encoding. Robots produced by the
CPPN often have a “spider” shape and are relatively slow, but
present very coordinated and stable gaits. By contrast, robots
produced by the L-System often have a “snake” shape and are
much faster, but present exceedingly uncoordinated and
unstable gaits. These trade-offs illustrate that producing
better robots does not necessarily mean producing robots
with higher performance, i.e., faster robots. That is true
because “better” could be related to other qualities beyond
the performance itself. While one could argue that every
desirable trait could and should be reflected in the fitness-

function(s), in practice fitness-function design is extremely
challenging, specially if too many dimensions need to be
optimized. Reflecting on these results, as an alternative to
fitness-function design, one could take advantage of such
encoding constraints, as a way of driving the search to a
particularly convenient solution space. While in some cases
a bias could be perceived as a curse that needs to be escaped, in
other cases it could also be seen as desirable. That may be the
case if, for instance, robots produced with an encoding were
biased to a particular trait, and this trait was suitable for their
intended environment or task beyond performance. One
example: let us imagine robots responsible for carrying water
as fast as possible. These robots would need more than speed,
but also a balanced and stable gait, so that the water would not
be spilt. While designing fitness functions and optimizing for
multiple objectives can be tricky, one alternative solution is
using an encoding that is very constrained in terms of gait
balance, e.g., the CPPN used in the current study. In this case,
before making a final choice of encoding and operators, one
could experiment with different types, and assess which of them
better allow to achieve such convenient solution space.

At this point, it is essential to clarify that the differences we
have observed between robots produced by each encoding do not

FIGURE 13 | Average robot traits among runs: for each run, includes all robots of the final generation (149) aggregated using the median. Numbers above boxes
are p values of Wilcoxon tests.
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depend simply on the nature of CPPNs and L-Systems as
genotypes representations. As mentioned in the Section 3.1,
for each one of them we designed our own decoding and
reproduction and initialization operators, fitting our design
space, and this naturally plays a substantial role in shaping the
search space. Therefore, the differences we hereby observed
depend on the search space as a whole, including genotype,
decoding, initialization operator, and variation operator. That
being said, our main message is not about specific biases of such
particular combinations, but to demonstrate how these
combinations, whatever they are, can constrain evolved robot
traits in different ways.

To finalize this discussion, let us recollect that the populations
of robots went through an extra stage of initialization aiming to
tackle initialization biases. Notwithstanding, though this stage
succeeded in increasing diversity in the initial population, the bias
persisted through the reproduction operators. This was the case
because both of these encodings present problems with locality.
Because it is known that generative encodings often suffer from
low locality (Rothlauf and Oetzel, 2006), we could hypothesize
that the biases originated from low locality are due to both tested
encodings being generative. However, related work using this
identical robot design space, but with a direct encoding, has
verified that a similar bias exists when searching for novelty
(Miras et al., 2018b). Whereas in a first moment an obvious
solution to that would be improving the encodings so to increase
their locality, this is frequently not a trivial endeavor. As one
alternative to that, we experimented with evading the biases
through an abortion mechanism. This mechanism resulted in
interesting effects with the L-System, so that more often complex

shapes emerged. The same result was not achieved with the CPPN
though, perhaps because its bias is stronger, as we have discussed
earlier.

For future work we propose to a) investigate the abortion
mechanism in more depth, allowing it to be carried also when
there is crossover; b) investigate ways of increasing the locality of
both the studied encodings.
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