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Abstract

Background: Time-series analysis with case-only data is a prominent method for the effect of environmental
determinants on disease events in environmental epidemiology. In this analysis, adjustment for seasonality and
long-term time-trend is crucial to obtain valid findings. When applying this analysis for long-term exposure (e.g.,
months, years) of which effects are usually studied via survival analysis with individual-level longitudinal data, unlike
its application for short-term exposure (e.g., days, weeks), a standard adjustment method for seasonality and long-
term time-trend can extremely inflate standard error of coefficient estimates of the effects. Given that individual-
level longitudinal data are difficult to construct and often available to limited populations, if this inflation of
standard error can be solved, rich case-only data over regions and countries would be very useful to test a variety
of research hypotheses considering unique local contexts.

Methods: We discuss adjustment methods for seasonality and time-trend used in time-series analysis in
environmental epidemiology and explain why standard errors can be inflated. We suggest alternative methods to
solve this problem. We conduct simulation analyses based on real data for Seoul, South Korea, 2002-2013, and
time-series analysis using real data for seven major South Korean cities, 2006-2013 to identify whether the
association between long-term exposure and health outcomes can be estimated via time-series analysis with
alternative adjustment methods.

Results: Simulation analyses and real-data analysis confirmed that frequently used adjustment methods such as a
spline function of a variable representing time extremely inflate standard errors of estimates for associations
between long-term exposure and health outcomes. Instead, alternative methods such as a combination of
functions of variables representing time can make sufficient adjustment with efficiency.
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Conclusions: Our findings suggest that time-series analysis with case-only data can be applied for estimating long-
term exposure effects. Rich case-only data such as death certificates and hospitalization records combined with
repeated measurements of environmental determinants across countries would have high potentials for
investigating the effects of long-term exposure on health outcomes allowing for unique contexts of local
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Background

Time-series analysis is a prominent method to estimate
the effect of short-term (e.g., days, weeks) environmental
exposures (e.g., air pollution, extreme weather) on health
outcomes [1, 2]. Time-series studies form the basis for our
understanding of environmentally susceptible populations
and the number of adverse health outcomes that can be
potentially avoided if an adverse exposure level were to be
reduced. Time-series data can consist of case-only records
such as death certificates, hospitalization records, and in-
surance claims. So, time-series analysis with rich case-only
data worldwide can contribute to not only the identifica-
tion of the relationships between environmental exposures
and a variety of health outcomes but also the improve-
ment of generalizability of scientific findings, given that it
is common that the health effects of environmental expos-
ure are heterogeneous across regions and countries due to
numerous modifiers such as demographics, socioeco-
nomic positions and health behaviors [3—6]. For example,
a recent study collected time-series data for mortality and
air pollution over 652 cities across 24 countries [4] and
found that the mortality effect of short-term exposure to
air pollution may differ by countries.

In addition to short-term exposure effects, some envir-
onmental exposures, such as air pollution, have long-
term (e.g., several months, years) exposure effects on
health. These effects that are generally stronger than
short-term exposure effects are usually investigated via
cohort data. In cohort studies, exposure is estimated
over long time periods, often accounting for mobility of
study participants [1]. Cohort data with location infor-
mation over time allow for more accurate assessment of
exposure over long-time frames as participants are
followed throughout time and changes in residence,
which could affect exposure. However, cohort data are
costly and difficult to construct, available for limited
populations, and sometimes not representative for the
general population so that generalizability for the magni-
tude of exposure effects is often limited: for example,
most of the published air pollution cohort studies for
Western countries, several for East Asian countries, and
none for the rest of the world [6]. In contrast, registry
data, such as death -certificates and hospitalization

records, are rich in many countries, but usually do not
have information for mobility. This leads to higher po-
tential exposure misclassification in studies of long-term
exposure compared to studies of short-term exposure,
which assume that participants had the same exposure
for a few days prior to the event. Nevertheless, for gen-
eral populations, such exposure misclassification is likely
to result in underestimation [7, 8], which would be a
basis of the conservative view if case-only data are used
for inferring long-term exposure effects (i.e., understat-
ing the effects rather than overstating them).

A critical challenge for applying time-series analysis with
case-only data into estimating the effect of long-term ex-
posure on health outcomes is to adjust for seasonality and
long-term time-trend. Unlike its application for short-
term exposure, adjustment for seasonality and long-term
time-trend may mask a real signal of the effect of long-
term exposure on an health outcome [9, 10] and can
greatly reduce temporal variability of residual time-series
of long-term exposure that is necessary to detect the sig-
nal [11]. So, the adjustment can inflate standard error of
estimates, which make it difficult to make an inference of
the effect of interest. In this regard, time-series studies in
environmental epidemiology have been generally focused
on short-term exposure, usually of a few days, at most
about 40-60 days of an exposure time-window [10, 12—
17]. In this paper, we address issues of adjustment for sea-
sonality and long-term time-trend in estimating the effects
of long-term exposure on health outcomes.

In the following sections, we discuss adjustment
methods frequently used in time-series studies and iden-
tify possible problems in estimating the effect of long-
term exposure when such methods are used. To solve
these problems, we suggest alterative adjustment
methods. We present statistical simulations and real data
analysis to demonstrate that the effects of long-term ex-
posure can be estimated via time-series analysis with al-
ternative adjustment methods.

Methods

Model formulation

Suppose that an individual’s hazard is estimated by a
multiplicative hazard model with exposure variables, and
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a study population is a general population that can be
seen as an open cohort. For shared environmental ex-
posure over all individuals in a study population at time
t and X,, population-averaged effect can be estimated
using Poisson regression model with aggregated-level
time-series data as follows [18]:

log(E[Yt]) =a+ €(Xt,...,Xt,L) +f(Z,f,...,Zt,]()
+¢(2)

where Y is the number of events and Z is a set of mea-
sured potential confounders such as temperature (for air
pollution studies), relative humidity, and influenza epi-
demic. e(X,...,X; ;) is a function of the population-
averaged effect of X from lag0 (same day) to lagL (ie.,
cumulative exposure for L+ I days) on Y. In the distrib-
uted lag model framework [19], this function is general-
ized to >7_oB,X;_ ;. The overall cumulative coefficient
(i.e., the logarithm of the overall cumulative relative

rate/risk) is B =31 o8 . In practice, an observable
e(Xy...,.X, 1) may not be equal to e(Xy...,X, ;) due to mor-
tality displacement and/or an exposure measurement
error [20, 21]. g(¢) is a function of the population-
averaged effect of unmeasured risk factors that shape
seasonality and time-trend in a time-series of Y [18].
Since X has seasonality and time-trend, confounding
could arise. To control for this confounding, several
techniques have been used in the time-series literature.
We discuss them in the context of estimating the effect
of long-term X (i.e., Xp...,X; 1, L>months or years) on Y.

Adjustment for seasonality and long-term time-trend
Detrending prior to regression

Prior to a regression analysis, seasonality and time-trend
in an exposure series and an outcome series can be
decomposed or removed by algorithms [14, 22, 23].
Detrended time-series can be used to estimate the effect
of short-term X on Y.

For estimating the effect of long-term X on Y, detrend-
ing prior to regression is more challenging because a real
signal of the effect of long-term X on Y may also be re-
moved. For example, detrending a time-series of Y will
remove some long-term fluctuation of Y that is formed

by SF,B,X;_ . Consequently, an estimate of the effect
of long-term X on Y would be biased toward the null.

Adjustment in regression models

Many time-series studies in environmental epidemiology
adjust for seasonality and long-term time-trend by add-
ing a variable or a set of variables representing time (z)
into regression models [1, 2, 11, 24]. Natural cubic
splines (NCS) with some degrees of freedom (df) per
year are frequently used, and its performance for adjust-
ment was tested by simulation studies [24—26]. We use
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NCS(¢,pdf/year) to denote this in generalized linear
models where ¢ represents a variable representing time
and p reflects the degrees of freedom. Non-parametric
splines in generalized additive models are also frequently
used, but for simplicity, we focus on the former as they
may provide less biased estimates [11, 24]. In mortality
studies, 3—8df/year is often used [24, 26, 27], but the op-
timal df may decrease depending on whether other vari-
ables explain seasonality to some extent (e.g., influenza
epidemic, heat wave) are included in models [27].

Often, a combination of some variables is used [28, 29],
such as NCS of calendar time of the year called day of the
year (or day of the season) and an indicator of year (ie.,
dummy variables) or equivalent (e.g., NCS of year). We
use NCS(doy,pdf)+I(year) to denote NCS of day of the
year (doy) and an indicator of year. But, NCS(doy,pdf)
may not allow for seasonality that may vary between years.
To address this, we additionally consider an NCS of the
order of week throughout a study period, NCS(week,qdf)
or an NCS of the order of month throughout a study
period NCS(month,rdf). NCS(doy,pdf)+I(year)+
NCS(week,qdf) +NCS(month,rdf) can collectively capture
seasonality and long-term time-trend.

To present comparison between these functions, we
smoothed daily time-series of PM;o and mortality in
Seoul, South Korea, 2002—-2013 through NCS with vari-
ous degrees of freedoms (Fig. 1). Hourly measurement of
PM;, concentration and all-cause mortality (Inter-
national Classification of Diseases-10th, A00-R99) were
obtained from the National Institute of Environmental
Research and Statistics Korea, respectively, and hourly
measurements from multiple monitors within Seoul on a
given day were averaged. Figure 1 shows that NCS(z,4df/
year) can capture seasonality and long-term time-trend.
NCS(£,10df/year) can further capture fluctuations more
aggressively, which in cases of all-cause mortality, may
be related to other environmental exposures such as
heat waves [27]. NCS(doy,10df)+I(year)+ NCS(week,
5df)+NCS(month,5df) also captures seasonality and
long-term time-trend although there are some differ-
ences compared to NCS(,10df/year): for example, a peak
around 3300 time point (i.e., day). Such differences may
be captured using additional dummy variables.

In estimating the effect of long-term X on Y, standard
errors can become very high, so that unstable estimates
or spuriously significant estimates can come out. This is
often referred to as overfitting as analogous of collinear-
ity problems. To illustrate overfitting, we regressed a
one-year moving average of PM;, concentration in
Seoul, 2002-2013 on functions of variables representing
time. Table 1 presents variance of residuals of this mov-
ing average and R”. NCS(t4df/year) explains nearly all
variability of the moving average (R?=99.3%). In com-
parison to NCS(t4df/year) and NCS(£,10df/year),
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Fig. 1 Seasonality and time-trend in daily time-series in Seoul, 2002-2013. a PM;, concentration (ug/m-). b all-cause mortality (number of
deaths/day), estimated by different functions of variables representing time. Abbreviation: df, degrees of freedom; doy, day of the week; NCS,
natural cubic spline; I(year), an indicator function of year throughout the study period; NCS(doy,10df), NCS of day of the year with 10df;
NCS(month,5df), NCS of the order of month throughout the study period with 5df; NCS(t,pdf/year), NCS of time throughout the study period with
pdf per year; NCS(week,5df), NCS of the order of week throughout the study period with 5df; PM;, particulate matter with aerodynamic
diameter <10 um

Table 1 Residual variance of one-year moving average of PM;, concentration in Seoul, South Korea, 2002-2013

Adjustment method for seasonality and long-term time-trend Residual variance R? (%)
Not adjusted 71.080

NCS(t,10df/year) 0.185 99.7
NCS(t,4df/year) 0.505 99.3
NCS(t,1.5df/year) 1.029 986
NCS(doy,10df)+l(yean+NCS(week,20df)+NCS(month,20df) 0.675 99.1
NCS(doy,10df)+(year)+NCS(week,5df)+NCS(month,5df) 2.088 97.1
NCS(doy,10df)+l(year) 2417 96.6

Abbreviations: df degrees of freedom, doy day of the year, I(year) an indicator function of year throughout the study period, NCS natural cubic spline, NCS(doy,pdf)
NCS of doy with pdf, NCS(month,pdf) NCS of the order of month throughout the study period with pdf, NCS(t,pdf/year) NCS of time throughout the study period
with pdf per year, NCS(week,pdf) NCS of the order of week throughout the study period with pdf, PM;, particulate matter with aerodynamic diameter <10 um
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NCS(doy,10df)+I(year) and NCS(doy,10df)+I(year)
+NCS(week,5df)+NCS(month,5df) explains to a lesser ex-
tent variability of the moving average (R°=96.6 and 97.1%
respectively). The perhaps seemingly small difference in re-
sidual variances between these methods could make strik-
ing difference in standard errors. Assuming that there are
no other covariates to be considered, standard errors may
be approximately 17 times higher when NCS(t,4df/year) is
used than when NCS(doy,10df)+I(year) +NCS(week,5df)+
NCS(month,5df) is used, which is based on a ratio of the
two standard deviations of the residuals [30].

To maintain variability in residuals of long-term X
using NCS(t,pdf/year), df needs to be reduced, but low
df results in loss of adjustment for seasonality. For ex-
ample, NCS(z,1.5df/year) does not adequately capture
seasonality (Fig. 1b). Note that this function still cap-
tures variability of a one-year moving average of PM;, to
a greater extent than NCS(doy,10df)+I(year)+NCS(week,
5df)+NCS(month, 5df) (Table 1). Thus, NCS(¢,pdf/year)
may not be relevant for estimating the effect of long-
term X on Y.
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variability of X to a great extent. NCS(¢,pdf/year) as a
standard method in time-series studies appears ineffi-
cient. A candidate we explored is a combination of some
variables such as NCS(doy, pdf)+I(year)+NCS(week,
qdf)+NCS(month,rdf) with moderate df. Simulations and
real-data analyses were conducted to test this method.

Confounding by long-term association
Although our primary interest is to estimate the effect of
long-term X on Y, whether the effect of short-term X on

Y (e.g. Z?io/))z (M<few days or weeks) can be con-

founded by long-term association (e.g., ZzL:M/))IXt—l)
merits investigation in that neighboring lagged variables
can have an confounding effect [31] and long-term asso-
ciation can be seen as an weighted moving average of X
that would contribute to seasonality and long-term
time-trend of Y. If conventional adjustment for seasonal-
ity and a time-trend does not sufficiently adjust for long-
term association, an inclusion of exposure variables may
be needed. Simulations and real-data analyses were also

In summary, adjustment for seasonality and long-term  conducted to explore confounding by long-term
time-trend should be made with avoiding reducing association.
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Simulation methods

We investigate performance of different functions to ad-
just for seasonality and long-term time-trend in estimat-
ing the effect of long-term X on Y using simulation
analyses.

Generating simulation samples
Figure 2 shows two hypothetical observable lag patterns
to generate simulation samples. The assumed overall cu-
mulative coefficients were 0.01 and 0.001 per a 1 pg/m?
increase of PMj,, for the observable lag patterns in
Fig. 2a and b, respectively. We considered the effect of
cumulative exposure on an outcome and mortality dis-
placement; we did not consider exposure measurement
errors. For example, epidemiologic evidence shows that
the logarithm of the relative risk of the exposure to
PM, 5 on mortality generally increases with the exposure
duration (i.e., L increases in the distributed lag model
framework) while the highest marginal increase arises at
the most proximal time of the exposure [32, 33]. We
considered two distributions of decreases in mortality
due to mortality displacement (Fig. S1 in Add-
itional file 1). Findings of many time-series studies fo-
cused on short-term exposure to PM imply that
observable lag patterns for short-term exposure to air
pollutants and mortality are non-linear [10, 12, 13, 15—
17, 34] suggesting that short-term mortality displace-
ment may play a role in shaping observable lag patterns.
We generated simulation samples for daily time-series
of PM;, and mortality based on real data of Seoul,
2002-2013. For this, we regressed the logarithm of daily
average of PMj, and the daily number of all-cause mor-
tality cases (except for accidental causes) on functions of
variables representing time and potential confounders in
time-series  studies, including a lag-structure of
temperature from lag0-21, relative humidity, influenza
epidemic, national holidays, and day of the week. For
temperature and relative humidity, hourly measurements
at the center of Seoul obtained from the Korean Me-
teorological Administration were averaged to daily
values. Influenza epidemic was based on the number of
hospital visits for influenza, which was obtained from
the National Health Insurance System. To generate a
time-series of PM;,, values were sampled from normal
distributions and then were exponentiated. A mean of
normal distributions was predicted with values obtained
from the regression model for the logarithm of PM;,.
Their standard deviation was estimated from the model
(low concurvitiy) or the value divided by 10 (high con-
curvity) [24]. To generate time-series of all-cause mor-
tality, the number of events were sampled from Poisson
distributions. A mean of Poisson distributions was the
sum of predicted values obtained from the Poisson re-
gression model for all-cause mortality and a product of a
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lag pattern and distributed lags of generated PM; series.
Technical detail for this section is presented in Add-
itional file 1. Fig. S2 in Additional file 1 shows an ex-
ample of simulated sample of time-series.

Testing models

To adjust for seasonality and long-term time-trend in
generated time-series samples, we used NCS(¢,4df/year),
NCS(¢,10df/year), and NCS(doy,10df)+I(year)+
NCS(week,5df)+NCS(month, 5df). We used constrained
distributed lags of PM;, (lag0—730) to estimate the asso-
ciation between PM;, and mortality. We also used only
two-day moving average of PMj, (lag0-1) to see
whether the cumulative exposure to PM;, and mortality
displacement (lag2—730) can have a confounding effect.
We adjusted for a lag-structure of temperature, relative
humidity, influenza epidemic, national holidays, and day
of the week. Technical detail for this section is presented
in Additional file 1.

Methods for real data analysis

We conducted a two-stage time-series analysis to esti-
mate the effect of long-term exposure to PM;, on mor-
tality in seven major cities (Seoul, Busan, Daegu,
Incheon, Gwangju, Daejeon, and Ulsan) of South Korea
from 2006 to 2013. Datasets are described in Add-
itional file 2. In the first stage, we fitted city-specific
Poisson regression models with overdispersion consid-
ered. Constrained distributed lags of PM;q (lag0-365)
were used as an exposure metric. A lag-structure of
temperature (lag0—14 or lag0-21), O3 (lag0—45), relative
humidity, and influenza epidemic was adjusted. Season-
ality and long-term time-trend were also adjusted using
(a) NCS(tpdf/year), (b) NCS(doypdf)+I(year), or (c)
NCS(doy,pdf)+I(year)+NCS(week,pdf)+ NCS(month,pdf).
Technical detail for modelling is provided in Additional
file 2. In the second stage, we applied multivariate meta-
analysis to pool city-specific estimates [35]. We com-
pared pooled estimates of the association between ad-
justments for seasonality and long-term time-trend. This
procedure was to check possible overfitting.

As sensitivity analyses, we used different dfs in each
NCS. We also additionally adjusted for multiple dummy
variables indicating days when deviations of seasonality
were identified. For this additional adjustment, we found
that days when predicted daily deaths of a city-specific
model with  NCS(doy,20df)+I(year)+NCS(week,3df)+
NCS(month,3df) and those of a city-specific model with
NCS(£,10df/year) did not coincide one another; if devia-
tions from normal seasonal patterns exist across years,
these two models would yield different predicted daily
deaths because NCS(,10df/year) is likely to capture de-
viations better. We used cut-off values to determine de-
viations of seasonality: |A,-B;|>a cut-off value where A,



Kim et al. BMIC Medical Research Methodology (2021) 21:2

is predicted logarithm of daily deaths from one model
and B, is predicted logarithm of daily deaths from the
other model at time t. We varied a cut-off value from
98th percentile, 96th percentile, ..., to 80th percentile of
|A;-B,.

Software

We used R software 3.5.3 (R Foundation for Statistical
Computing) for simulations and real-data analyses. We
used splines package for NCS [36], dinm package for dis-
tributed lags of PM;, and distributed lag non-linear
terms of temperature [37], and mvmeta package for
pooling city-specific estimates [35]. R codes for simula-
tions and real-data analysis are provided in the first au-
thor’s website, http://hkimresearch.com, or Github,
https://github.com/HonghyokKim/
AlternativeAdjustment.

Results

Results of simulations

Table 2 presents bias, standard deviation, and nominal
coverage of 95% confidence interval for the overall cu-
mulative association between distributed lags of PMiq
(lag0-730) and mortality. Models adjusted for NCS(doy,
10df) +I(year)+NCS(week,5df)+ NCS(month,5df) pro-
duced estimates of the overall cumulative coefficient
with negligible bias and almost perfect coverage of 95%
confidence intervals (Table 2). Lag patterns were esti-
mated accurately (Fig. 3). As expected by very small re-
sidual variance of PM;, as in Table 1, models adjusted
for NCS(t, 4df/year) and NCS(t,10df/year) produced very
large standard errors, indicating overfitting. These
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models also produced lag-mortality associations that de-
viated far from lag patterns used to generate simulation
samples (Fig. 3).

Our simulation results suggest that the effect of short-
term exposure to PM;, on all-cause mortality may be
confounded by the effect of long-term exposure to PM;,
on all-cause mortality in some circumstances. For ex-
ample, for observable lag pattern #2, bias with respect to
a moving average of PMjo from lag0-1 in its relation
with all-cause mortality was — 11.3% when NCS(z,10df/
year) was used and PM;q from lag2-730 was not ad-
justed (Table S1 in Additional file 1). When PM;, from
lag2-730 was adjusted, the bias decreased to 2.8%. The
bias decreased with higher df. For observable lag pattern
#1, the bias decreased to 0.4% from 4df to 10df when
PM;, from lag2-730 was not adjusted.

Results of real-data analyses
Table 3 presents percentage increases in all-cause mor-
tality risk per a 10 ug/m® increase in two-day moving
average of PMj, (lag0-1) or PM,, for one-year (ie.,
lag0—365) in seven major cities of South Korea. When
PM;, (lag2—365) was adjusted, the percentage increases
in all-cause mortality were 0.14% (95% confidence inter-
val: - 0.06, 0.34) for NCS(t,10df/year) and 0.14% (- 0.03,
0.31) for NCS(doy, 20df)+I(year)+NCS(week,3df)+
NCS(month,3df).

The percentage increase in all-cause mortality risk for
a 10 pg/m?’ increase of PM;, for 1 year (ie., lag0—365)
was 4.66% (0.14, 9.38) when NCS(doy,20df)+I(year)+
NCS(week,3df)+ NCS(month,3df) was used (Table 3).
This percentage increase was stable when different df

Table 2 Bias, standard deviation, nominal coverage of 95% confidence interval for the overall cumulative association between
distributed lags of PM;q (lag0-730) and all-cause mortality estimated by a model with different adjustment methods for seasonality
and long-term time-trend over 10,000 samples of different simulation settings based on time-series data for Seoul, 2002-2013

Concurvity? Adjustment® Observable Lag Pattern 12 Observable Lag Pattern 2?
Bias (%) SD¢ Coverage®(%) Bias (%) SD¢ Coverage®(%)
Low Not adjusted —50.1 0.004 0 —509.2 0.004 0
NCS(t,4df/year) 885.2 1457 89.6 92599 1459 88.9
NCS(t,10df/year) —22396 19.994 943 —21,974.9 19.651 94.7
10,55 —0.5 0.047 95.0 -26 0.047 94.9
High Not adjusted —54.1 0.003 0 - 5494 0.003 0
NCS(t,4df/year) 1346.0 1.828 88.7 14,086.5 1.825 87.9
NCS(t,10df/year) —496.0 24.822 94.9 —2649.2 24971 94.6
1055 -04 0.056 94.8 29 0.055 95.0

Abbreviations: df degrees of freedom, NCS natural cubic spline, NCS(t,pdf/year) NCS of time throughout the study period with pdf per year, PM;, particulate matter

with aerodynamic diameter <10 um, SD standard deviation

Simulation settings: Low concurvity & Observable lag pattern 1, Low concurvity & Observable lag pattern 2, High concurvity & Observable lag pattern 1, and High
concurvity & Observable lag pattern 2; Observable lag patterns 1-2 are provided in Fig. 2

PNCS(doy,10df)+I(year)+NCS(week,5df)+NCS(month,5df) is described as 10,5,5; NCS(doy,10df) is NCS of day of the year with 10df; I(year) is an indicator function of
year throughout the study period; NCS(week,5df) is NCS of the order of week throughout the study period with 5df; NCS(month,5df) is NCS of the order of month

throughout the study period with 5df

SD of estimates of the overall cumulative coefficient (as 10 ug/m? increase of PM; )

9Nominal coverage of 95% confidence intervals
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Fig. 3 Estimated lag patterns of the association between PM;, and all-cause mortality by different methods to adjust for seasonality and time-
trend over 5000 samples of different simulation settings based on time-series data for Seoul, 2002-2013. a and b Low concurvity and Observable
lag pattern 1. ¢ and d Low concurvity and Observable lag pattern 2. e and f High concurvity and Observable lag pattern 1. g and h High
concurvity and Observable lag pattern 2. Abbreviation: df, degrees of freedom; doy, day of the week; I(year), an indicator function of year
throughout the study period; NCS, natural cubic spline; NCS(doy,10df), NCS of day of the year with 10df; NCS(month,5df), NCS of the order of
month throughout the study period with 5df; NCS(t,10df/year), NCS of time throughout the study period with 10df per year; NCS(week,5df), NCS
of the order of week throughout the study period with 5df; PM,, particulate matter with aerodynamic diameter <10 um

were used for each NCS unless df were too high for
NCS(week,qdf) and NCS(month,rdf). For example, esti-
mates were variable with very wide confidence intervals
for 6, 10, and 15 df for each NCS (Table 3). When NCS(t,
pdf/year) was used, estimates across different df were ex-
tremely variable with very wide confidence intervals, indi-
cating overfitting (Table 3). For cardiovascular mortality
and respiratory mortality, we found similar patterns of es-
timates as those found for all-cause mortality. Percentage
increase in cardiovascular mortality risk and respiratory
mortality risk for a 10 ug/m® increase of PMj, for 1 year
was 10.76% (0.62, 21.93) and 9.34% (- 17.77, 45.40), re-
spectively (Tables S2-3 in Additional file 2).

Figure S3 in Additional file 2 presents an example of
differences between time-series of predicted logarithm of
daily deaths from city-specific models with NCS(doy,
20df)+I(year)+NCS(week,3df)+ NCS(month, 3df) and
city-specific models with NCS(¢,10df/year). Since a lag-

structure of temperature, air pollutants, and other vari-
ables such as influenza epidemics were all used, both
models predicted daily mortality series similarly. Never-
theless, some deviations of seasonality were also identi-
fied: for example, about 1000-1250 time points (ie.,
days) and around 1800 time point in Seoul (Fig. S3A).
We adjusted for such deviations using multiple dummy
variables and found our results robust to these add-
itional adjustments (Fig. S4 in Additional file 2).

Figure 4 presents the percentage increase in all-cause
mortality risk, cardiovascular mortality risk, and respira-
tory mortality risk by exposure duration. These increas-
ing patterns reconcile previous observations that the
association between exposure to PM and mortality in-
creases with exposure duration: roughly similar to 5—
15% increase of mortality per 20 pg/m?® increase of one-
year exposure to PM;, [32, 33]. Figure 5 presents corre-
sponding lag patterns.

Table 3 Percentage increase and 95% confidence intervals of all-cause mortality risk per a 10 ug/m? Increase in two-day moving
average of PM;, (lag0-1) or one-year distributed lags of PM,, (lag0-365) in seven major cities of South Korea, 2006-2013

Adjustment method Two-day moving average

One-year distributed lags

for seasonality and (lag0-1)
L(r):r?&taerm time- lag2-365 not adjusted lag2-365 adjusted (lag0-365)

Pl 95% ClI PI 95% ClI PI 95% ClI
Not adjusted -044 -0.71,-0.16 0.08 —0.08, 0.24 -946 —1327,-548
NCS(t,7df/year) 0.16 0,031 0.12 —0.06, 0.31 4.67 —51.66, 126.62
NCS(t,10df/year) 0.15 —-0.01, 0.31 0.14 —-0.06, 0.34 —20.60 —76.83,172.13
NCS(t,12df/year) 0.15 -0.01, 0.31 0.20 -0.01, 040 —35.64 —84.39, 165.33
NCS(doy, 20df)+l(year) 0.13 —-0.03,0.28 0.17 0,033 2.86 -2.13,8.10
1033 0.10 —-0.05, 0.26 0.14 —-0.05,0.34 440 —-0.10, 9.1
2033 0.12 —0.04, 0.27 0.14 -0.03, 0.31 4.66 0.14,9.38
3033 0.12 —0.04, 0.28 0.15 -0.02,0.32 4.64 0.07, 941
2044 0.12 —-0.03,0.28 0.14 —-0.03,0.31 5.54 1.32,9.95
2055 011 —0.04, 0.27 0.12 -0.05, 0.29 4.55 —0.93, 10.34
20,6,6 0.08 —0.08, 0.24 0.09 -0.09, 0.28 0.50 —5.75,7.18
20,10,10 0.08 -0.08,0.23 0.12 —-0.09, 0.34 545 —4.81, 1683
20,1515 0.09 -0.07,0.25 013 -0.07,0.34 —4.72 —22.75,17.51

Abbreviations: C/ confidence interval, df degrees of freedom, doy day of the year, I(year) an indicator function of year throughout the study period, NCS natural
cubic spline, NCS(doy,pdf) NCS of doy with pdf, NCS(t,pdf/year) NCS of time throughout the study period with pdf per year, PI percentage increase, PM;, particulate
matter with aerodynamic diameter <10 pm

2NCS(doy,pdf)+l(year)+NCS(week,gdf)+NCS(month,rdf) is described as p,q,r; NCS(week,qdf) is NCS of the order of week throughout the study period with gdf;
NCS(month,rdf) is NCS of the order of month throughout the study period with rdf
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Discussion term time-trend that do not mask the effect and not re-
We addressed a challenging issue in estimating the effect  duce substantially variability of residuals of exposure
of long-term exposure on health outcomes using time-  series. NCS(¢,pdf/year) that is frequently used in time-
series analysis — adjustment for seasonality and long-  series studies may lead to very high standard errors,
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Fig. 5 Estimated lag patterns of the association between a 10 ug/m?® increase of PM;o and mortality in seven major cities of South Korea, 2006-
2013. a All-cause mortality. b Cardiovascular mortality. ¢ Respiratory mortality

which makes it difficult to infer the magnitude of the as-
sociation between long-term exposure and health out-
comes. Our results suggest that a combination of

functions can be used to sufficiently adjust for seasonal-
ity and long-term time-trend and also allow for enough
variability of residuals of exposure series, so that inflated
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standard errors can be avoided. We also showed that
confounding by long-term exposure effects may arise in
time-series studies for estimating short-term exposure
effects; however, we postulate that this confounding
might not be an issue for air pollution time-series stud-
ies because adjustment methods for seasonality and
long-term time-trend could adjust for this confounding.

The effect of long-term exposure may be more likely
to be confounded by seasonality and time-trend than
that of short-term exposure. Higher df of NCS would
provide stricter adjustment but reduce variability of re-
siduals of exposure series. A combination of functions
allows for higher variability of residuals of exposure
series but may require additional adjustments for sea-
sonality, depending on data applied, what covariates are
measured and how they are adjusted. For example, devi-
ations of seasonality in an outcome series may still exist
even after distributed lags of environmental variables
that has strong seasonality such as temperature [38] are
adjusted. Other examples may include seasonality in an
outcome series attributable to influenza epidemic and
longer-term exposure than exposure of interest. There-
fore, sensitivity analyses are recommended to determine
sufficient but not redundant adjustment for seasonality,
time-trend, and possible confounding by longer-term ex-
posure as we did in our real-data analyses.

In line with the merits of sensitivity analyses, overfit-
ting must be considered as it increases variance esti-
mates and can yield highly variable estimates of an
association. Sometimes, to our experience, statistically
significant but spurious associations such as lag patterns
of NCS (4 or 10df/year) in Fig. 3 may come out. To
avoid overfitting, identification of residual variance of
exposure series may be helpful, as in Table 1. Compar-
ing lag patterns estimated across different lag models
may also guide whether overfitting arises or not because
highly variable estimates would come out from different
lag models when standard errors of coefficient estimates
of interest are inflated [13].

Some limitations are noted. We did not extend our
focus into longer-term exposure beyond 1 year in real-
data analysis. We found that functions of variables
representing time explain to a larger extent the variabil-
ity of longer-term fluctuation (e.g., 2 years) in an expos-
ure series. Thus, there would be smaller variability of
residuals of exposure series. This issue may be overcome
with collecting more informative data. Second, we did
not address exposure misclassification theoretically and
analytically. So, we cannot rule out the possibility that
exposure misclassification might affect exposure dura-
tions to different degrees (such as Figs. 4 and 5), but the
overall impact on an estimate of the cumulative coeffi-

cient 8 might be toward the null [7, 8].
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Nevertheless, an estimate affected by exposure mis-
classification in the context of personal exposure may be
seen as an estimate of the effect of ambient air pollution
in a given region that is of public health importance. For
example, time-series analysis could be used to address
cessation lag [39] of ambient air pollution exposures in a
given population, which is a critical issue in understand-
ing efficiency of ambient air pollution interventions.
Changes of loss of life expectancy in that region as a
measure of the severity of public health burden [40, 41]
may also be estimated considering long-term exposure
effect without cohort data [23].

Conclusions

We demonstrated that long-term exposure effects can
be estimated using time-series analysis by addressing
confounding by seasonality and long-term time-trend,
while maintaining efficiency. Since maintaining effi-
ciency may lead to less strict adjustment for seasonality
and long-term time-trend, sensitivity analyses should be
conducted to confirm that adjustment is sufficiently
made. Rich case-only data such as death certificates and
hospitalization records combined with repeated mea-
surements of environmental determinants across coun-
tries would have high potentials for investigating the
effects of long-term exposure on health outcomes allow-
ing for unique contexts of local populations.
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Additional file 1. Simulation methods and additional results of
simulations. Figure S1. Two hypothetical observable lag patterns of the
association between 1ug/m? increase of exposure to PM;o and mortality,
used to generate simulation samples (the last row of panels). A) and B)
Hypothetical actual effect (identical). C) Mortality displacement for a few
days to several weeks for Observable lag pattern 1. D) Mortality
displacement for a few days to several weeks for Observable lag pattern
2. E) Mortality displacement for few days to two years for Observable lag
pattern 1. F) Mortality displacement for few days to two years for
Observable lag pattern 2. G) Observable lag patterns 1. H) Observable lag
pattern 2. Figure S2. An example of simulated samples. A) all-cause
death series. B) PM,q series. Table S1. Bias and Standard Deviation for
the Association between a Two-Day Moving Average of PM;q (lag0-1)
and All-Cause Mortality Estimated by a Model with Different Adjustment
Methods for Seasonality and Long-Term Time-Trend over 5000 Samples

Additional file 2. Real data analysis methods and additional results.
Table S2. Percentage increase and 95% confidence intervals of
cardiovascular mortality risk per a 10 ug/m? increase in two-day moving
average of PMyq (lag0-1) or one-year distributed lags of PM;o (lag0-365)
in seven major cities of South Korea, 2006-2013. Table S3. Percentage
increase and 95% confidence intervals of respiratory mortality risk per a
10 ug/m? increase in two-day moving average of PM;q (lag0-1) or one-
year distributed lags of PMy (Iag0-365) in seven major cities of South
Korea, 2006-2013. Figure S3. Time-series of logarithm of daily all-cause
deaths predicted by models with two different adjustments for seasonal-
ity and long-term time trend and their absolute differences. A) Time-
series in Seoul, 2006-2013 B) Absolute differences in Seoul. C) Time-series
in Daegu, 2006-2013. D) Absolute differences in Daegu. Grey vertical
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dotted lines in B) and D) denote 80th, 90th, and 98th percentile of abso-
lute differences. Figure S4. Results of additional sensitivity analyses in
seven major cities of South Korea, 2006-2013. A) All-cause mortality. B)
Cardiovascular mortality. C) Respiratory mortality. Percentage increases es-
timated by models with NCS(doy, 20df)+I(yearn+NCS(week,
3df)+NCS(month, 3df) in Table 3 (for all-cause mortality), Table S2 (for car-
diovascular mortality), and Table S3 (for respiratory mortality) were dupli-
cated for comparison (red triangles).

Abbreviations

PM;: Particulate matter with aerodynamic diameter <10 um; NCS: Natural
cubic spline; df: Degrees of freedom; NCS(t,pdf/year): NCS of time (t)
throughout time-series (or the study period) with pdf per year; I(year): An
indicator function of the order of year throughout time-series (or the study
period); doy: Day of the year; NCS(doy,pdf): NCS of doy with pdf;
NCS(week,pdf): NCS of the order of week throughout time-series (or the
study period) with pdf; NCS(month,pdf): NCS of the order of month
throughout time-series (or the study period) with pdf; SD: Standard deviation
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