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The HIV-1 genome is malleable and a difficult target tot vaccinate against. It has long been recognised that cytotoxic T lymphocytes
and neutralising antibodies readily select for immune escape HIV variants. It is now also clear that NK cells can also select for
immune escape. NK cells force immune escape through both direct Killer-immunoglobulin-like receptor (KIR)-mediated killing
as well as through facilitating antibody-dependent cellular cytotoxicity (ADCC). These newer finding suggest NK cells and ADCC
responses apply significant pressure to the virus. There is an opportunity to harness these immune responses in the design of more
effective HIV vaccines.

1. Introduction

The human immunodeficiency virus (HIV-1) pandemic is
causing substantial morbidity and mortality across the globe,
particularly in developing countries. Antiretroviral drug
therapy for HIV is highly effective in controlling disease;
however, eradication of HIV-1 is currently not feasible so
treatment is life long and is both expensive and leads to
considerable toxicity and drug resistance. A vaccine is widely
viewed as being essential to controlling the epidemic. Several
advanced efforts to develop an effective vaccine have failed
or shown only marginal efficacy to date [1–4]. One of the
greatest challenges in developing a vaccine against HIV is to
overcome its ability to constantly mutate and escape anti-
HIV immune responses. This high mutation rate is a direct
result of the presence of the virus’ low fidelity RNA poly-
merase enzyme as well as the high levels of recombination
it undergoes [5, 6].

A measure of the pressure immune responses apply is
through their ability to force viral mutations that result in
escape from immune recognition. Both CTLs and Nabs have
long been reported to select for immune escape variants
during the course of HIV-1 infection [7, 8]. Much effort in
vaccine development centers on inducing broad and potent

CTL (cytotoxic T lymphocyte) and Nab (Neutralizing anti-
body) responses to conserved viral epitopes and restricting
opportunities for viral escape. However, it is now also recog-
nised other immune responses, such as antibody-dependent
cellular cytotoxicity (ADCC) and NK cells, select for immune
escape variants, suggesting additional immune responses
apply significant pressure to the virus [9]. ADCC responses
mediated by effector NK cells may be useful responses to
induce by vaccination. This paper summarizes current think-
ing on immune escape from anti-HIV immune responses.

2. CTL Escape and the Road to
Reduced Viral Fitness

Immune escape from HIV was first demonstrated for CTL-
based immunity in 1991 [8]. Considerable work since then
has shown CTL escape is typically regulated by the effect
of the escape mutation on comparative viral fitness, a
complex parameter illustrating the overall contribution of
all mutation-related advantages and losses (Table 1). Even
though the evasion of immune responses presented by escape
mutations presents a definite fitness benefit to the virus, the
HIV-1 proteome is not infinitely malleable hence the same
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Table 1: Key escape papers.

Immune
response

Hypothesis Result Ref.

CTL based

HLA-B∗57/B∗5801 CTL escape
mutations in Gag impacts viral
replication in vivo

Reductions in relative replication
capacity reduce “viral fitness”

[20]

CTL escape mutations in Env do not
result in reduced viral fitness

Escape mutations within Env-specific
CTL are epitopes evident but no
correlation with reduced SIV replication

[25]

Step HIV-1 vaccine trial exerts selective
CTL pressure on HIV-1

Extended sequence divergence for vaccine
recipients who become infected suggests
vaccine-induced CTL imparted
significant immune pressure
Gag-84 most significant signature site

[36]

Nab based

Evolving “glycan shield” mechanism
prevents Nab binding

Env gene mutations in escape virus sparse
Escape mutations did not map to known
epitopes
Efficient neutralization requires potent,
high titres

[54]

Continual selection of Nab escape
variants occurs

All previous viral isolates, but not
concurrent isolate, are recognised by
concurrent Nab

[7]

Passive transfer of human neutralizing
monoclional antibodies delays HIV-1
rebound post-antiretroviral therapy

2G12 monoclonal was crucial for
transient in vivo effect of Nab cocktail but
immune escape resulted

[55]

ADCC based

Immune pressure from HIV-specific
ADCC results in immune-escape variants

ADCC causes escape in multiple epitopes
and evolves over timeADCC antibodies
forcing immune escape can be
non-eutralizing

[9]

NK cells apply immunological pressure
on HIV-1 through direct killing of
infected cells

HIV-1 selects KIR2DL2+ virus mutations
that result in reduced antiviral activity of
NK cells

[85]

mutations can result in fitness costs. Some CTL immune
escape variants have reduced replicative capacity of the virus
(reduced “fitness”) that slows the progression of disease
[10, 11]. Studies have demonstrated that certain viruses
composed of immune escape mutations are associated with
lower viral loads within subjects [12, 13]. It has also been
suggested that the rate of viral escape likely reflects the
strength of the immune pressure and the fitness cost of
the mutant virus [14]. Fitness costs are most dramatically
illustrated in vivo by the reversion of transmitted escape
mutations during acute and early HIV-1 infection [15–19].

Several CTL escape mutations have been confirmed
to disrupt normal virus protein structure and/or function
[20–23]. More than half of deleterious escape mutations
have been verified in the relatively conserved Gag protein,
whereas Troyer et al. [24] recently presented that CTL escape
mutations in Env did not commonly transfer an associated
fitness cost and indeed in a number of cases strengthened
competitive viral fitness. This result is consistent with the
lack of reversion of Env CTL escape mutations in vivo [25,
26]. Macaque and human studies have also demonstrated
that escape from T-cell immunity leads to ongoing HIV or
SIV infection [27]. The latest investigation of the effect on
viral replication of twenty CTL escape mutations in Gag epi-
topes established only three escape mutations that resulted in

substantial reductions in viral replication capacity, indicating
that high-cost escape mutations are rather rare [28]. More
importantly, these three highly effective CTL escape muta-
tions appeared in epitopes primarily targeted during acute
infection by protective HLA class I alleles [29]. This demon-
strates that the protection allowed by certain HLA class I
alleles may arise because the barrier to viral escape in the tar-
geted epitope is high leading to either maintenance of a dom-
inant and effective CD8+ T-cell response, and/or attenuation
of virus replication from selection of high-cost escape muta-
tions. Examination of viruses derived from HIV-1 controllers
(individuals who maintain long-term control of HIV-1 vire-
mia) reveal evidence of a role for rare or novel CTL escape-
associated fitness costs in control of HIV-1 replication [30–
33].

CTL responses and the immune escape variants induced
are also important in HIV transmission scenarios. Two
recent reports detail early clinical correlates related with the
transmission of viruses expressing a number of CTL escape
mutations known to weaken in vitro replication capacity
[12, 34]. As the transmitted escape mutations revert to wild
type [23], these enhanced results associated with such trans-
missions have been perceived to decline and the long-term
clinical outcome of these transient effects remains unforesee-
able. With improved characterization of the virology of acute
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HIV-1 infection differences in founder virus, replication
compared with viral escape strains caused by dominant
CD8+ T-cell responses is becoming easier to model. The dis-
tinctions between the founder virus and viral escape strains
may contribute to observed variability in the immune control
of HIV-1 replication, which may be caused by carry-over mu-
tations and variation in the rate of escape related to fitness
costs from key CD8+ T-cell responses, in return influencing
set-point viral load and early clinical disease course [35].
Elite control of viral replication may in part be due to the
transmission of a virus attenuated by accumulated carryover
mutations from hosts with such principal CD8+ T-cell
responses to escape associated epitopes resulting in high fit-
ness costs. Rolland et al. recently illustrated the first evi-
dence of selective pressure from vaccine-induced T-cell re-
sponses on HIV-1 infection by analyzing HIV-1 genome
sequences from 68 volunteers who participated in the STEP
Adenovirus-vector HIV-1 vaccine efficacy trial [36]. Com-
parison of T-cell epitopes in the founder sequences to epit-
opes in the vaccine distinguished greater breadth for sequen-
ces from vaccine recipients than from placebo recipients,
suggesting the vaccine imparted important immune pressure
to the selection of the infecting isolates. Vaccine-induced
fitness-impaired virus could, if sufficiently potent, translate
into a reduction in viral loads and attenuation of disease
progression.

3. The Great Escape from
Neutralizing Antibodies

Considerable data exist illustrating the effect of neutralizing
antibodies in protecting against HIV-1 infection in vitro [37,
38] and in vivo using animal models [39–46]. Although anti-
bodies are made to all HIV proteins within a few weeks, only
those to the envelope glycoproteins can prevent or neutralize
HIV infection. These neutralizing antibodies (Nab) take con-
siderably longer to develop than binding antibodies, gen-
erally months to years [47]. HIV-infected subjects almost
always develop Nab to their own virus (autologous neu-
tralization), although Nabs typically respond to earlier viral
isolates, with the subject’s contemporaneous virus having
escaped. Some subjects eventually develop Nabs able to
cross-neutralize additional viruses (heterologous neutraliza-
tion), but their concurrent virus is still usually escaped from
their autologous Nab. This highlights many of the difficulties
involved in controlling HIV replication by Nab and the abil-
ity of HIV to escape antibody pressure through a process of
genetic change [38]. The envelope gene presents the highest
ratio of genetic diversity, most likely as a direct result of Nab
pressure. However, for the virus to remain infective, portions
of the envelope gene that encode regions essential for func-
tional activity, such as CD4 and coreceptor binding, need
to be conserved, and hence escape from Env Nabs probably
results in little fitness cost. Individuals who do develop out-
standing Nab responses generally have antibodies directed
towards such crucial functional regions [48]. Long-term
nonprogressors who have remained symptom-free for many
years without antiretroviral therapy in general have broader

and more potent responses compared to persons who show
progressive disease [49–53].

Escape from neutralizing antibody responses often in-
volves serial changes in glycosylation patterns and small
insertions and deletions [7]. Richman and colleagues found
that 9 of 12 untreated patients with detectable neutraliz-
ing antibody had the highest neutralising antibody titer
towards against the baseline virus (month 0) whereas only
three subjects showed higher titers of neutralizing antibody
against viruses that appeared later in infection [7]. Wei
and colleagues clearly illustrated the inhibition of HIV-
1 by Nabs when successive populations of resistant virus
were completely substituted by neutralization-sensitive virus
[54]. Furthermore, they showed escape virus contained
infrequent mutations in the env gene, generally mapped
to unknown neutralization epitopes, and involved changes
mainly in N-linked glycosylation sites. This pattern of escape
led to the hypothesis of an evolving “glycan shield” mech-
anism of neutralization escape which selected differences
in glycan packing preventing Nab binding but not receptor
binding. Mutational substitution assays showed that Nab-
selected alterations in glycosylation presented escape from
both autologous antibody and epitope-specific monoclonal
antibodies. Thus a new mechanism was presented contribut-
ing to HIV-1 persistence in the presence of an antibody
repertoire.

Viral escape regardless of the presence of neutralizing
antibodies could demonstrate either that antibodies were
ineffective in vivo, in which case antibody-sensitive viral
strains would remain, or otherwise that the virus escaped
the pressure applied by the antibody. Trkola et al. illustrated
that passive transfer of Nabs in humans with established
HIV resulted in immune escape by comparing the inhibitory
activity of 3 monoclonal Nabs (2F5, 4E10 and 2G12) against
virus isolates derived before the passive transfer trial and to
sequential isolates after antibody treatment [55]. There was
a strong association between development of 2G12-resistant
viral strains and emergence of escape mutants to this
antibody, failure to respond to treatment and loss of viremia
control. While evidence of virus escape implies Nab selective
pressure to a certain extent [7, 54, 55], it has been speculated
that postinfection Nabs could exert only a limited suppressive
effect on primary HIV replication [45, 56, 57]. Prevention
of primary SIV or SHIV replication in monkeys by passive
Nab immunization prior to or very early after infection
is achievable [40, 58–60]. Taken together, this suggests that
HIV control by potent Nabs is most likely to be effective prior
to infection. Immune escape is likely to compromise the role
of Nabs after infection is already manifested.

The role of neutralizing antibodies in preventing or
limiting HIV-1 infection is becoming clearer with a better
understanding of the structure of the envelope glycoprotein
as well as passive immunization studies in animals showing
that antibodies can indeed control infection. Further insights
into neutralization-sensitive epitopes on the envelope glyco-
protein are needed that will enable us to design better vaccine
immunogens in vaccines. Ultimately this should allow the
ability to induce neutralizing antibodies in conjunction with
additional antibody-mediated protective mechanisms such
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Figure 1: HIV-specific immune responses force immune escape. The mechanism of immune pressure applied by Cytotoxic T lymphocytes
(a), neutralizing antibodies (b), and ADCC antibodies (1) is illustrated. Escape from immune responses shows results once free virus (Nab
responses) or viral particles are presented either via the MHC class pathway (CTL responses) or possibly on the surface of the infected cell
by virus budding (ADCC).

as antibody-dependent cell-mediated cytotoxicity (ADCC)
in the fight against HIV.

4. Escape from ADCC

Sequencing single HIV genomes from subjects with acute
HIV-1 infection reveals that multiple mutations are acquired
during the first months of infection and most align with
sites of CTL or Nab escape mutations [61, 62]. However,
some mutations do not clearly map to known sites of CTL
or Nab escape, suggesting there may be other immune
responses, such as ADCC responses, sufficiently potent to
select immune escape strains. ADCC antibodies bind to viral
antigens on the surface of infected cells and engage Fc recep-
tors on innate immune cells such as NK cells, macrophages,
and neutrophils, which in turn lyse the HIV-infected cell
(Figure 1(c)).

ADCC is an area relatively poorly explored in HIV
immunology in recent years. Very few ADCC epitopes have
been identified to date within HIV. The majority of these
identified ADCC epitopes are within Env glycoproteins,
gp120 [63–66] and gp41 [67–69], Tat [70] and Nef [71, 72].

Several recent studies in both humans and macaques
are now suggesting that ADCC antibodies can be effective
in controlling HIV or SIV [4, 73, 74]. The potent immune
pressure that can be applied by HIV-specific ADCC anti-
bodies has only recently been brought into sharper focus.
Importantly, Hessell and colleagues performed experiments
on Nab mutated in the Fc region, which showed a reduced
ability of the Nab to mediate killing of infected cells in vitro.

When they administered the mutant (Fc defective) Nab to
macaques, they were also markedly reduced in their ability
to prevent SHIV infection [73]. It perhaps should be no
surprise that ADCC antibodies are also implicated in viral
escape as the HIV genome is able to make multiple changes
to avoid CTL, Nab, and antiretroviral drug pressure.

ADCC responses forcing immune escape had until
recently not previously been demonstrated. Demonstrating
viral escape from ADCC responses would strongly suggest
that ADCC responses exert significant pressure on the
immune system [75]. Stratov et al. described a novel assay
which allowed the mapping of a series of HIV-specific ADCC
epitopes in subjects infected with HIV, using a set of con-
sensus HIV peptides [76]. The identified epitopes within the
subjects HIV strains were then further cloned and sequenced
across the relevant epitopes and analyzed as to whether their
ADCC responses were able to recognize their own virus
strain. Evidence of immune escape was found against mul-
tiple HIV-specific ADCC epitopes studied in the Env protein
of HIV-1 [9]. Evolution of escape over time was detected in
contemporary plasma samples, which differed significantly
from initial viral sequences at areas targeted by ADCC.

ADCC antibody responses are generally thought to target
viral surface proteins presented on the surface of infected
cells. Our group has also identified ADCC responses to viral
peptides derived from internal HIV-1 proteins such as Vpu
and Pol [75, 76]. Interestingly, we also identified possible
immune escape to an epitope of the highly conserved protein
Pol [77]. It is not immediately apparent how these epitopes
would be presented on the surface of cells to ADCC antibod-
ies and force viral escape and much more work needs to be
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done to define whether ADCC antibodies to internal proteins
can recognize HIV-infected cells in vitro. We speculate that
it may also be possible that ADCC recognition of viral
debris on the surface of healthy neighboring cells may trigger
noncytolytic activity from NK cells that could limit HIV-1
spread in a local environment. Such a mechanism would also
be susceptible to immune escape.

Using ADCC peptide epitopes and an NK-cell activation
assay, the hypothesis that ADCC plays a major part in the im-
mune response against HIV was confirmed. This work likely
underestimates the number of ADCC epitopes targeted by
each HIV+ subject, since linear epitopes are readily mapped
and dissected and consensus B overlapping peptides are
used for screening. Conformational ADCC antibodies are
likely to elicit escape also but to map such responses and
identify escape patterns will be more difficult and require
large numbers of mutant whole Env proteins.

The partial efficacy shown by the recently reported
canarypox prime/protein boost vaccine trial conducted in
Thailand [78] could possibly be associated with ADCC anti-
bodies. Recent conference presentations have correlated non-
neutralizing antibody responses to vaccine efficacy, although
much work remains to be done to understand this fully [79].
It is conceivable, by analogy with results on CTL responses in
the STEP trial [36], that vaccinated subjects in the Thai trial
who still became infected may have become infected with
HIV variants already “preescaped” at the ADCC responses
induced by their vaccination.

ADCC-forced mutations could theoretically incur some
“fitness cost” to viral replicative capacity, similar to that
observed for CTL escape variants [12]. Constructing repli-
cating viruses with ADCC-induced mutations will allow
testing of this hypothesis. More potent ADCC antibodies are
likely to target conserved or functional domains of viral pro-
teins. The Env protein is highly diverse and readily escapes
CTL and Nab responses with apparent minimal fitness costs
[7, 24, 26, 80]. It is possible that any fitness cost of ADCC
escape in Env could also be small. ADCC antibodies targeting
conserved non-Env proteins such as Vpu and Pol may be
more potent, although it needs to be assessed whether these
antibodies recognize HIV-infected cells as noted above. It is
also likely that compensatory mutations may emerge which
repair any fitness cost of primary mutations [81]. Further
studies on the patterns of ADCC escape and the specific
cellular components involved in ADCC should allow a finer
understanding of how to either limit ADCC escape or force
larger fitness costs.

Natural killer (NK) cells are the key effector cells medi-
ating ADCC function. Virally infected cells are identified
through a range of activating and inhibitory receptors [82]
as well as both activating and inhibitory killer immunoglob-
ulin-like receptors (KIRs) [83, 84]. Alter and colleagues
recently clearly demonstrated that NK cells can directly me-
diate antiviral immune pressure in vivo in humans [85].
They showed that the binding of inhibitory KIRs to HIV-1-
infected CD4+ T cells is amplified and the antiviral activity of
KIR-positive NK cells is diminished by KIR-associated HIV-
1 sequence polymorphisms. Similar to immune pressure ap-
plied by virus-specific T cells and neutralizing antibodies, it

seems plausible to state that KIR-positive NK cells can place
immunological pressure on HIV-1 and that the virus can
evade such NK-cell-mediated immune pressure by selecting
for sequence polymorphisms.

5. Conclusions

CTL and Nab immune responses are pivotal drivers in
immune escape and viral variability. It is now clear that the
role of NK cells in viral selection, both through direct killing
and ADCC mechanisms, is likely to have been previously
underestimated. Other effector cells of the innate immune
system, including macrophages and neutrophils, may also be
important in driving HIV evolution. Evidence of the pressure
applied by ADCC antibodies now provides challenges to
inducing the most effective ADCC antibodies by vaccination.
A better understanding of the immune responses to HIV is
required to fully harness the potential of a vaccine to both
prevent viral entry and ongoing infection.
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