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Abstract. Cbp/P300 interacting transactivator with 
Glu/Asp‑rich carboxy‑terminal domain 2 (CITED2) is a 
transcription co‑factor that interacts with several other tran‑
scription factors and co‑factors, and serves critical roles in 
fundamental cell processes, including proliferation, apoptosis, 
differentiation, migration and autophagy. The interacting 
transcription factors or co‑factors of CITED2 include LIM 
homeobox 2, transcription factor AP‑2, SMAD2/3, peroxi‑
some proliferator‑activated receptor γ, oestrogen receptor, 
MYC, Nucleolin and p300/CBP, which regulate downstream 
gene expression, and serve important roles in the aforemen‑
tioned fundamental cell processes. Emerging evidence has 
demonstrated that CITED2 serves an essential role in embry‑
onic and adult tissue stem cells, including hematopoietic stem 
cells and tendon‑derived stem/progenitor cells. Additionally, 
CITED2 has been reported to function in different types of 
cancer. Although the functions of CITED2 in different tissues 
vary depending on the interaction partner, altered CITED2 
expression or altered interactions with transcription factors or 
co‑factors result in alterations of fundamental cell processes, 
and may affect stem cell maintenance or cancer cell survival. 
The aim of this review is to summarize the molecular mecha‑
nisms of CITED2 function and how it serves a role in stem 
cells and different types of cancer based on the currently 
available literature.
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1. Introduction

Cancer is one of the leading causes of mortality worldwide, 
and has been the second highest cause of mortality in the 
USA in recent years (1,2). Cancer is a group of diseases that is 
characterised by aberrant and uncontrolled growth of tissues 
or cells. The development of cancer is attributed to dysregula‑
tion of cell proliferation, apoptosis, differentiation, migration 
and autophagy (3). Transcription factors and their co‑factors 
are the basic machinery controlling cell processes. Activity of 
several transcription factors is altered in a number of types of 
cancer through numerous and varying mechanisms, including 
chromosomal translocations, gene amplification or deletion, 
point mutations and dysregulated expression, and indirectly 
through non‑coding DNA mutations that affect transcrip‑
tion factor binding (4,5). These transcription factors are also 
considered candidate oncogenic genes. Furthermore, tran‑
scription co‑factors alter the activity of transcription factors 
by interacting with them, serving critical roles in cancer (5).

Cbp/P300 interacting transactivator with Glu/Asp‑rich 
carboxy‑terminal domain 2 (CITED2) is a protein encoded by 
the Cited2 gene and is a transcription co‑factor. The Cited2 
gene was cloned around two decades ago (6,7), and was 
reported to promote the development of cancer when overex‑
pressed in cells in vitro (7). CITED2 is essential for mouse 
embryonic development, as deletion of CITED2 results in 
embryonic lethality around embryonic day 10.5 (8). CITED2 
is also essential for the development of the liver, lungs, heart, 
neural tube, left‑right patterning and eye development (8‑13). 
CITED2 modulates gene transcription by directly or indirectly 
interacting with transcription factors or co‑factors without a 
DNA binding motif (14‑22). Cited2‑null mouse embryonic 
fibroblasts exhibited premature arrest of proliferation (senes‑
cence) (23), which suggests that CITED2 is essential for cell 
proliferation. Taken together, these findings demonstrated that 
CITED2 serves a critical role in several fundamental cellular 
processes.

In addition to the critical role of CITED2 in several funda‑
mental cell processes, CITED2 has been reported to serve 
roles in numerous different types of cancer. For example, lung 
cancer (21), gastric cancer (24) and breast cancer (19,25,26). 
Cancer stem cells (CSCs) are hypothesized to be a population 
of cells with multipotent stem cell‑like properties, and can 
cause cancer relapse, metastasis, multidrug resistance and 
radiation resistance through their ability to arrest in the G0 
phase, giving rise to new tumours when they finally leave 
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cell‑cycle arrest (27‑29). CSCs exhibit strong self‑renewal 
capacity, in a similar way to normal stem cells (30). As the 
function of CITED2 in CSCs has not been extensively studied, 
reviewing the function of CITED2 in stem cells may provide 
directions for future studies. In the present review, the molec‑
ular mechanisms of CITED2 function, and the role of CITED2 
in stem cells and different types of cancer are discussed.

2. Molecular mechanisms of CITED2 function

CITED2 is a transcriptional co‑regulator without a DNA 
binding domain, that can directly interact with a host of 
transcription factors and co‑factors, including LIM homeobox 
2, transcription factor AP‑2 (TFAP2), SMAD2/3, peroxi‑
some proliferator‑activated receptor (PPAR)‑γ, oestrogen 
receptor, MYC, Nucleolin and p300/CBP, thus regulating 
the ability of these binding partners to activate or inactivate 
gene transcription (14‑19,21,22). The molecular mechanism 
of CITED2 function varies based on the type of tissue and 
the binding partner. In this section, the molecular function of 
CITED2 in general is briefly summarized. The transcription 
factors interacting with CITED2 or regulated by CITED2 are 
listed in Table I. CITED2 was originally found to displace 
p300/CBP from hypoxia‑inducible factor (HIF)‑1α, thereby 
negatively regulating HIF‑1α function (14). HIF‑1α functions 
as a master regulator of cellular and systemic homeostatic 
response to hypoxia by activating transcription of a number of 
genes, including those involved in energy metabolism, angio‑
genesis, apoptosis, and other genes whose protein products 
increase oxygen delivery or facilitate metabolic adaptation to 
hypoxia (31). HIF‑1α also serves an important role in stem cells 
and cancer (32‑34). The molecular mechanisms through which 
CITED2 interacts with p300/CBP to inhibit HIF‑1α function 
has been intensively studied (35‑39). CITED2 acts as a bridge, 
directly interacting with and co‑activating TFAP2 and the 
p300/CBP transcriptional co‑activator complex to stimulate 
TFAP2‑mediated transcriptional activation (8,12,16,40,41). 
CITED2 positively regulates TGF‑β signalling through its 
association with the SMAD2/3‑mediated transcriptional 
co‑activator complex, and upregulates the expression of down‑
stream targets, including matrix metalloproteinase (MMP)‑9 
and vascular endothelial growth factor (VEGF) (18,42). 
CITED2 co‑activates PPAR‑α and PPAR‑γ transcriptional 
activities (17,43‑45). CITED2 also functions as a transcrip‑
tional co‑activator of the oestrogen receptor in breast cancer 
cells (19). Notably, CITED2 participates in sex determination 
and early gonad development through its combined action 
with WT1 and SF1, and regulates transcription activation 
of the genes located in the sex‑determining region of the 
Y chromosome (46,47). By regulating the Nodal‑Pitx2c 
pathway, CITED2 serves a role in controlling left‑right gene 
transcription in the left lateral plate mesoderm (12,48‑50). 
CITED2 is also reported to serve an essential role in the 
differentiation of the adrenal cortex from the adrenogonadal 
primordium, which stimulates WT1‑mediated transcription 
activation, thereby increasing the promoter activity of the 
nuclear hormone receptor NR5A1 (47,51). CITED2 functions 
as a transcriptional co‑repressor by interfering with the binding 
of HIF1‑α or STAT2 with their transcription co‑activator, 
p300/CBP (9,35,36,52‑54). By displacing p300 from binding 

with ETS‑1, CITED2 was shown to co‑repress expression 
of MMPs, including MMP‑1 and MMP‑13 (55). Through 
downregulation of MMP expression, CITED2 was revealed to 
exhibit a chondroprotective role and is considered a potential 
drug target for treatment of osteoarthritis (56,57). A previous 
study demonstrated that by physically interacting with the 
DNA‑binding transcription activator ISL1, CITED2 enhanced 
embryonic stem cell (ESC) cardiac differentiation (58). ISL1 
has been shown to serve a role in several different types of 
cancer, including gastric cancer (59) and breast cancer (60,61). 
Therefore, whether CITED2 serves a role in cancer through 
its interaction with ISL1 will require further investigation in 
future studies.

3. Function of CITED2 in stem cells

CITED2 is essential for differentiation of hematopoietic 
stem cells (HSC) in the foetal liver and adult bone marrow, 
as Cited2‑null mice exhibit impaired HSC function in the 
foetal liver and adult bone marrow (62‑64). In the foetal liver, 
expression of self‑renewal and survival‑associated genes in 
HSCs (including Bmi‑1, Wnt5a, LEF‑1, Notch‑1 and GATA2) 
were revealed to be significantly downregulated in Cited2‑null 
HSCs (62). Studies have further revealed that PU.1 co‑operates 
with CITED2 to maintain HSC (65,66). The role of CITED2 
in hematopoietic stem cells has been previously reviewed (64). 
Thus, in the present review, a focus is placed on adult tissue 
stem cells, ESCs and induced pluripotent stem cells (iPSC).

Adult tissue stem cells: Tendon‑derived stem/progenitor 
cells (TSPC) are the adult stem cells resident in the tendon 
tissue and are responsible for regeneration of tenocytes and 
healing of injuries to the tendons (67). A tendon's healing 
capacity is gradually reduced with age, which may be due 
to decreased CITED2 expression in aged TSPCs, which 
results in defective self‑renewal and altered differentiation 
fates (68). The proliferation rate is decreased, cell cycle 
progression is delayed and cell fate patterns are also altered in 
aged TSPCs (68). In particular, expression of tendon lineage 
marker genes is decreased, while adipocytic differentiation 
is increased in aged TSPCs (68). Another study suggested 
that CITED2 prevented TGF‑β2‑induced TSPC senescence 
through downregulation of SP1 and P21, and upregulation 
of Myc (69). Whether increasing CITED2 expression can 
restore proliferation, cell cycle progression and determination 
of differentiation fate in aged TSPC, or even enhance tendon 
healing in vivo remains to be determined and should be the 
focus of future studies.

Although Cited2 is ubiquitously expressed (70) in 
other types of adult tissue stem cells, including adipose 
tissue‑derived stem cells, intestinal stem cells, mammary stem 
cells and neural stem cells, whether CITED2 serves a role in 
the self‑renewal and apoptosis of these cells remains to be 
determined.

ESCs: Interactions between transcription factors and 
transcription co‑factors determine the fate of ESCs (71). 
Chromatin immunoprecipitation‑seq analysis revealed that 
p300, a transcription co‑factor, was mapped in the circuit of 
ESC stemness via its co‑occupancy with stem cell marker 
transcription factor OCT4 on target genes (71). p300 is directly 
involved in regulating Nanog expression in mouse ESCs (72), 
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whereas CITED2 directly interacts with p300. By performing 
genome‑wide screening of CITED2‑overexpressing mouse 
ESCs, CITED2 was shown to be able to rescue the ESC 
phenotype following removal of leukaemia inhibitory 
factor (LIF) from the growth media (73). Loss‑of‑function 
of Cited2 in mouse ESC does not affect ESC proliferation 
and does not alter the undifferentiated state of ESCs in the 
presence of LIF (74). However, knockout of Cited2 delayed 
ESC differentiation due to delayed silencing of the genes 
involved in the maintenance of pluripotency and self‑renewal 
of stem cells (including Oct4, Klf4, Sox2 and c‑Myc) (74). A 
recent study revealed that Cited2‑depleted stem cells retain 
higher expression levels of pluripotency‑related transcription 
factors, including Nanog and Klf4, and that loss of Cited2 in 
differentiating ESCs delayed differentiation (75). However, 
Kranc et al (76) demonstrated that CITED2 is required for 
ESC proliferation, survival and self‑renewal, by directly 
regulating the transcriptional expression of Nanog, Klf4 and 
Tbx3. Spontaneous differentiation of Cited2‑knockdown 

ESCs occurred through downregulation of stem cell markers 
(including Nanog, Oct4, Sox2 and Tbx3), and upregulation of 
mesoderm gene markers (including Brachyury and Cdx2) and 
the ectoderm gene marker (Foxa2) (76). A possible explana‑
tion for the discrepancy between these previous studies is a 
result of the different methods of deleting the Cited2 gene used 
in the ESCs. Li et al (74) used a sequential targeting method; 
deleting the floxed Cited2 allele first by using Cag‑cre, and then 
using a knockout targeting vector to delete the other allele. It 
is possible that the selected ESC clones were adapted to loss 
of Cited2 and thus survived. In fact, Kranc et al (76) observed 
a small portion of ESCs (~3%) that were able to self‑renew 
without CITED2. Perhaps this small portion of self‑renewing 
ESCs may be used to elucidate the mechanisms of how ESCs 
survive and self‑renew.

iPSCs: Generation of human iPSCs from somatic cells 
have increased the potential prospects of personalized medi‑
cine (77,78). Four key transcription factors (Oct4, Sox2, Klf4 
and c‑Myc) comprise the key regulatory network of ESCs, and 

Table I. Transcription factors interacting with CITED2 or regulated by CITED2.

Transcription factor(s) Association with CITED2 Function (Refs.)

TFAP2 Directly interacts with CITED2 Normal neural tube and cardiac development,  (8,12,16,40,41)
  left‑right patterning
SMAD2/3 Directly interacts with CITED2 Upregulates TGFb downstream targets,  (18,42)
  such as MMP9, VEGF
PPAR‑a, PPAR‑g	 Directly interacts with CITED2 Together with CITED2, participates in (17,43‑45)
  signalling cascades of hypoxic response and 
  angiogenesis
WT1 Directly interacts with CITED2 Regulates SF1 expression, sex determination (46,47)
  and early gonad development
Pitx2c CITED2 with TFAP2 regulates Controls left‑right gene transcription (12,48‑50)
 Pitx2c expression
HIF‑1a	 CITED2 inhibits HIF‑1a activity Displace p300/CBP from HIF‑1	a represses (14,35‑39)
  HIF‑1a downstream targets expression
ETS1 CITED2 binds to ETS1 Displaces p300/CBP from ETS1, represses (55)
  MMP expression
ISL1 Directly interacts with CITED2 Promotes stem cells cardiac differentiation (58)
Myc Directly interacts with CITED2 Recruits p300 and Myc to E2F3 promoter and (21)
  transactivates E2F3 expression and increases 
  G1/S cell cycle progression
Nanog, Klf4, Tbx3 CITED2 regulates Nanog, Klf4 ESC proliferation, survival and self‑renewal (76)
 and Tbx3 expression
Nucleolin CITED2 regulates Nucleolin By chaperone PRMT5 and p300 to Nucleolin  (22)
 expression promoter, CITED2 activates Nucleolin 
  transcription, involved in prostate cancer 
  metastasis

CITED2, Cbp/P300 interacting transactivator with Glu/Asp‑rich carboxy‑terminal domain 2; TFAP2, transcription factor AP‑2; SMAD2/3, 
mothers against decapentaplegic homolog 2/3; TGFβ, transforming growth factor β; MMP9, matrix metallopeptidase 9; VEGF, vascular 
endothelial growth factor; PPARα/γ, peroxisome proliferator‑activated receptor α/γ; WT1, Wilms tumor 1 transcription factor; SF1, splicing 
factor 1; Pitx2c, paired like homeodomain 2C; HIF1a, hypoxia inducible factor 1 subunit α; ETS1, avian erythroblastosis virus E26 (V‑Ets) 
oncogene homolog‑1; ISL1, ISL LIM homeobox 1; Myc, MYC proto‑oncogene, BHLH Transcription Factor; Nanog, homeobox transcrip‑
tion factor Nanog; Klf4, Kruppel‑like factor 4; Tbx3, T‑Box transcription factor 3; ESC, embryonic stem cell; PRMT5, protein arginine 
methyltransferase 5.
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overexpression of these transcription factors in somatic cells 
give rise to pluripotent stem cells, or iPSCs (79,80). As described 
earlier, CITED2 regulates expression of stem cell marker 
transcription factors. Charneca et al (81), assessed whether 
overexpression of Cited2 alone was sufficient for generation of 
iPSCs. Notably, overexpression of Cited2 in mouse embryonic 
fibroblasts did activate expression of certain stem cell marker 
transcription factors, including Nanog, Sox2 and Rex1, but this 
was not sufficient for generation of iPSCs (81). Furthermore, 
overexpression of CITED2 in the pre‑senescent fibroblasts 
significantly increased the efficiency of iPSC generation 
using the combination of the four transcription factors that 
Yamanaka established (79‑81). It has been reported that aged 
cells are more difficult to transform into iPSCs compared with 
younger cells (82,83), and improving our understanding of the 
differences between aged and younger cells may highlight a 
possible solution for the generation of iPSCs from aged cells.

4. Function of CITED2 in cancer

Overexpression of Cited2 in Rat1 fibroblasts results in a loss of 
cell contact inhibition in in vitro cell cultures and in nude mice 
in vivo, highlighting the potential role of Cited2 in the trans‑
formation of certain types of cells (7). A recent study used 
system‑level approaches to analyse the genome‑wide transcrip‑
tome of the protein‑coding genes of 17 major types of cancer 
with respect to clinical outcome (84). This study revealed that 
Cited2 was expressed in all 17 types of cancer, although it 
had low cancer specificity (proteinatlas.org/pathology) (84). A 
general pattern of shorter patient survival times was associ‑
ated with upregulation of genes involved in cell growth (84). 
CITED2, a protein involved in cell growth and other funda‑
mental cell processes, has been reported to serve a critical role 
in different types of cancer, which are further discussed below.

CITED2 in breast cancer. Breast cancer accounts for 30% of 
all cancer cases in females in the USA and is the leading cause 
of cancer‑associated mortality worldwide (2). Cited2 expres‑
sion was shown to be upregulated in primary breast cancer 
specimens and bone metastatic tumours compared with the 
normal mammary epithelium (25,85). Notably, cell lines with 
bone metastatic capacity in animal models exhibit the highest 
expression levels of Cited2 compared with less metastatic 
cell lines (25). A recent study also confirmed that human 
metastatic tumours express higher mRNA levels of Cited2 
compared with primary tumours and normal epithelium (26). 
Additionally, expression levels of Cited2 are negatively 
associated with survival (19,25). Cited2 expression levels are 
associated with disease‑free survival in patients with breast 
cancer, and has been proposed to serve as potential prognostic 
marker (85,86). However, van Agthoven et al (87) reported 
that Cited2 mRNA expression levels were significantly 
increased in human breast cancer cell lines, and an analysis 
of data obtained from the Genomic Spatial Event database 
showed that Cited2 levels are lower in breast cancer tissue 
compared with normal tissues, albeit not statistically signifi‑
cant (22). Despite the discrepancy between studies, CITED2 
is able to modulate oestrogen receptor transcriptional activity 
in breast cancer cells, and thus, elevated Cited2 expres‑
sion may lead to oestrogen‑independent oestrogen receptor 

activation, resulting in a reduction in oestrogen dependence 
and thus a reduced response to anti‑oestrogen therapy (19). 
CITED2 may also modulate the capability of breast cancer 
metastases by positively regulating IKKα (26). Using breast 
cancer cell lines, it was demonstrated that knockdown of 
Cited2 expression resulted in reduced expression of the 
NF‑κB signalling pathway regulator IKKα, and of the NF‑κB 
signalling pathway downstream targets, OPN, MMP9, µPA, 
SPARC, IL‑11 and IL‑1β, which are known to serve roles in 
metastasis (26). Furthermore, knockdown of Cited2 expres‑
sion in breast cancer cell lines attenuates breast tumour 
growth in mice (42), further highlighting the role of CITED2 
in breast cancer progression. Therefore, it was proposed that 
CITED2 regulated vascularization of breast tumours through 
TGF‑β dependent VEGF expression (42). Tumour‑associated 
macrophages are important immune cells that serve a role 
in promoting primary tumour growth, metastatic progres‑
sion, poor overall survival and therapeutic resistance (88‑91). 
Notably, silencing Cited2 expression in breast cancer cell lines 
decreased the expression of the macrophage chemoattractant, 
CCL20, and thus attenuated macrophage recruitment (92). In 
fast growing tumours, cells usually encounter hypoxic stress, 
which results in induction of HIF expression, and apoptosis 
can be induced by HIF (93). Bakker et al (94) reported that in 
MCF7 breast cancer cells, HIF‑1α induced FOXO3a expres‑
sion and upregulated the downstream CITED2 expression. 
Increased expression of CITED2 inhibits HIF‑1α‑induced cell 
apoptosis (94). Although the mechanism of CITED2 function 
in breast cancer is not fully understood, the results of the 
aforementioned studies have demonstrated that CITED2 may 
be a potential therapeutic target for treatment of breast cancer.

Cited2 in leukaemia. CITED2 serves a critical role in the 
maintenance of hematopoietic stem cells (63,64,66,95), and 
loss of Cited2 in adult mice results in a loss of HSCs and 
bone marrow failure (63). Although leukaemia primarily 
rises from the hematopoietic progenitor level, different types 
of leukaemia have different causes (96). In acute myeloid 
leukaemia cells, Cited2 regulates P53 activity by regulating the 
AKT signalling pathway at multiple levels (97). When Cited2 
expression was knocked down, expression of the AKT signal‑
ling pathway positive regulator transcription factor, SOX4, 
was decreased; however, expression of the negative regulator 
Thioredoxin‑interacting protein was upregulated. Expression 
of the p53 target gene, PHLDA3, was downregulated, and 
expression of BCL2 gene was upregulated. As a consequence, 
loss of Cited2 expression in acute myeloid leukaemia cells 
increased P53‑mediated apoptosis (97). Therefore, targeting 
Cited2 expression or CITED2 function may be a potential 
therapeutic method for treating patients with AML.

Cited2 in lung cancer. CITED2 is essential for foetal lung 
maturation in mice; Cited2‑null lung exhibit reduced terminal 
sac space at embryonic day 18.5 (11). However, the func‑
tion of CITED2 in lung cancer is not fully understood. Our 
unpublished preliminary data based on data mining from the 
Oncomine database (98) and data analysis using The Cancer 
Genome Atlas (22) all demonstrated that Cited2 expression 
levels in lung cancer are lower than in normal lung tissues from 
the same patients. The downregulation of Cited2 expression in 
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lung cancer may be explained by the lower expression of Foxa2 
directly reducing Cited2 expression (98). However, another 
study reported that higher expression of CITED2 in lung 
cancer was associated with a less favourable prognosis (21). 
The proposed molecular mechanism in lung cancer is: CITED2 
enhances E2F3 transcription factor expression by interacting 
with Myc, leading to increased G1/S cell cycle progression. 
On the other hand, CITED2 enhances Myc‑mediated suppres‑
sion of p21(CIP1), inhibiting cellular quiescence (21). Notably, 
knockdown of CITED2 expression can sensitize lung cancer 
cells to chemotherapy (Cisplatin), primarily through stabiliza‑
tion of p53 (99). Therefore, CITED2 may potentially serve as 
a therapeutic target in the treatment of lung cancer. A recent 
data mining study further found that CITED2 expression is 
significantly different between lung cancer specimen from 
smokers and non‑smokers, suggesting that CITED2 may be 
used as a biomarker for smoking‑related lung cancer (100).

Cited2 in prostate cancer. Prostate cancer is the most 
frequently diagnosed type of cancer in males, and the second 
leading cause of cancer‑associated mortality among males (2). 
Despite the huge advances in prostate cancer therapy in 
recent years, the prognosis of patients with advanced prostate 
cancer remains generally poor due to metastasis (101), as the 
molecular and cellular mechanisms of prostate metastasis are 
not well understood. A recent study revealed that CITED2 
is highly expressed in prostate cancer tissue from patients 
compared with normal tissues. Notably, metastatic prostate 
tumours express even higher CITED2 mRNA levels than 
non‑metastatic prostate tumours (22). This study found that 
high CITED2 expression is significantly correlated with the 
overall survival of patients with prostate cancer. The authors 
further elucidated the mechanisms of this and proposed that 
CITED2 recruits Protein Arginine Methyltransferase 5 and 
p300 to nucleolin, which promotes epithelial‑mesenchymal 
transition and prostate cancer metastasis (22). Therefore, 
CITED2 may be a potential therapeutic target for treatment of 
metastatic prostate cancer (22).

CITED2 in colon cancer. Colon cancer or colorectal cancer is 
the third most frequently diagnosed cancer type, in males and 
females (2). The function of CITED2 in colon cancer has not 
yet been extensively studied. One study using a colon cancer 
cell line reported that knockdown of Cited2 increased cancer 
cell invasiveness in vitro by upregulating MMP‑13 expres‑
sion (102). The histone deacetylase (HDAC) inhibitor, butyrate, 
resulted in upregulated expression of Cited2 in colon cancer 
cells and consequently downregulated MMP‑13 expression. 
Ectopic expression of Cited2 induced colon cancer cell growth 
arrest (102). RNA‑seq analysis showed that Cited2 expression 
was correlated with resistance to the chemotherapeutic reagent, 
irinotecan (103). The role of CITED2 in irinotecan resistance 
and the underlying mechanisms remain to be determined.

CITED2 in gastric cancer. Gastric cancer (colloquially referred 
to as stomach cancer) is a major category of cancer and is a 
leading cause of mortality in cancer‑associated diseases (2). A 
few recent studies investigated the possible roles of CITED2 in 
gastric cancer. Data mining using existing gene expression data 
revealed that Cited2 was a signature prognostic gene among 

16 genes (104). A Human Protein Atlas program used systems 
biology analysis and revealed that CITED2 is a prognostic 
predictor of stomach cancer (proteinatlas.org) (84). High expres‑
sion of Cited2 is associated with a worse prognosis in patients 
with stomach cancer (Fig. 1; patient information in Table II; data 
derived proteinatlas.org) (84). Notably, low expression of Cited2 
in gastric cancer cells is associated with chemoresistance (24). 
By overexpressing Cited2 or inducing Cited2 expression using 
an HDAC inhibitor in gastric cell lines, the cells were sensitized 
to the chemotherapeutic reagent, anthracycline, both in vitro 
and in vivo (24). There was also a small subset of patients with 
higher Cited2 expression levels in gastric cancer with a more 
complete response to chemotherapy, including epirubicin, 
although the number of patients was too small to draw any 
conclusions from (24). One possible explanation for this is that 
usually, high expression levels of Cited2 results in increased 
rates of cell proliferation and DNA synthesis, which in turn 
results in increased sensitivity to chemotherapy or radiotherapy. 
Mycophenolic acid (MPA), a metabolized product and active 
element of mycophenolate mofetil was revealed to inhibit gastric 
cancer cell invasion and migration (105). Based on microarray 
analysis, MPA may have downregulated the expression of a large 
number of pro‑migratory genes and upregulated the expression 
of a number of anti‑migratory genes, including Cited2 (105). 

Table II. Stomach cancer population characteristics (n=877).

Characteristic Stomach cancer

Median age at diagnosis (range), years 62 (17‑90)
Sex 
  Male  591 (67.4)
  Female 286 (32.6)
Tumor stage 
  I 452 (521.5)
  II 103 (11.7)
  III 187 (21.3)
  IV 103 (11.7)
  NA 32 (3.6)

Source: www.proteinatlas.org. All data are presented as N (%) unless 
stated otherwise.

Figure 1. High CITED2 expression is associated with a poorer prognosis in 
stomach cancer. Data derived from www.proteinatlas.org.
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An in vitro study by Tang et al (106) reported that knockdown 
of Cited2 expression in gastric cells resulted in decreased cell 
proliferation, mitochondrial membrane potential and colony 
formation. Our understanding of the role of CITED2 in gastric 
cancer is limited and requires further study.

5. Conclusion and future perspectives

As CITED2 serves critical roles in numerous fundamental cell 
processes, it may be a suitable target for treatment of several 
types of cancer. Cited2‑null normal tissue cells, including mouse 
embryonic fibroblast cells, HSCs, foetal liver cells, midbrain cells 
and neuroepithelium cells, exhibit premature senescence or an 
increase in the levels of apoptosis (8,10,23,107,108). Although 
resistance to apoptosis is a hallmark of cancer cells, induction 
of senescence or apoptosis, is a hypothesized means of control‑
ling cancer growth. Notably, several studies have reported that 
CITED2 inhibits P53 activation in cancer cells (97,99,109,110), 
and upregulated expression of Cited2 in cancer cells inhibits 
P53 activation and apoptosis. Therefore, targeting CITED2 by 
silencing Cited2 gene expression and increasing cancer cell apop‑
tosis (99,106) may be a possible treatment for cancer. Knocking 
down CITED2 expression in lung cancer cells resulted in a 
shrinkage of tumour size in nude mice and increased host mouse 
survival rates (21). Other methods, including inducing expression 
of microRNAs targeting and downregulating Cited2 expres‑
sion, also results in apoptosis of cancer cells (111). Relapse and 
metastasis are the major hurdles of cancer therapy, and, whether 
CITED2 serves a role in cancer relapse or metastasis will be a 
topic of interest. As mentioned earlier, CITED2 directly or indi‑
rectly regulates expression of key stem cell transcription factors, 
OCT4, Nanog, Klf4 and Tbx3. These transcription factors are 
also known to be key players in cancer stem‑like cells (112‑115). 
Therefore, it is possible that CITED2 serves a key role in cancer 
stem cell function. Indirectly downregulating Cited2 expression 
in chronic myeloid leukaemia using PPAR‑γ agonists resulted 
in an erosion of the leukaemia stem cell pool (116), which 
suggests that targeting CITED2 expression in cancer stem cell 
in general may be a therapeutic method for treatment of cancer, 
and preventing relapse. In conclusion, CITED2 is an essential 
transcription co‑factor and may serve as a therapeutic target for 
the treatment of cancer.
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