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A B S T R A C T

Pharmacological treatment of major depressive disorder (MDD) typically involves a lengthy trial and error
process to identify an effective intervention. This lengthy period prolongs suffering and worsens all-cause
mortality, including from suicide, and is typically longer in late-life depression (LLD). Our group has recently
demonstrated that during an open-label venlafaxine (serotonin-norepinephrine reuptake inhibitor) trial, sig-
nificant changes in functional resting state connectivity occurred following a single dose of treatment, which
persisted until the end of the trial. In this work, we propose an analysis framework to translate these pertur-
bations in functional networks into predictors of clinical remission. Participants with LLD (N=49) completed
12-weeks of treatment with venlafaxine and underwent functional magnetic resonance imaging (fMRI) at
baseline and a day following a single dose of venlafaxine. Data was collected at rest as well as during an emotion
reactivity task and an emotion regulation task. Remission was defined as a Montgomery-Asberg Depression
Rating Scale (MADRS) ≤10 for two weeks. We computed eigenvector centrality (whole brain connectivity) and
activation during the emotion regulation and emotion reactivity tasks. We employed principal components
analysis, Tikhonov-regularized logistic classification, and least angle regression feature selection to predict re-
mission by the end of the 12-week trial. We utilized ten-fold cross-validation and Receiver Operator Curves
(ROC) curve analysis. To determine task-region pairs that significantly contributed to the algorithm's ability to
predict remission, we used permutation testing. Using the fMRI data at both baseline and after the first dose of
treatment yielded a sensitivity of 72% and a specificity of 68% (AUC=0.77), a 15% increase in accuracy over
baseline MADRS. In general, the accuracy at baseline was further improved by using the change in activation
following a single dose. Activation of the frontal cortex, hippocampus, parahippocampus, caudate, thalamus,
medial temporal cortex, middle cingulate, and visual cortex predicted treatment remission. Acute, dynamic
trajectories of functional imaging metrics in response to a pharmacological intervention are a valuable tool for
predicting treatment response in late-life depression and elucidating the mechanism of pharmacological
therapies in the context of the brain's functional architecture.

1. Introduction

In late-life depression (LLD), the time between initiating treatment
and clinical response generally takes 4–6weeks. This delayed clinical
effect is associated with prolonged suffering, exacerbated medical co-
morbidities, and increased risk of suicide (Andreescu and Reynolds,
2011). While many studies report changes in neural activation in de-
pressed older adults during emotional reactivity or regulation tasks,

relatively few studies have focused on the predictive utility of the
identified changes or described changes within a timeframe that per-
mits this information to be used clinically.

Unlike neuroimaging literature, there exists a rich literature on the
clinical, genetic, and social factors that affect treatment response and
remission. Past studies have found that factors like: allelic variation in
serotonin transporters, endogenous depression status (genetic risk or
family history of depression), sex, baseline depression severity as well
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as change within 2–4weeks of treatment, duration of current episode,
age of onset of depression, response and adherence to past treatments,
pain symptoms, baseline anxiety, suicide ideation, rapid eye movement
(REM) latency, and baseline sleep quality have all been associated with
treatment response, but even other factors like family support, social
inequalities, expectations and perceived quality of care, heavy drinking,
presence of stress-provoking agents, as well as eccentric personalities
(paranoid, schizoid, or cluster C personality disorders) are important
(Andreescu et al., 2007, 2008; Cohen et al., 2006; Dew et al., 1997;
Gallagher and Thompson, 1983; Gildengers et al., 2005; Joel et al.,
2014; Karp et al., 1993, 2005; Lotrich et al., 2001; Marmar et al., 1989;
Martire et al., 2008; Morse et al., 2005; Mulsant et al., 2006; Oslin,
2005; Pollock et al., 2000; Reynolds et al., 1991; Smith et al., 1999;
Szanto et al., 2003; Tew et al., 2006). In general, the most commonly
used clinical indicators of treatment response include baseline symptom
severity, previous response to treatment, and symptom change within
the first two weeks (Andreescu et al., 2008; Joel et al., 2014).

There is emerging evidence that neural markers may have pre-
dictive capacity toward reducing the number of trialed antidepressants
and possibly improving antidepressant outcomes (Canli et al., 2005;
Siegle et al., 2006). In a subset of the current sample in this analysis, we
identified neural changes within a day of the first dose of anti-
depressants utilizing functional magnetic resonance imaging (fMRI),
which was dependent on remission status (Karim et al., 2016; Khalaf
et al., 2016). These early responses indicate that while behavioral
changes often take weeks to manifest, a patient's underlying neural
activity is quickly changed by antidepressant treatment in a detectable
fashion. Additionally, in a subset of the current sample we showed that
these early neural changes are also correlated with the chronic neural
changes observed at the end of the antidepressant treatment trial
(Karim et al., 2016; Khalaf et al., 2016). There is evidence that these
fast changes are not only detectable but could also be potentially used
to predict whether an antidepressant at a given dosage will be able to
engage a neural target to facilitate long-term behavioral changes.

There exists a larger literature in mid-life major depressive disorder
(MDD) compared to LLD, and these studies suggest that prediction of
treatment response is feasible (Costafreda et al., 2009; Liu et al., 2012;
Marquand et al., 2008; Nouretdinov et al., 2011). On average, these
studies report accuracies ranging from 69 to 90% (mean 83%), sensi-
tivities from 78 to 89% (mean 85%), and specificities from 52 to 90%
(mean 80%). They utilize several algorithms including support vector
machines, weighted regressions, logistic classifiers, and decision trees,
and mainly employ leave-one-out cross-validation (LOOCV) due to
limited sample size. One study in late-life demonstrated that resting
state connectivity predicted treatment response, while other structural
features predicted diagnosis (Patel et al., 2015, 2016). Patel et al.
(2015) identified that the integrity of white matter in the anterior sal-
ience network and the functional connectivity of the dorsal default
mode network predicted treatment response. In general, these studies
focus on either structural or functional imaging data collected at
baseline and are potentially limited due to sample size and cross-vali-
dation concerns. While there is a much larger literature that suggests
that several features are predictive of treatment response in LLD,
comparatively fewer studies have investigated the predictive capacity
of neural engagement during neural activation and connectivity and far
fewer have investigated acute changes in neural activation in response
to treatment.

In this study, in a sample of LLD participants (N=49) receiving
venlafaxine, we investigated the treatment response predictive capacity
of three neural markers: activation during an emotion reactivity task,
activation during an explicit emotion regulation task, and whole brain
voxel-wise connectivity (eigenvector centrality) at rest. These metrics
were chosen based on past literature, which identifies abnormal neural
activation in MDD – mainly hyperlimbic activation coupled with hy-
pofrontal activation (related to emotion reactivity and executive func-
tion that is critical for explicit emotion regulation). Further, it is also

well established that depressive symptoms are associated with resting
state network dysfunction (Alexopoulos, 2005; Andreescu et al., 2013;
Karim et al., 2016; Wu et al., 2011). We investigated the predictive
capacity of pre-treatment neural activation and of the change in neural
activation following a single dose of venlafaxine. We compared the
predictive capacity of these markers (both separately and in unison) to
the predictive capacity of baseline depression severity. This is one of
few studies that have investigated the predictive utility of acute change
in neural activation with respect to treatment remission in LLD. We
hypothesized that these markers would have greater predictive capacity
than baseline depression severity and that early changes in these tasks
would improve our predictive capacity than pre-treatment neural
markers alone. We further hypothesized that neural and clinical mar-
kers together would further improve response prediction.

2. Methods

2.1. Study design and participants

We collected neuroimaging data as part of a larger 5-year multi-site
study of treatment in LLD that collected neuroimaging data at one site
(Pittsburgh, USA). Participants were recruited and prescribed with
open-label venlafaxine (a serotonin and norepinephrine reuptake in-
hibitor). Participants were included if they were at least 50 years old,
met Diagnostic and Statistical Manual for Mental Disorders-IV (SCID-
IV) criteria for MDD and had a Montgomery-Asberg Depression Rating
Scale (MADRS) score of 15 or higher at baseline. Participants were
excluded if they had a history of mania or psychosis, alcohol or sub-
stance abuse (within last 3 months), dementia or neurodegenerative
disease as well as conditions with known effects on mood and cognition
(e.g. stroke, multiple sclerosis, vasculitis, significant head trauma, and/
or unstable hypertension). Informed consent was obtained from all
participants prior to engaging in any research procedures, and the
University of Pittsburgh Institutional Review Board approved this
study.

All MRI scanning was conducted in the morning. Five MRI scans
were collected during the treatment trial. Participants came in on the
first day for a baseline scan (no medication). In the same evening, they
were given a placebo, after which they returned the next day for an-
other scan (placebo scan). The evening of that scan, they were given
their first dose of venlafaxine (37.5 mg), after which they returned the
next day for another scan (single dose scan). They continued their
medication for one week and returned for another scan (week one
scan). They returned a final time after the end of the treatment trial
(12 weeks, end scan). This analysis does not utilize the week one or end
of trial scans as we intended to understand the predictive capacity of
the neuroimaging data over an acute period. Henceforth, we only de-
scribe the relevant scanning procedures and analyses. During the trial,
participants returned for weekly or bi-weekly clinical visits and the
venlafaxine dosage was increased as necessary (up to a maximum of
150mg/day by week 6). Participants who did not show signs of re-
sponse by week 6 had the dosage increased up to a maximum of
300mg/day. At the end of the study, participants were classified as
remitters if they had a MADRS≤ 10 for at least two weeks during the
trial (and remained so until the end of the trial). Fig. 1 summarizes the
study timeline.

A total of 62 participants signed consent. Eleven were excluded due
to: side effects of medication (N=2), non-adherence to protocol
(N= 2), inaccurate diagnosis of MDD (N=1), and inability to de-
termine remission status due to lost/missing data (N=6). Among the
remaining participants (N= 51), two participants did not complete all
MRI scanning but did complete the treatment trial. In summary, 49
participants were included in this analysis.
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2.2. MRI protocols

All scanning was conducted at the University of Pittsburgh Medical
Center on a Research dedicated 3 T Siemens Trio TIM scanner (Munich,
Germany) using a 12-channel head coil. The baseline and end scan
protocol included both a structural and functional image, while other
scans collected only functional sequences. In this manuscript, we lim-
ited our analysis to the functional sequences, which were a resting state
sequence, an explicit emotion regulation task sequence, and an emo-
tional reactivity (faces/shapes) sequence.

An axial, whole brain 3D magnetization prepared rapid gradient
echo (MPRAGE) was collected with repetition time (TR)= 2300ms,
echo time (TE)= 3.43ms, flip angle (FA)= 9°, inversion time
(TI)= 900ms, field of view (FOV)=256×224, 176 slices, 1 mm iso-
tropic resolution and with Generalized Autocalibrating Partial Parallel
Acquisition (GRAPPA) factor= 2. An axial, whole brain 2D fluid atte-
nuated inversion recovery (FLAIR) was collected with TR=9160ms,
TE= 90ms, FA=150°, TI= 2500ms, FOV=256×212, 48 slices,
and 1×1×3mm resolution.

An axial, whole brain (excluding cerebellum) echo planar (EPI) T2*-
weighted functional image was collected to measure the blood oxygen
level dependent (BOLD) response with TR=2000ms, TE= 34ms,
FA=90°, FOV=128×128, 28 slices, 2× 2×4mm resolution. The
duration of the face/shapes task (see Functional Imaging Metrics) was
117 volumes (~4min), the explicit emotion regulation task (see
Functional Imaging Metrics) was 270 volumes (~9min), and the resting
state was 150 volumes (~5min). Due to variability in placement by MR
technicians the coverage of the functional scans was in general limited
to above the cerebellum and below the top aspect of the motor cortex
(though this varied slightly between functional sequences). Participants
were instructed to lie awake and view a cross hair during resting state.

2.2.1. Emotional reactivity task
The face/shapes task is widely used and has been found to robustly

activate the amygdala (Hariri et al., 2002, 2003). Participants were
instructed to match either a face cue or a shape cue. A cue was shown
on the top center of the screen and they were instructed to respond with
an MR-compatible glove (left or right index finger) by matching to one
of two simultaneously presented faces. The facial expressions shown
were either angry or fearful. During the shapes, they match a shape to
one of simultaneously presented shapes. The shapes task (5 blocks) was
interleaved with the faces task (4 blocks) and each block lasted 24 s
containing 6 trials (4 s each). Before the beginning of each block par-
ticipants were instructed visually to “match emotion” or “match form”
(2 s). The face images are presented from a set of 12 different images
(six per block, three of each sex) and are all derived from a standard set
of pictures of facial affect. Stimulus presentation and responses were

controlled using E-prime software (Psychology Software Tools, Inc.,
Pittsburgh).

2.2.2. Explicit emotional regulation task
Participants were shown emotionally neutral or negative images

from the standardized International Affective Picture System (IAPS)
(Lang, 2005) and were instructed to either “Look” or “Decrease.” This
task has been described previously (Khalaf et al., 2016) and has been
used to activate prefrontal cortex (especially the dorsolateral prefrontal
cortex) as a means of explicitly regulating limbic reactivity. During the
look instruction, participants were to view content naturally. During
the decrease instruction, participants were instructed to reappraise
negative images to actively alter the elicited emotion. A master level
staff member instructed participants on how to reappraise prior to en-
tering the scanner. After each image they were asked to rate how ne-
gatively they felt from 1 to 5. The neutral (11 events), negative (15
events), and negative regulate (15 events) conditions were interleaved
and each event lasted 6 s. The inter-trial interval was 13 s with no jitter
(though they were not locked to a TR). This allowed for modeling of
each individual response by allowing for enough time in between each
stimulus, but likely resulted in lower power to detect each individual
effect. The images are presented from a set of images and stimulus
presentation and responses were controlled using E-prime software
(Psychology Software Tools, Inc., Pittsburgh).

2.3. Structural processing

All processing was conducted using statistical parametric mapping
(SPM12; http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB (MATLAB
2016b, The MathWorks, Natick, 2016). Interpolation was conducted
using 4th degree B-spline interpolation, normalized mutual information
similarity metric for coregistration between images of different types,
and mutual information similarity metric for motion correction unless
otherwise stated. The FLAIR was coregistered to the MPRAGE (affine
transform). Both images were input into a multi-spectral segmentation
(Ashburner and Friston, 2005), which (after bias correction) segmented
them into gray, white matter, cerebrospinal fluid, skull, soft-tissue, and
air. Due to high white matter hyperintensity burden the number of
Gaussians used to identify white matter was set to two (which improves
the segmentation). This process generates a deformation field that can
be used to normalize other images to a standard anatomic space
(Montreal Neurological Institute, MNI) (Ashburner and Friston, 2005).
An automatic mask for the intracranial volume was generated by
thresholding the intracranial tissues with a probability of 0.1, filling the
mask (imfill), and then performing a morphological closing operation
(imclose, sphere of one voxel) in MATLAB. This mask (intracranial
volume, ICV) was applied to the MPRAGE to remove non-brain tissues
(which improves functional-structural coregistration).

2.4. BOLD pre-processing

The explicit emotion regulation task and the resting state data were
slice time corrected (temporally middle slice was used as reference)
prior to performing motion correction. All functional BOLD data was
motion corrected (rigid coregistration to the mean), coregistered to the
skull-stripped MPRAGE (mean functional image used to calculate affine
transformation), normalized to MNI space using the deformation field
calculated previously (2 mm isotropic resolution), and smoothed using
a Gaussian kernel with FWHM of 8mm. All images were investigated by
human eye to confirm that coregistration and normalization steps were
accurate.

Motion was evaluated using ArtRepair toolbox (Mazaika et al.,
2007). During the emotional faces reactivity task, participants had low
maximum translations [mean= 1.26mm (std= 1.21)], low root mean
squared (RMS) [1.11mm (0.81)], and low percentage of volumes dis-
playing head jerks above 0.5mm [6.2% (10.7%)]. During the resting

Fig. 1. The study design protocol: Functional and structural magnetic re-
sonance imaging (fMRI and sMRI, respectively) was performed in the morning
during various times through the trial. On the first day, participants came in for
an fMRI scan (baseline) and then were given a placebo following the scan. On
the second day, they returned for another fMRI scan and then were started on
venlafaxine following the scan. They returned the next day (~12 h later) for
another fMRI scan (1st dose change). They continued their medication as
normal and came in for scans at the end of the first week and at the end of the
trial. Only the fMRI scans at baseline and 1st dose change were used in this
paper.
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state, participants had low maximum translations [1.27mm (1.26)],
low root mean squared (RMS) [1.04mm (0.85)], and slightly higher
percentage of volumes displaying head jerks above 0.5 mm [10.9%
(19.9%)] that were corrected for using wavelet-despiking in later
stages. During the explicit emotion regulation task, participants had
low maximum translations [1.87mm (1.91)], low root mean squared
(RMS) [1.40mm (1.08)], but slightly elevated percentage of volumes
displaying head jerks above 0.5 mm [9.4% (30.8%)], with a few par-
ticularly bad cases that were removed. There were no group differences
in any of these motion metrics between remitters and non-remitters
between any time points.

For resting state BOLD, spike artifacts were removed using a pre-
viously established method that uses wavelets to filter spike artifacts
(Patel et al., 2014). Five principal components of white matter and
cerebrospinal fluid were extracted as well as 6 motion parameters and a
vector to model the mean of the time series (Whitfield-Gabrieli and
Nieto-Castanon, 2012). Band-pass filtering was conducted by including
several regressors that represented cosines with all discrete frequencies
except those within the standard expected resting state frequencies
(0.008 to 0.15 Hz).

2.5. Modeling task activation: emotion reactivity and emotion regulation
tasks

Mass-univariate general linear modeling (i.e. each voxel is in-
dependently modeled) was performed to model the mean, faces task,
shapes task, and six parameters of motion (from motion correction).
The canonical hemodynamic response function was used to convolve
the faces and shapes tasks to expected hemodynamic responses. A high-
pass filter of 1/128 Hz was utilized to account for low frequency noise.
An autoregressive [AR(1)] filter was used to account for serial corre-
lations due to aliased biorhythms and unmodelled activation. The
contrast faces minus shapes was used to perform all voxel-wise ana-
lyses.

Similarly, the explicit emotion regulation task included similar
parameters however it modeled the activation during the neutral and
negative viewing tasks as well as the reappraisal task (during viewing of
negative images). The contrast of interest was negative reappraise
minus negative viewing, which modeled the activation during re-
appraisal adjusting for activation during the negative viewing task.

2.6. Resting state BOLD: eigenvector centrality

Eigenvector centrality was calculated using the fastECM toolbox
(Lohmann et al., 2010). Briefly, centrality is a measure of connected-
ness of a voxel or region. Mean centrality is a related measure that
calculates the mean voxel-wise connectivity of a single voxel to all other
voxels where a greater centrality would imply that a voxel is more
widely connected. FastECM uses singular value decomposition to cir-
cumvent the calculation of large correlation matrices.

2.7. Dimensionality reduction and machine learning

We used a combination of Principal Component Analysis (PCA),
Least Angle Regression, and Logistic Classification to identify differ-
ences on the individual level in our fMRI features that could be linked
to remission. Using SPM12, each individual's fMRI maps (resting state
eigenvector centrality, emotional regulation, and emotional reactivity)
were averaged across 116 regions in MNI152 space outlined in the
Automatic Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002),
resulting in a 348-length feature vector for each individual for a given
time point. While we could have estimated regions that were sig-
nificantly associated with each task, without an independent sample we
felt that this may bias our estimates (as we would have to select those
regions using this sample). PCA allows for the estimation of principal
component vectors across participants that vary together, thus it is

likely that regions that activated similarly were combined into a single
vector.

We tested two major fMRI feature vectors. One was the fMRI fea-
tures (116 regions of activation during emotion reactivity, emotion
regulation, or centrality) at baseline, prior to treatment. The other was
the change in fMRI features following a single dose (or placebo), which
was defined as the difference between the feature vector after a single
dose (or placebo) and baseline. Due to small-number error concerns, we
chose this method over a percentage change metric.

All analyses were performed within a ten-fold cross-validation
scheme to address over-fitting and multiple comparisons concerns. To
avoid biasing our estimates, all data demeaning, dimensionality re-
duction, feature selection, and hyper-parameter optimization were
performed via nested cross-validation loops. To establish bounds on the
accuracy of our algorithm, we repeated the cross-validation scheme 30
times, each time redrawing the cross-validation folds.

We used a combination of PCA and Least Angle Regression to se-
lectively reduce the dimensionality of the dataset to components that
were relevant to remission (Wold et al., 1987). Least Angle Regression
has been proposed as a “less greedy” alternative to the popular LASSO
(Grandvalet, 1998) algorithm that favors the net contribution by mul-
tiple features simultaneously over identifying single features in-
dependently (Efron et al., 2004). Using the components selected by
these two algorithms, a logistic classifier was then trained on these
components and used to predict remission on the test fold of the cross-
validation scheme. Accuracy was assessed using Receiver Operator
Curves (ROC) analysis.

To determine predictors that utilized information from multiple
scanning time points or the baseline MADRS score, we averaged the
predictors from each individual algorithm to generate an averaged
predictor, a concept commonly referred to as an unweighted voting
algorithm (Dietterich, 2000). This procedure is meant to combine the
predictive power of several feature sets without suffering from over-
fitting concerns.

2.8. Permutation testing

To determine which anatomical regions of the fMRI metric maps
leant themselves to accurate and reliable predictions of remission, we
utilized permutation testing. More specifically, we randomly shuffled
the remitter/non-remitter labels within our dataset and recomputed the
entire cross-validated classification pipeline. Each feature (a single re-
gion for a given fMRI feature) was then ranked on its relative im-
portance to the classifier compared to all other regions across all me-
trics. This ranking procedure was repeated 1000 times and compared to
the rankings found when using the “true” remission labels. A region/
task pair is significantly associated with remission if its true ranking is
within the top 5% of random permutation ranking trials.

To understand the relative contribution of the fMRI metrics to each
prediction used in this paper, we also applied an additional permutation
test to the feature sets themselves (i.e., instead of permuting remitter/
non-remitter labels, the images themselves were permuted). For a given
time point, we permuted the features from a single fMRI feature and
repeated the cross-validation and training/evaluation procedure. This
was repeated 1000 times for each fMRI feature at both time points to
assess the individual contribution from each fMRI map.

3. Results

The differences between remitters and non-remitters at baseline
regarding age, sex, education, race, Cumulative Illness Rating Scale for
Geriatrics (CIRS-G), depression type, Mini-Mental State Examination
(MMSE), and Montgomery-Asberg Depression Rating Scale (MADRS)
are shown in Table 1. Only baseline and end of trial MADRS showed
significant differences between the two groups. Non-remitters had
higher baseline MADRS scores indicating higher depression severity.
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We also report each of these measures for the entire sample (intent-to-
treat) in Supplemental Table 1.

3.1. Accuracy of fMRI classification algorithm

Fig. 2 illustrates the accuracy of the fMRI classification algorithm
using the fMRI scans collected at different time points using the Area
under Curve (AUC) metric. Within this context, AUC represents the
probability that given two participants, one remitter and one non-re-
mitter, that the algorithm of interest will correctly classify the remitter
as being more likely to have a positive treatment response. This ranges
from 50% for a random-guessing algorithm to 100% for perfect accu-
racy. We found that utilizing our fMRI procedures and classification
algorithm yielded an approximate 15% increase in AUC over that of
simply using the MADRS alone. In general, we show that while there is
no significant difference in AUC between baseline and change in fMRI

features, the two features together significantly improve the overall
AUC and adding baseline depression severity further improves it. For
comparison, we also show the accuracies when utilizing the MADRS at
one or two weeks after the trial start, as well as the composite accuracy
of these values when used with the fMRI results. We find that our
imaging approach significantly outperforms both these values by ap-
proximately 7% in AUC. Fig. 3 shows the ROC curve and individual
predictors from the median trial (i.e., trial with median AUC) from the
fMRI/MADRS algorithm shown in the fifth column in Fig. 2. The pla-
cebo minus baseline scan did not predict remission [median AUC of
0.56 (IQR, 0.52–0.6)] better than MADRS (p=2.8e−11). Placebo
minus baseline combined with the baseline prediction [median AUC of
0.63 (IQR, 0.68–0.71)] was not significantly better than MADRS
(p= 0.688). Thus, the placebo results were excluded from further
analysis.

Fig. 4 shows the region/task pairs that passed permutation sig-
nificance testing. As only one region from the 1st dose change in the
fMRI resting state centrality metric passed permutation testing, maps of
that region (left superior temporal gyrus) were not shown. Table 2
shows the list of significant region/task pairs along with their exact
weights assigned by the classification algorithm, where positive signs
indicate a positive association with remission (e.g., higher baseline
activation or greater increase in activation is predictive of remission).
These regions included frontal cortex, parahippocampus, hippocampus,
caudate, thalamus, medial temporal cortex, middle cingulate, and vi-
sual cortex.

Fig. 5 illustrates the effects of permuting the feature set for a given
fMRI metric at a single time point. We found that the largest drop in
AUC occurred when permuting the emotional reactivity feature map,
indicating the relative utility of this probe in finding metrics that can be
used for remission prediction.

4. Discussion

In this paper, we present a novel method of predicting treatment
response in late-life-depression by utilizing the functional imaging
metrics in response to a single-dose of a pharmacological intervention.
By leveraging a combination of resting and task-based functional ima-
ging scans (emotional reactivity and regulation), both before treatment
and after the first dose of venlafaxine, we found that we could improve
the predictive capacity of baseline clinical factors by 15% in a cohort of
49 participants. Within this cohort, we define baseline clinical factors as
the total baseline Montgomery-Asberg Depression Rating Scale
(MADRS) as other demographic information (age, sex, education level,
and race) had no significant predictive power. We found that while
both the baseline scan and the scan following a single dose were able to
reliably predict remission with a greater accuracy than the baseline
MADRS, utilizing them together yielded significantly higher accuracy.

We further demonstrated that the change in activation following a
single dose significantly improves the overall predictive capacity

Table 1
Differences in various demographic and clinical factors between remitters and non-remitters are shown above. Apart from the baseline MADRS, there are no
significant differences between the remitter and non-remitter group. Abbreviations: CIRSG—Cumulative Illness Rating Scale for Geriatrics, MMSE—Mini-Mental
State Examination, MADRS—Montgomery-Asberg Depression Rating Scale, IQR—interquartile range.

Remitters (N=25) Non-remitters (N=24) Comparison

Age (years): median ± IQR 66 ± 10.5 64.5 ± 7.5 t (47), p= 0.33
Sex 7 Male, 18 female 11 Male, 23 female Χ2 (48), p= 0.20
Race 21 Caucasian, 4 African-American 20 Caucasian, 4 African-American Χ2 (48), p= 0.95
Education (years): median ± IQR 13 ± 6 15.5 ± 2.5 Mann-Whitney U test, p= 0.37
Depression type 15 Recurrent, 8 single (N=23) 14 Recurrent, 10 single Χ2 (46), p= 0.63
CIRS-G: median ± IQR 10 ± 4 8 ± 4.5 (N=23) t (46), p= 0.72
Baseline MMSE: median ± IQR 30 ± 2 29 ± 1.75 Mann-Whitney U test, p= 0.54
Baseline MADRS: median ± IQR 23 ± 11.25 27 ± 7.75 t (47), p= 0.04
Ending MADRS: median ± IQR 3 ± 6 (N=24) 19.5 ± 8 (N=23) t-Test (45), p= 4.5× 10−11

Fig. 2. The predictive accuracy of remission among 49 subjects was determined
using 30 trials of repeating a 10-fold cross-validation scheme and is shown via
interquartile range boxplots. The second and third column represent the ac-
curacy of using the classification algorithm on only the functional imaging data
(resting state centrality, emotional reactivity task, and emotional regulation
task) available at baseline or the change in imaging metric a day after the first
dose of venlafaxine. The fourth column represents averaging the predictions
from the second and third column, while the fifth column shows the accuracy
from averaging the predictions from the first four columns. We find that uti-
lizing functional imaging along with our proposed algorithms improves the
predictive power of the MADRS questionnaire by 15% (other demographic
variables such as age, sex, education level, and race had no significant pre-
dictive power and thus were not included). The last two columns show the
accuracy of utilizing the MADRS at one week (change in MADRS was less ac-
curate) and using that value in combination with the fMRI data at baseline and
post-first dosage. p-Values were calculated as one-sample t-tests with a null
hypothesis that the accuracy of the algorithm was equal to that to the MADRS at
baseline or at one week.
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compared to pre-treatment prediction. One possible application of these
results is facilitating neural target engagement – where we would both
find a neural target and engage it to significantly improve depressive
symptoms. Given the rising popularity of innovative methods to target
neural markers (using interventions such as transcranial magnetic sti-
mulation, TMS, or transcranial direct-current stimulation, tDCS), de-
termining the appropriate neural targets to engage is a field of rising
interest (George et al., 2000). Future studies investigating differential
target engagement are needed, as past studies seem to suggest that
different therapies result in differential engagement of similar neural
targets (Frodl et al., 2011). This would allow for identification of a pre-

treatment neural target and matching with an appropriate anti-
depressant or therapy to engage or alter that target.

There is a small, but significant past literature in LLD that focuses on
pre-treatment activation as well as connectivity associated with treat-
ment response (Aizenstein et al., 2009; Brassen et al., 2008; Khalaf
et al., 2016). These studies have identified hypoactive executive func-
tion during emotion reactivity (Aizenstein et al., 2009; Brassen et al.,
2008), changes in resting state connectivity (including one using a
subset of this study, Karim et al.) (Alexopoulos, 2005; Andreescu et al.,
2013; Karim et al., 2016; Wu et al., 2011), including in a subset of this
study we found lower pre-treatment centrality in the inferior frontal

Fig. 3. Left) The ROC curve of remission-prediction accu-
racy using functional imaging data before treatment, func-
tional imaging 24 h after the first treatment dose, and the
baseline MADRS score. Here true positive denotes the per-
centage of remitting subjects that were correctly predicted as
such, while false positive indicates the percentage of non-
remitters incorrectly classified as remitters. The ROC curve
of MADRS alone is shown for comparison. Right). The pre-
dicted remission probabilities used to generate the ROC
curve on the left. “p” is calculated as a two-sample t-test
while “d” is the Cohen's effect size. The red line represents
the cutoff probability that gives the sensitivity and specifi-
city values shown.

Fig. 4. Axial slices of the relative importance of region/task pairs that passed statistical permutation significance testing (p= 0.05) are shown above, with the z-
coordinates in MNI152 space shown for reference. Here, bright yellow shades indicate that the region/task pair is positively associated with remission (i.e., higher
baseline activation or greater increase in activation is predictive of remission), whereas bright blue shades indicate a negative association. As the 1st dose change of
resting state centrality only displayed one region that passed permutation testing, maps of that region (left superior temporal gyrus) are not shown. These results were
calculated by averaging the predictor importance weights assigned by the classification across all ten folds of cross-validation and over all thirty trials.
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gyrus (IFG) as well as greater pre-treatment MeFG centrality (Karim
et al., 2016). One large study identified pre-treatment subtypes of de-
pression, specifically that there exist four major subtypes that have
distinct abnormalities in resting state connectivity (Drysdale et al.,
2017), that also demonstrated a specificity for different treatments. In
general, our results and previous studies support the use of pre-treat-
ment fMRI for improving treatment outcomes.

Previous studies have identified that there exist neural changes
following treatment in LLD (Aizenstein et al., 2009; Brassen et al.,
2008). In a subset of this study, we have demonstrated that there not
only exist changes in both activation during explicit emotion regulation
and resting state connectivity, but also that these changes occur fol-
lowing a single dose of an antidepressant (Karim et al., 2016; Khalaf
et al., 2016). Our past work also identified that the early changes in
activation and connectivity reflected later changes at the end of the
study, in several instances the connectivity or activation after a single
dose did not differ from the end of the trial (Aizenstein et al., 2009;
Brassen et al., 2008).

The most critical component among the tasks (emotion reactivity,
explicit emotion regulation) and resting state (eigenvector centrality)
seems to be emotion reactivity. It may be that the emotion reactivity
task also involves implicit processing and consequently implicit reg-
ulation. Past work has shown that these tasks evoke limbic reactivity,
and the consequent neural response is to regulate this signal through
further implicit processing and possibly regulation. These processes
may be more acutely altered compared to centrality and explicit emo-
tion regulation. For example, previous work in a subset of this sample
has demonstrated that changes in explicit emotion regulation do not

manifest acutely in response to treatment, likely since such a change
would require an alteration of higher level cognitive networks which
are hypothesized to not occur until much later on – though there do
exist some changes (during negative viewing conditions) in some re-
gions (Khalaf et al., 2016). More studies are needed to truly understand
this process; however, we could speculate that this may be because the
changes in activation early on are associated with implicit rather than
explicit emotion processing (i.e., emotion reactivity vs. explicit reg-
ulation task, respectively). This may be how these processes (changes in
activation during emotion reactivity task) are altered without explicit
awareness.

We have shown that several regions have a predictive capacity for
remission, the majority of which are in the frontal cortex. The PFC
works to regulate limbic activation and thus is a critical part of treat-
ment response. Consequently, other regions like the parahippocampus,
hippocampus, caudate, thalamus, and middle cingulate as well as the
medial temporal cortex are also implicated. In general, these may be
related to contextual processing, reward, and explicit emotion regula-
tion. Without understanding the changes in activation in each region, it
is unclear how each independent region contributes, however the re-
gions that are predictive at baseline are not necessarily predictive in the
change following a single dose. It is possible that the baseline factors
may predict treatment resistance (rather than treatment response to a
particular therapy), whereas the change is predictive for response to a
particular antidepressant (though we cannot test this). For instance, low
executive network recruitment may predict a poor response in general,
but an increase in activation following an antidepressant may also
predict, however these are not necessarily the same (e.g., the

Table 2
The importance weights of the region/task pairs that passed permutation significance testing (p=0.05). Here, positive signs indicate a positive association with
remission. These results were calculated by averaging the predictor importance weights assigned by the classification across all ten folds of cross-validation and over
all thirty trials.

Baseline 1st dose change

Emotional reactivity Left middle frontal gyrus: −0.29 Left/right inferior frontal gyrus, pars orbitalis: +0.40/+0.31
Left lateral orbitofrontal cortex: −0.38 Left middle frontal gyrus, orbital part: +0.43
Right hippocampus: −0.58 Left rectus: +0.61
Right parahippocampus −0.45 Left lingual: +0.19
Right fusiform: −0.34 Right superior occipital gyrus: −0.32
Left caudate: −0.37 Right middle occipital gyrus: −0.28
Right inferior temporal gyrus: −0.43 Right angular gyrus: −0.37

Emotional regulation Left superior frontal gyrus, orbital part: +0.37 Left middle cingulate area: +0.19
Left middle frontal gyrus, orbital part: +0.30 Left cuneus (increased): +0.27
Left middle frontal gyrus: +0.27 Left/right precuneus: +0.23/+0.18
Left/Right middle cingulate area: −0.25/−0.25 Right paracentral lobule: +0.29
Right paracentral lobule: −0.31 Right caudate: −0.31

Left thalamus: −0.26
Resting state centrality Left inferior frontal gyrus, pars opercularis: +0.46 Left superior temporal gyrus: −0.54

Right parahippocampus: −0.46
Right fusiform: −0.36
Left caudate: −0.45

Fig. 5. The impact to the classification ac-
curacy of the fMRI predictor algorithm
when certain feature map sets are permuted
between subjects is shown via interquartile
boxplots. The first three columns represent
the result of shuffling the features of a given
fMRI metric map between subjects, while
the last column represents the accuracy
when no features are permuted. Note that
the largest drop in accuracy occurs when the
emotional reactivity features are permuted,
indicating the utility of using a task to probe
specific features of neural activity.
Statistical significance was determined via
two-sample t-tests. All the pairs marked by

asterisks have a p-value bound below 10−35.
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antidepressant could have no effects on executive network activation).
Further, this may reflect individuals that do not necessarily fit into the
monoamine theory of depression. Future studies should investigate not
only remission to particular pharmacotherapies compared to placebo,
but also remission to other treatments (like transcranial magnetic sti-
mulation or cognitive behavioral therapy). One caveat is that the direct
activation of a region may not be necessary for remission but occur as
an indirect effect of perturbations to other regions, however there is no
way to determine this in our study. Specifically, the actual changes in
activation and connectivity observed after a single dose may occur as a
result of only a small perturbation that was initially caused by the
venlafaxine. Only a study that directly injects a dose in the scanner and
continuously monitored the changes in activation could directly answer
such a hypothesis. We view these regions as potential neural targets for
a more comprehensive perturbation study.

Traditional modeling approaches understand neural differences in
the context of remission (outcome is traditionally defined as the neural
markers while remission is a predictor variable), however this approach
reverses this modeling by attempting to understand remission instead.
While the clinical utility of such approaches is not yet well understood,
this type of modeling helps improve our understanding of treatment
response variability (since not all remitters or non-remitters are alike).
For example, our work demonstrates the greater utility of the signal in
the emotion reactivity task compared to the centrality or the emotion
regulation task. Interestingly, the current approach and standard sta-
tistical analytical approaches are not necessarily convergent and the
major factor that contributes to this is that traditional approaches make
the assumption that all voxels are independent and for each voxel asks
how the variance in activation is explained by remission. This approach
instead assumes that the voxels are highly interdependent (using PCA
allows independent components to be generated), and instead asks how
the variance in remission is explained by these components.

There are several limitations in this study. While the sample size is
comparatively large, it is limited from a machine learning perspective.
This limitation is especially important in several ways. In particular,
past literature has shown that depression is a highly heterogeneous
disorder and thus likely contributes to the relatively modest improve-
ment in prediction in our study as well as past work. Further, treatment
response itself is highly heterogeneous and it is likely that there are
many paths to remission even within a single antidepressant. Finally,
there are other factors that may play an important role, for instance
individual variability in antidepressant metabolism may contribute to
the fMRI response. We employed a 10-fold cross-validation as well as
ensuring that any data reduction was done in fold (to avoid bias), to
affirm the viability of the algorithm and address over-fitting concerns.
These approaches help ensure that the improvement in prediction
(above MADRS alone) is stable, and by performing all data reduction in
fold we further avoid biasing our model (as this would improve our
estimate of the different components within a sample). We also con-
ducted the cross-validation multiple times (redrawing the folds) as it is
possible that certain folds are more predictive than others. While these
may address some over-fitting, it is not a replacement for independent
validation and future studies should include data on larger cohorts and
allow for independent samples for verification. Ultimately, models that
are well-validated should be shared to be tested in studies from multiple
sites to test their predictive utility. This study was done in LLD; thus, it
is unclear how well this would generalize to mid-life depression. Past
studies have identified that there exist several clinical features that are
predictive of treatment response, such as anxiety, cognitive impair-
ment, and history of treatment response. In this study, we found that
only baseline depression severity was predictive (though we did not
have cognitive status, besides the Mini-Mental State Exam, or treatment
history). Our only measure of anxiety was the single item on the
MADRS – thus, a more complex measure of anxiety may be better suited
to predicting treatment response. It remains unclear how our algorithm
would do compared to one using only clinical features (like anxiety, but

also cognitive measures). This may explain our limited specificity in our
results, and by adding in more robust measurements of anxiety, cog-
nitive measures, as well as other features of their depression (single vs.
recurrent, life-time burden, etc.) we can improve the overall specificity
of the model. However, from a statistical perspective, possessing mul-
tiple methods to assess remission probability will allow these methods
to cross-verify each other to increase the final predictive power.
Further, we have only predicted remission, however there are several
aspects of remission and response that are important like the time to
remit (early vs. late) as well as the stability of the remission. Due to the
small sample size, we are unable to adequately investigate time to re-
mission and without follow-up data are unable to look at the durability
of this remission. Future studies should investigate not only these as-
pects but also other qualities of remission and response (i.e., relapse
and recurrence – both long term qualities of response). Furthermore, it
is unclear whether these changes following a single dose are a direct
cause of the drug itself or indirect effects – however our past work has
shown that the change in activation/connectivity reflects the changes at
the end of the trial (Karim et al., 2017; Khalaf et al., 2016). We failed to
predict remission using changes following a placebo, which further
supports that this prediction is specific to the change following venla-
faxine. It is possible that there may be order effects (e.g., practice effect
on the tasks) that could have affected the predictive utility of the neural
changes following the third session (single dose venlafaxine) and not
the second session (placebo). Finally, past studies have demonstrated
that there are several structural features that are predictive of treatment
response: notably white matter hyperintensities (Bella et al., 2010;
Gunning-Dixon et al., 2010; Sneed et al., 2011). We have decided
against combining both structural and functional features to understand
the predictive capacity of functional features. While structural features
do not directly observe target engagement or differential effects of
various treatments, they are likely important in understanding the
subtype of depression – and thus should still be investigated in the
future. Despite this, we believe that a combination of structural and
functional features will allow greater insight into understanding re-
mission in depression.

Our study has demonstrated that neural activation pre-treatment as
well as following a single dose increases the predictive capacity for
remission and further that emotion reactivity paradigms are the most
useful predictors (compared to resting state EVC or explicit emotion
regulation). This builds on an already existing literature that has
identified neural and behavioral subtypes – as our pre-treatment mar-
kers predicted remission. We also identified a single dose engagement
effect – building on a sparse literature that seems to suggest that the
neural activation occurs acutely. Thus, measuring this engagement is
likely an important part of improving the overall efficacy of these
treatments. While the predictive utility is modest, this may largely be
due to high heterogeneity in depression and high treatment response
variability coupled with a small sample size and strict cross-validation
approaches. In general, we demonstrate that the prediction may be
useful, but future studies are needed to demonstrate the true clinical
utility of neuroimaging in this field. Utilizing computational psychiatric
approaches will allow for patients to be classified not only by their
clinical symptoms, but also a set of neural targets that may need to be
engaged. By engaging each target in a systematic manner, we may be
able to improve overall response rates for depression treatment.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.06.006.
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