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Abstract

Continuous loop averaging deconvolution (CLAD) is one of the proven methods for recover-

ing transient auditory evoked potentials (AEPs) in rapid stimulation paradigms, which

requires an elaborated stimulus sequence design to attenuate impacts from noise in data.

The present study aimed to develop a new metric in gauging a CLAD sequence in terms of

noise gain factor (NGF), which has been proposed previously but with less effectiveness in

the presence of pink (1/f) noise. We derived the new metric by explicitly introducing the 1/f

model into the proposed time-continuous sequence. We selected several representative

CLAD sequences to test their noise property on typical EEG recordings, as well as on five

real CLAD electroencephalogram (EEG) recordings to retrieve the middle latency

responses. We also demonstrated the merit of the new metric in generating and quantifying

optimized sequences using a classic genetic algorithm. The new metric shows evident

improvements in measuring actual noise gains at different frequencies, and better perfor-

mance than the original NGF in various aspects. The new metric is a generalized NGF mea-

surement that can better quantify the performance of a CLAD sequence, and provide a

more efficient mean of generating CLAD sequences via the incorporation with optimization

algorithms. The present study can facilitate the specific application of CLAD paradigm with

desired sequences in the clinic.

Introduction

Repetitive short sound stimuli are usually employed to elicit transient auditory evoked poten-

tials (AEPs) reflecting time-deterministic and phase-locked electrophysiological activities

along the auditory pathway [1]. These electrophysiological responses have important clinical

applications in diagnosis of hearing problems [2] and configuring hearing assistive devices [3].

Traditionally, stimulus repetition rate must be low enough to avoid overlap of electrophysio-

logical responses to consecutive stimuli. For example, the earliest AEP component recorded

over the scalp, termed as auditory brainstem response (ABR), occurs at a latency
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approximately between 1.5 ms and 10 ms after stimulus onset. Conventional averaging method

for ABR requires that stimulus onset asynchrony (SOA) must be adequately larger than 10 ms,

corresponding to a maximum of 100 Hz stimulation rate. In the case of middle latency

responses (MLRs), which present even much later, the stimulation rate should be limited to 12

Hz or lower.

Rapid stimulation elicits periodical responses termed as steady state response (SSR) with a

corresponding SOA [4]. In particular, the stimulation at the rate of 40 Hz has been widely-

used in audiometry for greatly enhanced amplitude in responses. SSR has been well explained

in a superimposition theory, which indicates that overlapped transient AEPs account for the

generation of SSR [5,6]. The overlapping is mathematically equivalent to a convolution process

between the stimulus sequence and transient AEP response to individual stimuli. Therefore,

many deconvolution algorithms have been developed to recover transient AEPs from over-

lapped responses, i.e., SSR. In order for deconvolution algorithms to work, stimulation

sequences should not be evenly spaced. Rather, jittered-sequences with varying SOAs have

been designed for most deconvolution algorithms. The maximum length sequence (MLS)

derived using the primary polynomials presents desired properties that allow rapid and stable

solutions of inverse problem from the convolution model [7]. For a given MLS, there is an

associated inverse sequence that can be used to directly reconstruct convolved variables in the

time domain via operating a correlation analysis. However, a MLS generated using a particular

primary polynomial consists of a set of pseudo-random binary sequences with a few SOA val-

ues of integral multiples, implying large stimulus jitters in the sequence. Large sequence jitters

may deteriorate the prerequisite of linear convolution model in transient AEPs and SSRs due

to adaptation effects. Another concern using MLS is its inflexible configuration of number of

stimuli in a sweep that increase exponentially with the order of MLS. In the domain of event-

related potentials, Woldorff (1993) has developed a series of algorithms in the time domain to

deconvolve overlapped adjacent responses, which are collectively referred as the “Adjar”

(Adjacent response) procedure [8]. The ADJAR is relatively difficult to implement and com-

putationally expensive. It also requires wide range of SOA jitters to remove overlaps from low-

frequency components of evoked responses [9].

Small and flexible jitter sequences allowing the development of algorithms for efficient tran-

sient AEP recoveries are ideal for rapid stimulation paradigms. One line of research towards

this goal has been the development of continuous loop averaging deconvolution (CLAD)

[10,11], or q-sequence deconvolution methods [12]. The CLAD method uses random SOAs

with relatively low and arbitrary jitter to recover transient AEPs. It is usually implemented in

the frequency domain to take the computational advantage of fast Fourier transform (FFT).

To date, multiple related techniques have been introduced, leading to several new deconvolu-

tion algorithms, such as the randomized stimulation and averaging method proposed by Val-

derrama et al [13], least-squares deconvolution method by Bardy et al [14], and multi-rate

steady-state averaging deconvolution method by Wang et al [15]. These methods have been

found valuable for studies of transient AEPs and their roles in the generation of SSRs [16–18].

They have also been used in investigating basic neuroscience problems, e.g., neuronal adapta-

tion phenomena observed from high-rate ABRs [19] and ABRs simultaneously with electroco-

chleography [20], and in assisting clinical procedures, e.g., anesthesia monitoring [21,22].

Among these methods, the CLAD method addresses the problem straightforwardly in the

frequency domain with unbiased estimation and perfect reconstruction on noise-free condi-

tion. One of common efforts for implementing CLAD is its design and evaluation of stimulus

sequence [11,23]. Theoretically, the SOAs for a CLAD sequence could follow an arbitrary dis-

tribution within a predefined range in the noise-free context. However, the performance of

deconvolution is highly dependent on stimulus sequences when noise is present in signals.
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This is because sequence-dependent deconvolution filters can amplify noises/artifacts in

recordings at certain frequencies, introducing distortions to AEPs to be recovered.

The noise gain property of deconvolution methods thus offers an objective measure for

evaluating the goodness of stimulus sequences. Özdamar and Bohórquez[11] proposed a noise

gain factor (NGF) called Cdec, to measure noise amplification or attenuation in the process of

inverse filtering for signal deconvolution. However, this factor weighs contributions over fre-

quencies uniformly, which is only suitable for white noise. It is well known that spontaneous

EEG, appearing as noise on transient AEPs, often follows the power-law distribution in the fre-

quency domain. Such a violation upon the assumption may impact the usefulness of the metric

Cdec [11]. In the present study, we examined the effects of using Cdec on stimulus sequence

selection and on recovering transient signals in the context of noise with the power-law spec-

trum. We then developed a novel NGF metric (denoted as Gdec) with the consideration of the

power-law spectral distribution of spontaneous EEG noise. Finally, we compared the perfor-

mance of both metrics (Cdec vs. Gdec) on sequence optimization and selection, as well as in

reconstructing transient AEPs using real EEG data.

Materials and methods

CLAD method and Noise Gain Factors (NGFs)

In the CLAD method, a stimulus sequence is periodically delivered to evoke brain responses.

The stimulus sequence typically contains several individual stimuli with varying SOA. The use

of varying SOA is termed as the jittering technique. Jitters disrupt periodical responses within

the stimulus sweep provided that SOAs are shorter than transient responses to individual sti-

muli. This response is assumed to be unitary regardless the SOA variation. In this case, the

observed response can be modeled as a convolution between the transient response and the

stimulus sequence as shown in Fig 1. Since the stimulation sweep is presented in the manner

of continuous loop so that averaging over sweeps can be utilized to enhance signal-to-noise

ratio in resulted responses. Mathematically, the resulted response y(t) due to a stimulus sweep

s(t) in the presence of additive noise e(t) is expressed as:

yðtÞ ¼ sðtÞ 
 xðtÞ þ eðtÞ ¼
Z T

0

sðtÞxðt � tÞdtþ eðtÞ; t 2 ½0;T� ð1Þ

where x(t) is the supposed transient response to individual stimuli, the symbol
 denotes the

circular convolution operator due to looped stimulation, and T denotes the length of the stim-

ulus sweep. (Eq 1) represents a continuous convolution in the time domain. The correspond-

ing version in the frequency domain is denoted in the equation below using capital letters

Yðf Þ ¼ Sðf ÞXðf Þ þ Eðf Þ; f 2 ½� 1;1� ð2Þ

which yields the estimated solution of

X̂ðf Þ ¼ Yðf ÞS� 1ðf Þ þ Eðf ÞS� 1ðf Þ ð3Þ

Two prerequisites are necessary for (Eq 3) to have unique and reliable solutions. First, the

inverse filter can be obtained uniquely, which is defined as a reciprocal of the stimulus

sequence in the frequency domain. Obviously, the nontrivial solution is mathematically

impossible for an isochronic-SOA sequence even in noise-free conditions [12]. The CLAD

method thus depends on jittered sequence to address the ill-posed condition in (3). Second,

the inverse filter should not introduce large distortions when filtering noise, E(f). Appropriate
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jittering techniques should be used to minimize the impact of inverse filtering of noise on

deconvolution results. Otherwise, if S(f) approaches zero at some frequencies, the inverse filter

S−1(f) is going to over-amplify noise E(f) corresponding to those frequencies. It is therefore

ideal that the amplitude spectrum of the inverse filter, |F(f)|, should be small and flat within

the frequency range, f 2[fL, fH] Hz, of AEPs to be recovered.

The time-discrete stimulus sequence can be expressed as follows:

s½nDt� ¼
1; stimulus onset

0 no stimulus

(

ð4Þ

where [�] denotes a digital variable, Δt denotes the discretized time interval. The stimulus

sequence is considered as a binary sequence in which an "1" indicates the onset of a stimulus.

The deconvolution in (Eq 3) can be achieved through the FFT algorithm [11,12]. The

inverse filter is obtained from the discrete FFT, Ff�g, on this stimulus sequence:

S½kDf � ¼ Ffs½nDt�g ¼
XN

n¼1
s½nDt�e� j2p

N kn; k ¼ 1; 2; . . . ;N: ð5Þ

Specifically, F[kΔf] = 1/S[kΔf], where Δf = 1/(NΔt) = 1/T represents the frequency interval

or the frequency resolution that is determined by the length of stimulus sweep T. The valid fre-

quency band is represented with discrete frequency indices as, and.

Fig 1. Diagram of convolved response. The stimulus sequences s(t) containing four short SOAs, is presented repeatedly, i.e., in sT(t).

Responses to individual stimuli, x(t), with lags (τi) corresponding to the SOAs are superimposed to produce a sweep (period) of the

convolved (overlapping) response y(t).

https://doi.org/10.1371/journal.pone.0175354.g001
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Within the frequency band [kL, kH], the amplitude of F contributes unevenly in amplifying

the noise term in (Eq 3). To quantify the noise amplification associated with a stimulus

sequence, the NGF is defined as

Cdec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kH � kL

Xk¼kH

k¼kL
jF½kDf �j2

s

ð6Þ

Essentially, Cdec is the total gain for all bins within the frequency band. Smaller Cdec indi-

cates smaller noise artifacts introduced from stimulus-sequence-dependent inverse filtering.

When Cdec < 1, noise is attenuated.

Fourier transform for time-continuous CLAD sequence

Although the classical discrete CLAD based on FFT is suitable in digital computation, the

time-discrete sequences are inconvenient to be applied to different acquisition systems. A

transfer of discretized-rate of a sequence may change its designated frequency property to cer-

tain degree due to the modification of SOAs. In addition, discrete sequences also limit its

searching space when optimization algorithms are applied to identify desired sequences. To

develop a time-continuous sequence for CLAD computation, a sweep of stimulus sequence

that contains P individual stimulus occurrences can be considered as a time-delayed summa-

tion of delta function,

sðtÞ ¼
XP

p¼1
dðt � tpÞ; ð7Þ

where the time delay variable τp, p = 1,2,. . .,P, indicates time points of stimulus occurrences. The

interval between two consecutive occurrences Δτp = τp − τp−1, varies, leading to sequence jitters.

We define a jitter ratio (JR) to describe the irregularity of SOA in a sequence,

JR ¼
maxðDtpÞ � minðDtpÞ

�t
; ð8Þ

where is the mean-SOA of the sequence. JR represents the ratio between the maximum SOA

difference and the mean-SOA of a stimulus sequence. For most applications, small JR is pre-

ferred as it offers pseudo-identical stimulation condition for each stimulus occurrence.

In CLAD experiments, the stimulus sequence is repetitively presented with a period of T,

the entire stimulus session is a periodic extension of s(t) (Fig 1). The total stimulus train can be

expressed as:

sTðtÞ ¼ sðtÞ 
 dTðt � qTÞ; ð9Þ

where δT(t) is a periodic impulse function with period T defined as:

dTðtÞ ¼
X1

q¼� 1
dðt � qTÞ: ð10Þ

The Fourier transform of is an infinite discrete sequence modulated collectively by a num-

ber of exponential functions with different frequencies, i.e,

S½kDf � ¼ FfsTðtÞg ¼ 2pDf
XP

p¼1
e� jk2pDftp ; k 2 ½� 1;1�: ð11Þ

Hence, the inverse filter becomes F[kΔf] = 1/ST(kΔf), where Δf = 1/T is analogous to the one

defined in the discrete format and represents the frequency resolution. Note that, unlike the

periodical discrete-time filter, the continuous-time inverse filter is of infinite length in the
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frequency domain, but the values outside the frequency range defined by time-discrete have

no effect on the deconvolution calculation. (Eq 11) also implies that using different discrete

rates is viable for the stimulus sequence, on the condition that it is supported by the simulation

system, because the frequency resolution is only determined by the sweep length T.

New NGF metric for 1/f EEG noise

The NGF defined in (Eq 6) consider noise contribution over the chosen frequency band of

equal weights, which is equivalent to an assumption of a white noise condition. However, the

spectrum of background EEG is far from white in practice, which are contributed by various

source origins. Spontaneous activity of cortical neurons and scalp muscle activity account for a

large amount of these background activities. Electromagnetic interference and electrical noise

in the acquisition system also represent a notable proportion. The frequency distribution of

combined background EEG signals and noise can be accurately described as a color noise or

(α� 0) process [24], such that its power spectral density is inversely proportional to its fre-

quency. Considering that its power spectrum is of 1/f α distribution, the original Cdec is not

appropriate with uniform weights for all frequency bins within considered frequency band.

To account for actual background EEG power spectrum, we modify the NGF at first in time

domain as a ratio between noise after inverse filtering, denoted ef(t), and pre-deconvolved

noise, e(t), in terms of their root mean square (RMS) values:

Gdec ¼
rmsðef Þ

rmsðeÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
e2

f ðtÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
e2ðtÞ

q ð12Þ

Rewriting (Eq 12) in the frequency domain and considering only the necessary frequency

range

Gdec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk¼kH

k¼kL
jEðkDf ÞFTðkDf Þj2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk¼kH

k¼kL
jEðkDf Þj2

r ð13Þ

Since the e(t) is assumed to be of a 1/f noise, i.e., jEðkDf Þ / 1=f aj, (Eq 13) becomes

Gdec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk¼kH

k¼kL

1

k2a
jFTðkDf Þj2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk¼kH

k¼kL

1

k2a

r ; ð14Þ

or in a simplified form:

G2

dec ¼ g
XkH

k¼kL
k� 2ajFTðkDf Þj2 ð15Þ

where g ¼ 1=
XKH

k¼KL
k� 2ais a normalizing constant so that Gdec = 1 represents neither amplifi-

cation nor attenuation within the considered frequency band.

In this equation, the weights derived from the deconvolution filter, FT(Δf) are adjusted by

1/kα, which defines a damping effect on the weight of noise gain with increasing frequency so

that the magnitude at high frequency bins contributes less to the value of Gdec. Comparing the

equations for Cdec and Gdec, it is not difficult to find that Cdec is essentially a special case of Gdec

when α = 0.
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EEG data and parameters

The CLAD method can be applied to other transient responses than AEPs, for example, in

extracting transient patterns in electroretinogram data [25], or in simultaneously recorded

ABR and electrocochleography data [20]. Most applications of CLAD in AEPs are in the study

of ABR and MLR recordings. In the present study, we used archive EEG data acquired previ-

ously in our lab. The EEG recordings were collected from three silver/silver chloride electrodes

(Fz: positive input; right mastoid: negative input; Fpz: ground). The sampling rate for all data-

set was 20 kHz (SynAmps2, Compumedics, Victoria, Australia). The analogue filter in the

amplifier was set to 100–3000 Hz for ABR recordings, and 5–500 Hz for MLR recording.

Acquired EEGs for MLR underwent a Butterworth digital filter of 10–350 Hz for exemplar

sequences using actual CLAD paradigm.

To validate the proposed NGF measurement, Gdec, and compare its performance to Cdec in

the topic of stimulus sequence selection, we used a published sequence for the CLAD method

in the literature [26] as an initial sequence, specifically these eight SOAs = {27.2; 36.8; 36.8;

20.8; 32.0; 19.2; 16.0; 16.0 ms}, and derived all possible sequences by performing permutation

on it (i.e., randomly changing the order of these eight SOAs in the sequence). The stimulus

rate was 40 Hz, as determined by the mean SOAs. From all the sequences we selected 15

sequences according to the proposed NGF metric, which represented cases from low to high

noise amplification properties. These sequences were used to test background EEGs recorded

for both conditions of ABR and MLR.

In the last part of the study, we further selected three exemplar sequences to reconstruct

transient MLR using the CLAD paradigm at a rate of 40 Hz. Because the existence of AEP and

its major components elicited at this rate have been well established[13,14,18], the purpose of

this experiment is to demonstrate possible distortions on AEP caused by different sequences.

The rarefaction clicks of duration of 0.1 ms were delivered monaurally to the right ear at 82 dB

SPL via an insert earphone (ER-3A Etymotic Research, Elk Grove Village, IL). The sound pres-

sure level was calibrated with a HA-2 coupler (Bruel & Kjaer DB-0138), attached to a micro-

phone (Bruel & KJaer Type 4144) and sound level meter (Quest 1800). Artifact rejection was

set at 40 μV. Around 1800 sweeps were acquired for each sequence.

We recruited five healthy adults (age 25–31, one female) with no self-reported history of

auditory or neurological disorders, and ran conventional MLR tests with recording parameters

as described above. They all gave their written informed consents. The study was approved by

the Ethical Committee of the Southern Medical University.

Power law spectra of spontaneous EEG data

In order to understand the noise property in typical AEPs, we analyzed spontaneous EEG data

obtained from our previous studies on ABR and MLR, in which 20 randomly selected EEG

epochs were used from ABR and MLR recordings, respectively. The spectra from these selected

epochs were averaged to represent the typical frequency characteristics of EEG at both record-

ing cases. The valid frequency band is 100–3000 Hz for ABR, and 10–500 Hz for MLR record-

ings. Their spectra within these frequency bands were presented in a logarithmic scale in Fig 2.

The least-square fitting to the data demonstrate a power-law distribution of EEG data from

both ABR (Fig 2A) and MLR (Fig 2B) recordings. Therefore, a 1/f α scaling can be used to

model EEG frequency characteristics, where the α value controls the decay rate. EEGs with

smaller α values are arguably of more deteriorated signals close to white noise. For the data

being analyzed, α values approach 1 and the corresponding R-squared (i.e., the coefficient of

determination) approach 0.9 for both cases (p< 0.001), indicating a standard 1/f scaling of

great confidence. Due to the 1/f distribution, we proposed Gdec over Cdec, which was designed
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with the consideration of white noise, while Gdec considers the realistic EEG spectrum distri-

bution (i.e., 1/f).

Results

CLAD sequences and their NGF properties

For a CLAD sequence, the SOAs and their order in the sequence define their frequency charac-

teristics. Sequences with same SOAs exhibit same stimulation rate and JR, which are generally

determined by specific applications of the paradigm. Here we investigated the effect of SOA

ordering on the noise gain property of a sequence. We derived all possible sequences using

same SOAs from the initial sequence which has proved to be applicable in literature [16,26].

The eight SOAs from the initial sequence were permuted to form all possible stimulus

sequences. After removing these time-reversed pairs, circularly shifted sequences and redun-

dant sequences due to two repeated SOAs (i.e., 16.0 ms and 36.8 ms), we obtained a total of

630 derived sequences with unique frequency property for analysis.

The Cdec and Gdec of each sequence were calculated according to Eqs (6) and (14), respec-

tively. Fig 3A shows these Gdec values sorted in an ascending order, and their corresponding

Cdec values. It shows that some NGF values are dramatically large that approach infinity (see

the area with condensed scales for NGF > 10). These unusually extreme values exist due to the

singularity of the deconvolution process. The sequences generating these extremes are inap-

propriate to be used as efficient CLAD sequences in reconstructing transient evoked responses

under high-rate stimulation paradigms. These extremes may occur at any frequency and,

therefore, wider frequency bands usually exhibit higher chances in having extremes. In the

present study, more restrictive frequency bands were used for MLR, which was 10–350 Hz

(Fig 3), in order to reduce the chance of running into the singularity problem.

Fig 2. Stimulus-free EEG spectra averaged over 20 sweeps for ABR within 100–3000 Hz in (A), and for MLR within 10–500 Hz in (B),

both of which represent clear 1/f α scaling. The straight lines are the least-square fitting on these data, where the values of α and R2 are

given as well.

https://doi.org/10.1371/journal.pone.0175354.g002
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After removing sequences with extreme values, 410 sequences indicate that their Cdec and

Gdec values are smaller than 10. The scatter plot for Cdec versus Gdec is shown in Fig 3B. The

Pearson correlation coefficient between Cdec and Gdec is 0.47 (p< 0.001), indicating a moder-

ate relationship among them.

The permutation of SOAs does not change the jitter ratio as defined in (Eq 8). However, the

frequency properties, and consequently the NGFs of these permutated sequences are different.

Fig 4 offers a direct presentation, using examples, of such a relationship between permuted

sequences and Fourier representation of corresponding inverse filters. The left column con-

tains 15 representative sequences arranged in an ascending order (Seq1–15) of Gdec values.

The right column shows the sequence-dependent inverse filters in the range of 10–350 Hz in

the Fourier domain. Table 1 provides more details about these 15 stimulus sequences, and

their corresponding NGFs (Cdec and Gdec). Note that these stimulus sequences have the same

stimulation rate (39.1 Hz), jitter ratio (81%) and frequency range, while they differ in Cdec and

Gdec values. The difference is also clear in the Fourier presentations of their corresponding

inverse filters in Fig 4 (right column).

Correlations between NGFs and noise processing performance

We evaluated the goodness of a sequence for CLAD in terms of its noise amplification/attenua-

tion property in the time domain during the deconvolution process. Quantitatively, we calcu-

lated the noise gain via measuring the relative output noise level after deconvolution in

reference to the background EEG level before deconvolution. During the process of calcula-

tion, background EEG only were used as inputs to the deconvolution algorithm and actual

noise gains (ANGs) were computed as the ratio of root mean square (RMS) voltages between

Fig 3. Gdec and Cdec values in the frequency range of 10–350 Hz for the total 630 sequences sorted by increased Gdec (A). The first

410 sequences with reasonable NGFs (< 10) are selected and plotted in a scatter graph in (B), where the Pearson correlation

coefficient between Gdec and Cdec is R = 0.47.

https://doi.org/10.1371/journal.pone.0175354.g003
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Fig 4. Fifteen representative sequences from Seq1 to Seq15 (left column) are shown according to ascending values of Gdec. The

corresponding spectra of the inverse filters in dB scale (right column) representing the attenuation or amplification effect for the values below

or above the zero dB threshold (dashed horizontal lines), respectively. Dashed vertical lines show the valid frequency range of 10–350 Hz.

Three selected sequences are shown with *.

https://doi.org/10.1371/journal.pone.0175354.g004
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post- and pre-deconvolved EEG:

ANG ¼ 20log
10

rmsðEEGpostÞ

rmsðEEGpreÞ
: ð16Þ

When ANG< 0 dB, the inverse filter has noise attenuation property. The lower the ANG,

the better sequence it is for CLAD. The ANG metric is a specific measurement for noise per-

formance of a sequence on an instance of EEG data, so that it can be used to validate the

NGFs.

Since these sequences were designed for obtaining MLR, we selected EEG data randomly as

in Fig 2B to evaluate their performance. We selected 150 epochs of raw EEG of 204.8 ms as a

set of benchmark for testing. Fig 5 shows the linear regression between the averaged ANGs and

NGFs. The numerical labels of these 15 sequences as in Table 1 are marked in the circles and,

among them, three sequences used later in the CLAD testing are shown in bold circles. The lin-

ear regression lines are also presented. Ideally, a linear relationship is expected between NGFs

and ANGs. A significant linear relationship can be observed using the proposed NGF measure-

ment (Gdec in Fig 5A), and its regression coefficient and R-squared values are 2.50 and 0.84

(p< 0.001), respectively. However, significant relationship is not observed when using Cdec,

where the coefficient and R-squared values are 1.43 and 0.07 (p = 0.314), respectively (Fig 5B).

Sequences #6 (Seq6) and #14 (Seq14) were selected, as examples, to illustrate the cases with

large inconsistencies between Cdec and ANG, as compared with the optimal case (Seq1), which

has the lowest Cdec, Gdec, and ANG values and consistent Cdec and ANG values as well. The

cases of Seq6 and Seq14 suggest different patterns in terms of the relationship between Cdec

and ANG, where Seq6 has the worse Cdec (= 4.46), but moderate estimated ANG value while

Seq14 shows the opposite condition. It is observed that the frequency distribution of the

inverse filter of Seq6 (Fig 4) shows a large amplification at 260 Hz, which greatly increases val-

ues of Cdec since the Cdec metric considers the 260 Hz component equally as low-frequency

components. However, it contributes less to the modified metric Gdec since Gdec takes the

Table 1. Representative sequences and the corresponding NGFs.

Seq.ID SOA arrangements Cdec Gdec

Seq1* 27.2; 36.8; 36.8; 20.8; 32.0; 19.2; 16.0; 16.0 0.52 0.68

Seq2 16.0; 16.0; 32.0; 36.8; 19.2; 27.2; 20.8; 36.8 0.72 0.74

Seq3 16.0; 16.0; 36.8; 20.8; 19.2; 32.0; 36.8; 27.2 2.62 1.19

Seq4 16.0; 19.2; 16.0; 20.8; 36.8; 32.0; 36.8; 27.2 3.01 1.60

Seq5 16.0; 19.2; 16.0; 36.8; 36.8; 20.8; 32.0; 27.2 0.71 1.91

Seq6* 16.0; 32.0; 16.0; 36.8; 36.8; 19.2; 20.8; 27.2 4.46 2.00

Seq7 16.0; 16.0; 19.2; 20.8; 32.0; 27.2; 36.8; 36.8 0.98 2.93

Seq8 16.0; 19.2; 27.2; 20.8; 16.0; 36.8; 32.0; 36.8 1.23 3.21

Seq9 16.0; 19.2; 20.8; 32.0; 36.8; 16.0; 36.8; 27.2 1.67 3.44

Seq10 16.0; 16.0; 20.8; 36.8; 32.0; 19.2; 27.2; 36.8 2.03 3.63

Seq11 16.0; 32.0; 19.2; 36.8; 16.0; 36.8; 20.8; 27.2 1.92 4.56

Seq12 16.0; 19.2; 16.0; 32.0; 36.8; 36.8; 27.2; 20.8 1.85 4.68

Seq13 16.0; 19.2; 16.0; 36.8; 36.8; 32.0; 20.8; 27.2 2.06 5.70

Seq14* 16.0; 16.0; 19.2; 36.8; 32.0; 20.8; 27.2; 36.8 2.10 5.93

Seq15 16.0; 16.0; 19.2; 36.8; 32.0; 20.8; 36.8; 27.2 1.93 6.52

* Three sequences are selected for the real CLAD paradigm recordings

https://doi.org/10.1371/journal.pone.0175354.t001
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realistic 1/f distribution of EEG into the consideration. It is further noted that if the considered

frequency band is wider, another high-frequency component peaked around 360 Hz might

further deteriorate Cdec, but not Gdec. On the contrary, Seq14 shows only a large peak at the

low frequency that should influence the deconvolving solution according to Gdec measure-

ment, but was not pronounced in Cdec. Finally, Seq1 has the optimal performance because

amplification gains of all frequency components are below 1.

Experiments of generating optimal sequences using Genetic Algorithm

(GA)

Finding a CLAD sequence with minimal NGFs is a global optimization problem with no ana-

lytic solutions. The objective function of the optimization algorithm can be designed to mini-

mize the NGF metric. Although it is generally desired to have the sequence with NGF as small

as possible, some constraints on the sequence have to be considered. For example, stimulation

rate and jitter ratio may be pre-determined by specific applications. We addressed this prob-

lem mathematically by a general global optimization approach that is subject to customized

constraints.

In this experiment, we validated the superiority of the proposed NGF in generating appro-

priate CLAD sequences by means of a canonical genetic algorithm (GA) [27]. Other global

optimization methods, such as simulated annealing, or differential evolution, are also applica-

ble. The objective function for GA is

�ðxÞ ¼ NGF;NGF 2 fGdec;Cdecg; ð17Þ

where the variable represents a real vector of SOAs, and the dimension P represents the

Fig 5. Linear regression between the NGFs measured by the values of Gdec (A) and Cdec (B), and the noise gains measured by the

mean ANGs. The circled digits indicate the sequence index (Seq1-Seq15). Three selected sequences are shown in bold circles.

https://doi.org/10.1371/journal.pone.0175354.g005
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number of stimuli in a sweep that is given a priori according to specific applications. In this

case, jitter ratio (JR) actually defines the constraint of possible sequences. For simplicity, we

defined a box constraint with lower and upper bounds for x, i.e., x 2 ½xL; xU�
P
, where xL and xU

are the minimum and maximum of SOAs, respectively, so that the JR can be calculated using

(Eq 8). Thus, the GA optimization is expressed in a nonlinear programming problem as

minxf�ðxÞg; s:t: x 2 ½xL; xU�
P
: ð18Þ

The searching space for (18) is illustrated in Fig 6 as a cubic box in case of 3 dimensions

(P = 3). Each dimension represents a SOA or an element of the vector x = [x1, x2, x3]. The con-

straint requires that the values of each element are in the range of xL and xU, which is the inter-

val projected onto the axes (Fig 6) of the cube. Optimization for more than 3 dimensions can

be carried out in an analogous hypercube.

GA represents a typical nature-inspired metaheuristics, using mainly three operations in its

evolution processes: mutation, selection, and crossover. And the constraint in (Eq 18) is han-

dled by the penalty function approach [27]. In this experiment, we employed the ‘ga.m’ func-

tion from the MATLAB Global Optimization Toolbox (R2012b, the Mathworks, Inc., Natick,

MA) for the implementation of the algorithm.

The number of stimuli P per sweep can be dilemmatic in the generation of CLAD

sequences. Generally, smaller P is preferred because it is relatively easy to design a “good”

CLAD sequence with fewer parameters to considered. Practically, a sweep with smaller P is

shorter and, therefore, it saves EEG recording time. When it comes to the problem of rejecting

noisy EEG data in the pre-processing preparation of useful EEG data, shorter sweeps mean

less data sacrifice. However, smaller P values mean less number of jittered sequences with dif-

ferently ordered SOAs, which reduces the chance in finding a “better” CLAD sequence with

Fig 6. Diagram of GA searching space for three variables (x1, x2, and x3) which represent a stimulus

sweep that contains three SOAs. Due to the constraint of JR, the searching space is confined within the

cubic box.

https://doi.org/10.1371/journal.pone.0175354.g006
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lower NGF values. Using the GA approach, we can offer an empirical relationship between the

NGFs and P. We thus compared 20 trials with random initialization in GA iterations for Ps

from 4 to 11. Other settings for the sequence were similar with the MLR recording paradigms

at a stimulation rate of about 40 Hz. The objective function was also defined on the same fre-

quency band. The constraint bounds were 15 ms and 35 ms as in (Eq 18), therefore yielded

80% of JR accordingly. Note that the constraint could not guarantee fixed length of a sweep,

and the exact values of stimulation rate and JR might vary around the designated values.

Since the solution of GA was sensitive to the initial state, we thus carried out 11 runs with

random initialization to avoid biased results. The mean (± std) NGFs with respect to Ps from 4

to 11 optimized by the use of either Gdec or Cdec in the objective function are shown in Fig 7

(A) and 7(B), respectively. It shows that the NGFs of Gdec-optimized sequences decline with

the increased Ps (solid trace in Fig 7A), and the corresponding Cdec values (dashed trace in Fig

7A) of these sequences are consistent with Gdec as well, suggesting that sequences with small

Gdec values are likely to have small Cdec values that can be also observed in Fig 3B. In contrast,

such an association does not exist if the sequences are optimized by the Cdec metric (dashed

trace in Fig 7B), in which the corresponding Gdec values (solid trace) are evidently worse

(larger value, and variation) for all Ps.

Since the generated sequences were different in terms of two NGFs, as indicated in Fig 7,

we might expect that the Gdec can present a better measurement of noise attenuation property

in practice. We could further justify this notion in terms of ANG as in (Eq 16) via processing

real EEG with the deconvolution filters. Specifically, for an optimized sequence, we filtered 15

stimulus-free EEG epochs to yield an averaged ANG. These ANGs corresponding to sequences

optimized by Gdec and Cdec are shown in Fig 7C and 7D, respectively. Basically, the ANGs are

decreased with the length of sequence (indicated by P in the horizontal axis) following the

NGF pattern. This is particularly true in the case of ϕ = Gdec (Fig 7A and 7C). But it can be

observed that ANGs based on Cdec (Fig 7D) is more closely related to Gdec rather than Cdec

(Fig 7B) by the facts that both of them exhibit elevated values and increased variation. We

quantified the relationship of ANG and two NGFs on the optimized sequences for the same P
as shown in Fig 7C and 7D in which the symbols ‘�’ and ‘o’ indicate the correlation with signif-

icance (p< 0.05) for cases of Gdec and Cdec, respectively. It shows that the ANG is more likely

to correlate with Gdec than Cdec. These results are in agreement with the established relation-

ship between NGFs and ANG (c.f. Fig 5), which further confirms the merit of the Gdec metric.

The decline of NGF (and ANG) with increased P suggests a preference for more number of

stimuli in a sweep. However, such a merit is priced at long sweep length or recording duration.

A fair measurement for noise attenuation may be reasonably defined as the noise gain over the

same length of recording. In general, the whole data processing for the CLAD paradigms

includes first the ensemble averaging over a sweep of raw EEG (looped average) and then the

deconvolution filtering on averaged responses. Both steps impact noise properties. As is

known that the signal-to-noise (SNR) improvement for K times average is by a factor of [28],

the overall NGF including the looped-average can be expressed as

NGFtot ¼
1
ffiffiffi
k
p NGF: ð19Þ

Suppose that the mean SOA is the same for all sequences, the total length of stimulus

sequences is K�P�SOA, indicating that K is in proportion to 1/P in order to have similar record-

ing time (sequence length). By this relationship, (Eq 19) becomes

NGFtot /
ffiffiffi
P
p
� NGF ð20Þ
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where
ffiffiffi
P
p

is used as an adjusting factor when noise attenuation from ensemble averaging is

being included.

We therefore recalculated the NGFs and ANGs as in Fig 7 with this adjustment factor
ffiffiffi
P
p

,

and illustrated the results in Fig 8. The adjusted NGFs and ANGs reverse the decline trend to

an overall uplift with increased Ps. This counteractive effect of P on NGFs gives rise to a prob-

lem on the selection of number of stimulus in a sweep. The uprising pattern of ANG in Fig 8

might suggest that short sweep length is favored in terms of overall SNR. However, we cannot

firmly sustain this conclusion without further comprehensive investigations, because GA

Fig 7. NGFs and ANGs for the optimized sequences with respect to the stimulus number from 4 to 13 in a sweep. Both Gdec (solid)

and Cdec (dashed) values are plotted for sequences optimized based on objective function of ϕ = Gdec (A) and ϕ = Cdec (B), respectively. The

corresponding ANGs for these sequences based on Gdec and Cdec are presented in (C) and (D), respectively. The symbols ‘*’ and ‘o’

indicate the cases with statistical significance for Gdec, and Cdec, respectively.

https://doi.org/10.1371/journal.pone.0175354.g007
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cannot guarantee the convergence to the global optimization solution, in particular the opti-

mizing process is more difficult for larger searching dimension as P increases.

Comparison of 40-Hz transient AEP obtained from selected sequences

The results shown in Figs 5 and 7 indicate that the Gdec metric is more correlated to noise

attenuation performance than Cdec, indicating the merit of the new NGF in measuring the

noise gain property by comparing noise levels on stimulus-free EEGs. This experiment was

performed to compare deconvolved AEPs using three sequences from Table 1 (Seq-1, 6 and

14). These sequences featured with different NGF measures. Seq1 is an optimal sequence with

Fig 8. Adjusted NGFs and ANGs for the optimized sequences with respect to the stimulus number from 4 to 13 in a sweep. Both

Gdec (solid) and Cdec (dashed) values are plotted for sequences optimized based on objective function of Gdec (A) and Cdec (B), respectively.

The corresponding ANGs for these sequences based on Gdec and Cdec are presented in (C) and (D), respectively.

https://doi.org/10.1371/journal.pone.0175354.g008
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the smallest Gdec and Cdec. Seq6 ranks the sixth in performance among the 15 sequences by

Gdec (= 2.00), but is the worst sequence by Cdec (= 4.46). Seq14 is a representative "bad"

sequence as measured by Gdec (= 5.93), but a moderate sequence by Cdec (= 2.10).

Responses from a typical subject (Sub1) are shown in Fig 9. The convolved responses aver-

aged over 1800 EEG sweeps (thick traces), and the estimated noise (thin traces below) are

shown in Fig 9A. The noise was estimated by ± reference method obtained by the subtraction

of responses from even- and odd-numerated EEG sweeps [29]. The corresponding decon-

volved transient AEPs (thick traces) and filtered noises (thin traces) are shown in Fig 9B. Fig

9C shows the spectra of the estimated AEPs and noises.

It can be observed that the convolved responses and noise waves of these three sequences

demonstrate no evident SNR differences (Fig 9A). The deconvolved responses of these three

sequences, however, exhibit quite different profiles. The AEP for Seq1 is typical in accordance

with previous reported results using the same sequence [26]. The ABR component, wave-V,

and the main MLR components, namely, Pa and Pb are obviously recovered as labeled. The

corresponding frequency distributions of AEPs and filtered noise signals demonstrate a typical

frequency property with more pronounced components in the low frequency range.

The ABR and MLR components for Seq6 are hardly recovered in Fig 9B, since a significant

amount of high frequency interference noises are present. The corresponding spectrum shows

two high frequency components corresponding to the frequency characteristics of the inverse

filter for Seq6 (see Fig 4). In spite of heavy high frequency distortions, the main AEP profile is

still observable. This property is consistent with the Gdec value of this sequence rather than its

Cdec value.

The AEP response for Seq14, however, is hardly acceptable since a dominant low frequency

oscillation overrides the main Pa and Pb components of MLR. This result is useless because

the abnormally amplified frequency component within the AEP’s main frequency range

impacts the response signal entirely. The corresponding spectrum shows an over-amplified

component at approximately 20 Hz because of the improper frequency characteristic of the

sequence. The low value of Cdec fails to properly measure the noise performance of this

sequence by not giving a high weight toward low frequency noise amplification as displayed in

Fig 4.

Fig 10 shows the deconvolved AEPs of these sequences for all subjects and the grand aver-

ages, respectively. The consistent AEP profiles indicated by the NGF properties are observed

for all subjects. Except for AEPs by Seq1, the main components are hardly identifiable for indi-

vidual AEPs by other sequences. After averaging over five subjects, the resulting AEP wave-

form is largely improved and well-defined for Seq6 in which main ABR-MLR components can

be identified, while it is still severely distorted for Seq14. This is because that high-frequency

noises are easier to be canceled than low-frequency noises by averaging. These results also jus-

tify the improvement of the proposed metric in measuring the sequence property.

These results from five subjects are only the examples to demonstrate how the sequences

would affect the deconvolved responses and how the proposed metric can be more appropriate

to measure the ‘goodness’ of these sequences. In practice, it is advised to verify the noise prop-

erty to guarantee the fitness of 1/f model.

Discussion

The CLAD method has been proved to be an efficient technique in the study of evoked

responses under rapid stimulation paradigms. Designing or generating appropriate sequences

is a prerequisite in the application of CLAD. The CLAD paradigm employs more stimuli than

the conventional low rate paradigm given the same recording time. However, the transient
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Fig 9. Auditory responses and corresponding spectra for pre- and post- deconvolution for a typical subject (Sub1) using the

selected sequences (Seq1, Seq6 and Seq14). Thick and thin traces indicate the estimated responses and noises, respectively. The filled

"r" markers indicate the primary peaks in the spectral plots (C) causing the oscillations seen in the 2nd column (B).

https://doi.org/10.1371/journal.pone.0175354.g009
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Fig 10. Pre- (thin traces) and post-deconvolution (bold traces) responses from five subjects (Sub 1–5) and the

grand averages over them (Avg) for the three representative sequences (Seq-1, 6 and 14, in columns A, B and C,

respectively).

https://doi.org/10.1371/journal.pone.0175354.g010
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AEP obtained from the deconvolution process does not necessarily improve SNR if the fre-

quency property of the inverse filter sequences is not well-tuned. Although efforts have been

made aiming to alleviate the noise amplification issue using time or frequency domain filters

[23,30], a fundamental solution would be of obtaining an optimal stimulus sequence with

desired noise gain property that requires a metric to gauge the performance of a sequence for

specific applications.

In the present study, we developed a new NGF metric, Gdec, that effectively quantifies the

sequence property based on the consideration of the pattern in EEG noise characteristics. Con-

sidering the ubiquitous nature of the 1/f random process, the basic idea of developing Gdec is

to incorporate noise pattern into the weight function design of the deconvolution filter. This

new metric is justified in typical EEG data and demonstrated to be both necessary and ade-

quate in characterizing noise property of a sequence, which makes it appropriate as an objec-

tive function for obtaining optimal sequences.

Basically, there are two parameters used in the Gdec metric in practice. The exponent α
value controls the damping degree of noise magnitude with increased frequency. It can be

readily estimated by least squares fitting on frequency characteristics of spontaneous EEGs.

Gdec is equivalent to the original NGF metric, i.e., Cdec, for α = 0. Our analysis on sufficient

large sets of EEG data indicates that the α value is close to 1, which makes spontaneous EEG

spectrum a standard 1/f distribution.

Another parameter that impact original Cdec values is the considered frequency range.

In practice, the low-cutoff frequency fL, is important and relatively fixed according to the

AEP components to be investigated, while the high-cutoff frequency can be varied in a wide

dynamic range. Since Gdec is more sensitive to low-frequency components, selecting the fL
is critical in a searching algorithm. Lower fL may affect the converging speed during itera-

tions for an optimization algorithm. Even equipped with necessary filters from acquisition

systems, we recommend applying an offline bandpass or essentially highpass filter again

before the deconvolution calculation in case signal energy outside investigated frequency

bands can be reintroduced in the averaging process before deconvolution. In contrast, the

selection of high-cutoff frequency can be widely varied in practice. The Gdec is advanta-

geous over the original Cdec metric in the sense of its stability over a variable high frequency

range, since Gdec is naturally less sensitive to high frequencies according to its weighting

strategy.

As indicated in the derivation of (Eq 11), the length of sequence sweeps determines discrete

frequency interval in the frequency domain. For example, the frequency resolution for the ini-

tial sequence of the present study is 4.88 Hz for the sweep length of 204.8 ms, implying that the

first three values of F(kΔf) represent 0–9.76 Hz frequency bins that are outside the low range of

frequency bandpass filter (10 Hz). Increasing the sweep length that contains more stimuli is

theoretically allowed for the fine control of frequency distribution, but it complicates the selec-

tion or optimization procedure of sequences.

Sequence optimization is a critical problem that has not been fully studied which hinders

scientific and clinic applications of the CLAD method. The present study shows that a ‘good’

sequence appears to be associated with a small original metric Cdec, whereas a small Cdec is not

always associated with a good sequence. Thus, this metric is only necessary but not adequate

in finding optimized sequences, so that it is not appropriate to be incorporated in the objective

function to be solved by an optimization algorithm. The new metric Gdec developed in the

present study has demonstrated a satisfactory linear relation to noise attenuation property that

makes it a better candidate to be incorporated in an objective function. Thereafter, we are

capable of designing CLAD sequences with guaranteed performance using a global optimiza-

tion strategy.
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The Gdec defined in time-continuous version make it particularly suitable in many random

searching optimization algorithms in real number field. Moreover, it may also benefit from the

continuous searching space that facilitates the finding of optimal sequences. As illustrated in

Fig 6 that the solution is within the hypercube space due to the JR constraint, considering the

opposite effect of JR and NGF on optimization, we can conjecture that optimal solutions may

finally converge to the surface of the hypercube. Therefore, more pertinent modification on

the optimization algorithm can be implemented for the future work.

An increasing number of studies using CLAD were reported in the literature and, there-

fore, the noise property of CLAD sequences has to be examined to guarantee reliable decon-

volution performance. Some applicable sequences were presented for the convenience of

similar uses in the study of MLR components [16,18, 26,31]. These sequences have been eval-

uated in terms of Cdec values or by visual inspection on their spectra. In addition to initial

applications in ABR and/or MLR, the CLAD method was recently successfully used in other

modalities. For example, CLAD sequences have been used to derive transient patterns in

electroretinogram data at a rate from a large range, in which both Cdec and sequence spectra

were given [25,32]. More recently, a combination of Electrocochleography/ABR data were

acquired at rapid rates using six CLAD sequences with appropriate Cdec values [20]. To date,

no report on generating optimal CLAD sequences is available based on a NGF metric. As

indicated in the present study, the proposed Gdec can be better correlated to actual noise

attenuation property, which is promising in optimizing or generating CLAD sequences with

desired properties.

Besides CLAD, a few other deconvolution methods based on the superimposition hypothe-

sis [5,6] were proposed. These methods should be used with caution for the reliability of

deconvolution. For the well-established MLS method [7], the deconvolving process is trans-

formed into a cross-correlation calculation without inversion operation, so that no noise

amplification would occur. As it was measured by Cdec [11], which treated MLS as a subset of

CLAD sequences, MLS was proved to be an optimal CLAD sequence. A recent deconvolution

method proposed by Valderrama et al [13] employed only time averaging operation based on

sequences with randomized SOAs to cancel out unwanted components. This method thus did

not suffer noise amplification issue at a price of imposing adequate jitters [13]. A different jit-

tering scheme proposed by Wang et al [15] utilized matrix inverse in deconvolution, and regu-

larization techniques were introduce to stabilize solutions under influence of noise. In

summary, errors arising from deconvolution techniques should be fully investigated in the

presence of noise.

Conclusion

The present study is a pragmatic attempt to address the sequence generation and evaluation

issues, which impede the acceptability of the CLAD method for clinical applications. Since

noise gain property of the CLAD method can be characterized by frequency patterns of both

stimulus sequence and background noise, appropriate modeling of background noise has a

large effect on obtaining reliable solutions for deconvolution problems. Sequences with similar

SOAs arrangements might exhibit dramatic variations that fail to present veridical AEPs. The

proposed metric on NGF deliberately incorporates spectral characteristics of background EEG

noise in an effort to significantly improve the measurement accuracy on NGF. In addition, the

new metric is derived from a time continuous version which makes it more appropriate and

convenient in the use of global optimization tools. The conspicuous effects indicated in both

experimental and simulated data have showcased the efficacy of sequences obtained through

the use of the new metric.
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Appendix

The following MATLAB (R2012, MathWorks, Nantik, MA) code can be used to calculate Gdec,

in which three variables need to be defined as input arguments. ‘soams’ is a vector containing

the SOA values in ms for a CLAD sequence; ‘fL’ and ‘fH’ are low and high cutoff frequency val-

ues; alpha is a variable in the 1/f α model that can be set to 1 for most EEG recordings.

---------------------------------------------------
functiongdec = ngf(soams,fL, fH, alpha)
% ---- input---------
% soams: vectorof clad sequenceSOA in ms.
% fL and fH: low and high valid frequencyband.
% alpha: usually= 1 in the 1/f^alphaEEG model
% ---- output----
% gdec: noise gain ratio for the proposedmetric
%----------------------------------------
soa = soams/1000;% transferSOA unit into second
tk0 = cumsum(soa);%
T = tk0(end);% length of the CLAD sequence
tk = [0,tk0(1:end-1)];% stimulitiming in a sequence
f0 = 1./T; % frequencyresolution
w0 = 2�pi./T;
n1 = round(fL./f0)+1; % discretelow and high valid frequency
n2 = round(fH./f0)+1;
n = n1: n2;
fk = exp(-1i.�(w0.�n')�tk(1:end));% Fouriertransform
ftk = sum(fk,2);
H = 1./(ftk.�conj(ftk));% inversefilter
f_new = 1./(n'.�f0).^(2�alpha);
gdec = sqrt(sum(H.�f_new)/sum(f_new));
---------------------------------------------------

The major MATLAB code for generating the optimal CLAD sequence is to use the ‘ga’

function provided by the ‘Global Optimization Toolbox’. The predefined variables for this

code is the number of SOA in a sequence, and two arguments of ‘LB’ and ‘UB’ that define the

low boundary for the initial minimum SOA, and the upper boundary for the initial maximum

SOA. Both of them can be estimated from the jitter ratio defined in (Eq 8) use the unit of milli-

second. The Gdec function, i.e., ‘ngf.m’, can be modified to be the fitness function, i.e. the

objective function ϕ defined in (Eq 17), used in ‘ga’ by keeping only one input argument

‘soams’ and assigning the rest arguments inside the function. Then use the code:

[soa,fval]= ga(@ngf,n,[],[],[],[],LB,UB,[]);to produce a number of

optimized SOAs in the first output variable ‘soa’, and the corresponding fitness function values

in ‘fval’. This is a random searching mode for GA method, and the result can be different for

each run. We recommend multiple running to have the best sequence.

Supporting information

S1 File. Zip-compressed EEG data file.
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