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ABSTRACT
The study of morphological modularity using anatomical networks is
growing in recent years. A common strategy to find the best network
partition uses community detection algorithms that optimize the
modularity Q function. Because anatomical networks and their
modules tend to be small, this strategy often produces two
problems. One is that some algorithms find inexplicable different
modules when one inputs slightly different networks. The other is that
algorithms find asymmetric modules in otherwise symmetric
networks. These problems have discouraged researchers to use
anatomical network analysis and boost criticisms to this
methodology. Here, I propose a node-based informed modularity
strategy (NIMS) to identify modules in anatomical networks that
bypass resolution and sensitivity limitations by using a bottom-up
approach. Starting with the local modularity around every individual
node, NIMS returns the modular organization of the network by
merging non-redundant modules and assessing their intersection
statistically using combinatorial theory. Instead of acting as a black
box, NIMS allows researchers to make informed decisions about
whether to merge non-redundant modules. NIMS returns network
modules that are robust to minor variation and does not require
optimization of a global modularity function. NIMSmay prove useful to
identify modules also in small ecological and social networks.
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Cranial morphology

INTRODUCTION
Anatomical network analysis has recently emerged as a new
framework to study anatomy quantitatively using tools from
network theory (Rasskin-Gutman and Esteve-Altava, 2014). This
approach first formalizes anatomical systems as network models, in
which nodes represent individual anatomical elements (e.g. bones)
and links represent pair-wise relations among them (e.g. articulations),
and then quantifies their topological organization as a proxy to
understand the biological features of the organism.Anatomical studies
using network analysis have focused on comparing the development,
function, and evolution of morphological systems, from invertebrates
to vertebrates, including extant and extinct organisms (Dos Santos
et al., 2017; Esteve-Altava et al., 2013a,b, 2018, 2019; Fernández

et al., 2020; Fontanarrosa et al., 2020; Kerkman et al., 2018; Murphy
et al., 2018; Ostachuk, 2019; Plateau and Foth, 2020; Sauced̀e et al.,
2015; Sookias et al., 2020).

Modularity is one of the most explored features of anatomical
networks. In this context, a module is a group of nodes with more
connections among them than to other nodes outside the group. We
can classify network-based modules as organizational modules:
“Organizational morphological modules refer explicitly to the
interactions postulated to be important in organismal construction or
activity. They invite observation or description in terms of
mechanistic relations, whether variation among organisms is
present or not. As such, organizational modules are units of
stability” (Eble, 2005). The vertebrate skull has attracted most of the
research on morphological modularity (Esteve-Altava, 2017b).
Here, anatomical network studies have tried to unveil the
topological units of organization to understand how they vary in
evolution (Arnold et al., 2017; Esteve-Altava et al., 2015; Plateau
and Foth, 2020; Werneburg et al., 2019), but also in normal and
pathological development (Diogo et al., 2019; Esteve-Altava and
Rasskin-Gutman, 2015). Moreover, some other studies have applied
network methods to identify modules of landmark-based
morphometric correlations rather than topological relations (Ivan
Perez et al., 2009; Suzuki, 2013). A connection between network-
based organizational modules and shape covariation modules would
be likely (Esteve-Altava et al., 2013a,b), but it has not been
elucidated yet. A more thoughtful discussion about the differences
between anatomical network modules and shape co-variation
modules in terms of concepts, methods, and limitation has been
offered elsewhere (Esteve-Altava, 2017a).

A common strategy to delimit modules in anatomical networks is
to use a community detection algorithm that optimize a quality
function, which measures how well divided is the network into
modules compared to a random model. The most popular
optimization function is the modularity Q (Newman and Girvan,
2004). Q measures the number of links within modules compared
with a random distribution of links between all nodes regardless of
modules. However, Q has a resolution limit for smaller modules that
depends on the size of the network and the possibility to distant
nodes to connect (Fortunato and Barthelemy, 2007). As a result,
optimization algorithms may fail to identify small modules in
relatively larger networks. This is because in large networks
connections cannot be distributed purely at random. Although
anatomical networks are smaller compared to other natural networks
(e.g. genetic, ecological), the resolution limit applies here because
geometry and development constrain connectivity (Esteve-Altava
and Rasskin-Gutman, 2014). Despite their limitations, optimization
algorithms are persistently used to study anatomical networks
because they are easy to apply and because they are readily available
through build-in packages and programs like igraph (Csardi and
Nepusz, 2006). Other resolution problems originate from the fact
that many nodes have spread their links evenly between modules.Received 27 August 2020; Accepted 10 September 2020
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Because most nodes tend to have a small number of connections,
this makes difficult to delimit modules solely by connections inside
and outside of modules.
Global optimization and resolution limits produce two problems

in many modularity studies of anatomical networks. The first
problem is that algorithms ‘inexplicably’ find different modules
when we input slightly different networks. This happens, for
example, when one fixes a minor mistake in a network model only
to find out that in the revised network the modularity output has
changed. It also happens when comparing similar networks with
intraspecific variation (Esteve-Altava and Rasskin-Gutman, 2015)
for which we would expect no major changes of modularity. The
second problem is that algorithms sometimes find asymmetric
modules in otherwise symmetric networks, which challenges basic

biological assumptions about symmetry of bilateral body parts (e.g.
see discussion in the open peer-review report in Plateau and Foth,
2020). These problems can hinder anatomical network analyses and
they fuel criticisms to this methodology from people unaware of
these limitations.

Here I propose a strategy to bypass resolution and sensitivity
limitations, using a bottom-up approach that frames the problem of
finding modules in anatomical networks at the level of individual
nodes: a node-based informed modularity strategy (NIMS). Starting
with the local modularity around every single node, NIMS returns
the modular organization of the entire network by merging non-
redundant modules and statistically assessing their degree of
intersection. Instead of acting as a black box, NIMS allows to
make informed decisions about whether to merge non-redundant

Fig. 1. Anatomical networks used as examples. Four networks are used to demonstrate the use of the method: the type skull of an adult human, the skull
of an adult human with miscellaneous intraspecific variation, the type skull of an adult tinamou, and the type skull of an adult crocodile.
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modules or keep them as separated modules, based on the
significance and the size of the intersection. NIMS returns
network modules that are robust to minor variations and avoids
common pitfalls of other approaches by not requiring the
optimization a global modularity function. The use of NIMS is
demonstrated in four skull networks (Fig. 1): human, human with
intraspecific variation, tinamou, and crocodile.

RESULTS
Modularity of the ‘type’ human skull network
NIMS returns four non-redundant node-level modules, labeled
accordingly as occipital, sphenoidal, frontal, and ethmoidal. Note
that the names of the node-level modules are taken from the first
node, which local module is non-redundant and it is merely a label.
The statistical analysis of the intersections of the four modules
returned two significant overlaps (Fig. 2), which supports merging
node-level modules Ethmoidal+Frontal (labeled facial) and
Sphenoidal+Occipital (labeled cranial). The two modules overlap
in the frontal, palatines, and vomer (A/N: modules that overlap are
called covers). The facial cover groups the ethmoid, frontal,
lacrimals, maxillas, inferior nasal conchae, nasals, palatines and
vomer. The cranial cover groups the frontal, occipital, palatines,
parietals, sphenoid, temporals, vomer, and zygomatics. Statistical
evaluation of the two covers confirms they meet the standard
definition of module, as a group of nodes with more links in than out
the module (facial cover: W=161.5, P-value=3.12e-05; cranial
cover: W=125.5, P-value=8.38e-04).
The composition of the two covers resembles that of the anterior

and posterior modules reported by other studies using Q modularity
optimization (Esteve-Altava et al., 2013a,b), but the overlapping

bones differ from studies using another local optimization approach
(Esteve-Altava, 2017a). Here the palatal region connecting the base
of the face to the base of the neurocranium is identified as the
overlap of the two covers, while in previous reports it was the
zygomatic bones who played this role. However, the role of the
frontal bone as a bridge between the face and vault is consistently
identified using NIMS.

Modularity of the human skull networkwith natural variation
NIMS returns also four non-redundant node-level modules,
here labeled as Wormian, Sphenoidal, Zygomatic Right, and
Ethmoidal. The statistical analysis of their intersection returns two
statistically significant merges: Ethmoidal+Zygomatic Right and
Sphenoidal+Wormian (Fig. 3). The modules resulting from merging
the two pairs of node-level modules are the same than for the ‘type’
human skull network. Likewise, both covers meet the standard
definition of module (facial cover: W=160, P-value=4.42e-05; cranial
cover: W=146.5, P-value=6.29e-04). Therefore, NIMS returns robust
modules even in the presence of natural variation on anatomical
networks.

Modularity of the tinamou skull network
As expected, NIMS returned one single node-level module
grouping the six bones after removing redundancies (all single
node-level grouped the same bones). Therefore, no further analysis
was required.

Modularity of the crocodile skull network
NIMS returns seven non-redundant node-level modules, labeled
following nodes’ name as R.Postorbital, L.Postorbital,
R.Squamosal, Frontal, R.Vomer, L.Vomer, and Pterygoid. The
statistical analysis of the intersections for the seven modules
returned two significant overlaps (Fig. 4), which indicate that we
can merge these node-level modules. One merging joined
R.Vomer+L.Vomer, which share 20 of their 21 nodes. Another

Fig. 3. Intersection tests for the four non-redundant node-level modules
of the human skull network with variation. See Fig. 2 for description of
the legends.

Fig. 2. Intersection tests for the four non-redundant node-level modules
of the type adult human skull network. Green dots indicate the
intersection of modules tested and the height of the bar shows the number
of bones overlapping between modules. Statistical significance is shown in
color code. Only two intersections were significant according to the
Bonferroni-corrected P-value (yellow to red colors), Ethmoidal+Frontal and
Sphenoidal+Occipital, with 9 and 8 nodes overlapping, respectively.
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merging joined R.Postorbital+L.Postorbital+R.Squamosal, which
share 15 of their 19, 19, and 17 nodes, respectively. Finally, node-
level modules Frontal and Pterygoid do not significantly overlap
with other modules in a way that improves other merges. Note
that a potential merging Pterygoid+R.Postorbital+L.Postorbital+
R.Squamosal has not only a lower statistical support (as compared
to the merge without Pterygoid) but also reduces the overall size of
the overlap from 15 to 8 nodes. Consequently, the merging excluding
the Pterygoid is preferred.
After the two merges, we ended up with four network covers,

labeled as frontal, postorbital, pterygoid, and vomer. Frontal module
covers the frontal, lacrimals, laterosphenoids, nasals, parietal,
postorbitals, prefrontals, squamosals, and supraoccipital. Postorbital
module covers the basioccipital, basisphenoid, ectopterygoids,
jugals, laterosphenoids, otoccipitals, parietal, postorbitals, prootics,
pterygoid, quadrates, quadratojugals, squamosals, and supraoccipital.
Pterygoid module covers the basisphenoid, laterosphenoids, palatine,
prootics, pterygoid, quadrates, quadratojugals, and vomers. Vomer
module covers the ectopterygoids, frontal, jugals, lacrimals, maxillas,
nasals, palatine, postorbitals, prefrontals, premaxillas, quadratojugals,
and vomers. The overlap between covers range from two to ten bones
(see Supplementary Material).
Only two covers, vomer and postorbital, show some bones that

are exclusive of these modules and do not overlap. Despite having
four modules, the skull of the crocodile is highly integrated due to a
substantial overlap. It is not surprising that whole-network
optimization approaches often return asymmetries since overlapping
bones can be placed equally well in different modules. However, the
four covers reported here show no asymmetries; additionally, all of

them have a bilateral symmetry and group the same bones from the left
and right sides. Finally, statistical evaluation of the four covers
confirms they meet the standard definition of module (frontal cover:
W=191, P-value=3.41e-04; postorbital cover: W=522.5, P-
value=4.6e-09; pterygoid cover: W=142.5, P-value=1.37e-03;
vomer cover: W=467, P-value=3.84e-08).

DISCUSSION
NIMS successfully resolved the modular organization of the four
skull networks used as example of different types of anatomical
networks (Fig. 5). It found the same modules in ‘type’ networks and
in networks including intraspecific variation. Note, however, that
robustness against intraspecific variation may not always be the
desirable result; for example, if the objective is to assess how
variation affects modularity. In these cases, NIMS could be useful to
establish the baseline to compare the modules identified by other,
more sensitive methods. Finally, NIMS also identified absence of
modular organization due to small size and filters out artificial
asymmetries. By working under supervision (Step 5), NIMS gives
researchers back the control of the modularity analysis to decide the
most biologically meaningful output.

Community detection algorithms that optimize global modularity
will still have an important place in future research on anatomical
networks modularity. These algorithms are faster and can be run
unsupervised, which is important when analyzing many anatomical
networks as part of a broader evolutionary study (e.g. Plateau and
Foth, 2020) or when the actual modules are not the final end of the
study (e.g. Esteve-Altava et al., 2019). NIMS can be used alongside
other methods to clarify the boundaries of modules and assess

Fig. 4. Intersection tests for the seven non-
redundant node-level modules of crocodile
skull. See Fig. 2 for description of the legends.
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biases (Fig. 6). For example, by providing a second assessment of
network partitions that yield a low modularity Q value. Thus,
helping researchers to determine whether unsatisfactory partitions
come from an underlying strong overlap between two or more
modules.

MATERIALS AND METHODS
Anatomical networks
Four anatomical networks were analyzed representing the ‘type’ adult
human skull, a human skull with intraspecific variation, the adult skull of a
tinamou, and the adult skull of a crocodile (Fig. 1).

The first network is the ‘type’ adult human skull and it has been analyzed
in previous works (Esteve-Altava et al., 2013a,b, 2015), using different
methods that have consistently identified two modules: one posterior,
grouping the bones of the cranial vault and base; and one anterior, grouping
the bones of the facial region. Using a local optimization method
(Lancichinetti et al., 2011), which can find overlapping modules (covers),
another study found that these two modules overlap in the frontal and
zygomatic bones (Esteve-Altava, 2017a). However, results of this algorithm
were sensitive to changes in internal arguments. The analysis of the ‘type’
human skull will serve to compare NIMS to the modules delimited by other
algorithms. The expected output is that NIMS can identify the same two
modules.

The second network is a modification of the first one that includes
anatomical variation found in natural populations (Berry and Berry, 1967).

It has an extraWormian bone between the left parietal and the occipital. It also
has different configurations of the pterion region on each side: on the left, the
parietal contacts with the sphenoid, which prevents the contact between
temporal and frontal; on the right, the temporal contacts with the frontal that
prevents the contact between parietal and sphenoid. As a result, the network is
asymmetric along the left-right axis for the number of links and bones. This
network is also an example of normal variation that we find when studying
actual skulls rather than type forms. The analysis of this network will show
how NIMS deals with intraspecific variation naturally present in anatomical
systems, and whether the resulting modules are equivalent to those of the
‘type’ skull network. The expected output is that NIMS has a robust behavior
for small variations and finds a modular organization that is consistent with
that of the type network.

The third network is the skull of an adult tinamou Nothura maculosa,
which consist of only six bones due to a process of fusion during postnatal
development. Because of the small size of this network, preliminary reports
(Lee et al., 2020) found either that this network is not modular (i.e. they find
one module) or a trivial partition of the network. The analysis of this
network will show howNIMS deals with small, non-modular networks. The
expected output is that NIMS find one module.

The fourth network is the adult skull of the crocodile Crocodylus
moreletii, which consist of a skull with many unpaired bones typical of non-
avian archosaurs. For anatomical networks with many bilaterally symmetric
nodes, community detection algorithms by optimization sometimes return
oddly asymmetric modules (e.g. a module grouping only right-side nodes
plus one left bone) or trivially asymmetric by placing unpaired nodes with a

Fig. 5. Skulls colored by the network modules delimited using NIMS. For the human skull network (top), NIMS delimits a posterior cover grouping the
cranial vault and base (in red) and an anterior cover delimiting the face (in blue), overlapping in the frontal, palatines, and vomer (red dots on blue
background). For the crocodile skull network (bottom), NIMS delimits four covers with a substantial overlap (grey). Only two covers, vomer and postorbital,
group bones without overlap (blue and red, respectively). Background image of Homo sapiens adapted from Takahashi et al. (2006) and Crocodylus
moreletii adapted from Morgan et al. (2018).
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one-side module when it is equally connected to the left and right sides (Lee
et al., 2020; Plateau and Foth, 2020). The analysis of this network will show
how NIMS deals with larger networks with many unpaired bones. The
expected output is that NIMS will return a modular organization without
asymmetries.

A NIMS
NIMS builds upon existing functions implemented in R packages (R Core
Team, 2019). This has been done for convenience because R is a popular
programming language for anatomical network analysis and among
biologists. However, its implementation is independent of the
programming language used and other implementations are possible.

NIMS has six sequential steps:
Get all node-level modules
1. Remove extra node-level modules with same elements
2. Remove node-level modules with all elements included in a larger
module

3. Test multiple-set overlaps
4. Merge node-level modules (top P-value/max overlap size)
5. Test cohesion for network-level modules (Wilcoxon test)

Step 1 delimits node-level modules for every node in the network. This can
be done using the function cluster_spinglass in the package igraph (Csardi
and Nepusz, 2006), setting the argument vertex sequentially to every node
of the network. This function finds node-level modules based on their
difference between realized and expected internal links (cohesion) and
between realized and expected external links (adhesion) (Reichardt and
Bornholdt, 2006). Alternatively, we could use any algorithm that returns
node-level modules, even those based on criteria.

Steps 2 and 3 cross-check node-level modules to filter out modules with
the same nodes (duplicated) and modules entirely included as part of a larger
module (nested). This produces a list of non-redundant node-level modules.
Finding only one module after Steps 2 and 3 means that the nodes of the
network are fully integrated and that the network has no modules.

Fig. 6. Comparison of network partitions using NIMS and global methods. (A) Human skull network modules identified using a generalized topological
overlap and walk-trap algorithms (Esteve-Altava et al., 2013a,b; Esteve-Altava et al., 2015) and (B) the order statistics local optimization method (Esteve-
Altava, 2017a), and (C) NIMS. Methods allowing for modules to overlap show that the boundary between cranial and facial modules is not well-resolved
because boundary bones frontal, zygomatics and parietals integrate both modules together (i.e. overlap between modules). (C) Modules identified by NIMS
for the crocodile skull show a high degree of overlap, which makes it difficult to identify well-separated modules, except for the more anterior (blue) and
posterior (red) regions.
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Step 4 evaluates the intersection of non-redundant node-level modules to
reveal potential merges of highly overlapping modules. This procedure is co-
opted from research on gene sets functional enrichment analyses (Subramanian
et al., 2005), extended to perform multiple-set comparisons (for details see
Wang et al., 2015). Step 4 returns the size of the overlap (how many nodes) for
all combinations of node-level modules and the statistical significance of their
overlap compared to random expectations. In R, we can use the function
supertest in the package SuperExactTest (Wang et al., 2015), which performs
multi-set enrichment analysis and provides tools for efficiently plotting the
results so we can inspect them visually. To determine when a combination of
modules is significant, we must first account for multiple testing using an
appropriate P-value correction, such as the Bonferroni’s correction (Miller,
1966). Any combination of modules above the Bonferroni corrected P-value is
well supported statistically. P-value thresholds can be incorporated in the
visualization of Step 4 to facilitate the visualization of supported merges.

Step 5 requires the researcher to make an informed decision on whether to
merge two or more overlapping modules (also called covers), based on the
summary statistics from Step 4. As a rule, we can merge modules into a single
module when the overlap is large compared to the number of nodes of each
node-level module and when the merging is statistically well supported. Similar
well supported merges are possible. For these cases, researchers will have to
decide and justify the rationale of the decision (e.g. by considering prior
knowledge on the development and/or functioning of the resulting modules) or
consider all well supported merges equally valid.

Finally, Step 6 will test whether the final modules fulfil the definition of
network module as a group of nodes with more links inside that outside the
module. For this we can use a paired Wilcoxon signed rank test of the null
hypothesis that in-module links are equal than the out-module links (not a
module), against the alternative hypothesis that in-module links are greater
than out-module links (a module). This test is implemented in the function
wilcox.test of the stats package (R Core Team, 2019).

The next sections demonstrate the application of NIMS to resolve the
modular organization of four different anatomical networks. The
Supplementary Material includes all the data and R code to reproduce these
examples, as well as an additional example using the benchmark social
network Zachary’s karate club (Newman and Girvan, 2004).
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