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CD8+ Tcells are required for the establishment of antitumor immunity, and their substantial infiltration is associated with a good
prognosis. However, CD8+ Tcell subsets in the tumor microenvironment may play distinct roles in tumor progression, prognosis,
and immunotherapy. In this study, we used the scRNA-seq data of hepatocellular carcinoma (HCC) to reveal the heterogeneity of
different CD8+ T cell subsets. -e scRNA-seq data set GSE149614 was obtained from the GEO database, and the transcriptome
and sample phenotypic data of TCGA-LIHC were obtained from the TCGA database. CD8+ T cell subtypes and metabolic gene
sets were obtained from published reports. -e data processing and analysis of CD8+ Tcell groups was performed by R language.
-e PPI network was constructed to obtain the hub genes, and the KM survival curve of the hub genes was further plotted to
determine the hub genes with differences in survival. CD8+ T cells in HCC were divided into 7 subsets, and the cytotoxic CD8
T cells 4 subset showed considerable differences between the TP53-mutant and nonmutant groups, as well as between different
degrees of cirrhosis, HCC grades, stages, ages, and body weights. Cytotoxic CD8 T cells 4 differential genes were analyzed by
TCGA-LIHC data and single-cell sequencing data set. 10 hub genes were found: FGA, ApoA1, ApoH, AHSG, FGB, HP, TTR, TF,
HPX, and APOC3. Different subsets of CD8+ Tcells were found to contribute to heterogeneous prognosis and pathway activity in
HCC. Alterations in the cytotoxic and immune checkpoint gene expression during CD8+ Tcell differentiation were also identified.
We found that cytotoxic CD8 T cells 4 is closely associated with survival and prognosis of HCC and identified four differential
genes that can be used as biological markers for survival, prognosis, and clinically relevant characteristics of HCC. Results of this
study could help finding targets for immunotherapy of HCC and aid in the accelerated development of immunotherapy for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is a type of liver cancer
that is extremely common [1]. Traditional treatment
methods for HCC mainly include surgical treatment (liver
resection, liver transplantation), radiofrequency, microwave
ablation, embolization (transcatheter hepatic arterial che-
moembolization, TACE), and sorafenib [2–6]. In the early
stage of hepatocellular carcinoma, the symptoms are hidden
without characteristics; hence, most of the patients have
developed to themiddle and late stage when diagnosed, most
of them cannot accept radical treatment, and the prognosis is
poor [7]. In recent years, immunotherapy has produced

good therapeutic effects in the therapy of various malignant
tumors, including melanoma and hematological malig-
nancies, while the therapeutic effects in solid malignant
tumors are not satisfactory, especially in HCC [8, 9]. On the
one hand, this is related to the complex microenvironment
in solid tumors, including low oxygen, high pH, nutritional
deficiency, and immunosuppressive cells and factors
[10–13]; and on the other hand, the disorder of the func-
tional state of the relevant immune cells in the tumor is also
an important factor leading to ineffective or inefficient
immunotherapy [14].

Immune imbalance in the microenvironment of the
tumor is one of the important characteristics of the tumor.
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-e adaptive immune response, which is mediated by im-
mune cells, is important in the occurrence and development
of tumors [15]. CD8+ Tcells are the main antitumor effector
cells [16]. -e weakened antitumor immunity characterized
by CD8+ T cell function disorder plays an essential role in
the occurrence and development of hepatocellular carci-
noma [17, 18]. CD8+ Tcells from the circulationmigrate and
infiltrate into tumor tissues and are stimulated by contact
with tumor antigens to become effective CD8+ T cells with
the killing effect of tumor microcytes [19, 20].

In the process of antitumor immune response in normal
organisms, antigen-presenting cells present tumor-specific
antigen (TSA) as major histocompatibility complex (MHC)
and bind to T cell surface TCR (T cell receptor) and then,
under the action of various costimulatory signal molecules,
activate T cells; activated T cells, mainly cytotoxic CD8+
T cells, bind to tumor cells via recognition of TSA on their
surface and kill tumor cells after the costimulatory signal is
activated [21, 22]. -e activation of costimulatory signal
plays an essential role in the killing of tumor by T cells [23].
In tumor microenvironment (TME) T cells, the expressions
of costimulatory signal molecules including CD137, CD28,
and OX40 are often significantly decreased [24–26], while
the expressions of costimulatory signal molecules such as
cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
programmed cell death protein 1 (PD-1), and T-cell im-
munoglobulin mucin-3 (TIM-3) are significantly increased
[27–29]. -ese costimulating/inhibiting molecules are
known as immune checkpoints, and the treatment of these
signaling molecules is also known as immune checkpoint
therapy.

Immunocheckpoint therapy has achieved a series of
successes in the treatment of solid tumors, breaking through
the original view that tumor immunotherapy may only be
effective for immunogenic melanoma and kidney cancer
[30]. Recent clinical studies have shown that monotherapy
has achieved good efficacy in solid tumors such as non-
small-cell lung cancer (NSCLC), colorectal cancer, and
gastric cancer, and the safety of most immunotherapies has
also been recognized [31–33]. -e Food and Drug Ad-
ministration (FDA) and the European Union have approved
several immune checkpoint inhibitors and monoclonal
antibodies for clinical tumor treatment, such as CTLA4
monoclonal antibody ipilimumab, PD1 monoclonal anti-
body nivolumab, etc. [34].

Like NSCLC and colorectal cancer, HCC cells also ex-
press a large number of co-inhibitory components such as
PD-L1 on the surface, but unfortunately, the efficacy of
immune checkpoint inhibitors has not been adequately
evaluated in early clinical trials [35]. -e current scRNA-seq
technique is widely used in the study of cell heterogeneity.
However, due to the need for preamplification of cDNA
before library construction, poor amplification may lead to
the loss of some information. To more comprehensively
identify the differences among hepatocellular carcinoma
cells, Xiao et al. [36] for the first time implemented the Holo-
Seq technique to obtain the transcriptome information of
mRNAs and small RNAs from a single cell at the same time
and combined the information to determine intercellular

heterogeneity. In this study, Holo-Seq technology was ap-
plied to analyze single cells of human liver cancer, and it was
found that mitochondrial activity was downregulated in the
early stage of liver cancer [36]. Moreover, tumor suppressor
miRNA and tumor-promoting miRNA were upregulated
earlier than the activation of classical tumor-promoting
signaling pathway [36]. -ese findings provide important
information and references for diagnosing liver cancer.
Additionally, they drew a cluster map based on double
transcriptional profiles of single-cell mRNAs and miRNAs
in HCC [36]. Compared with single scRNA-seq clustering
analysis, this approach enables a more complete under-
standing of the tumor cell heterogeneity in HCC and dis-
cover new cell subpopulations.

In this study, we used the scRNA-seq data of hepato-
cellular carcinoma to reveal the heterogeneity of different
CD8+ T cell subsets. -e cellular components of the CD8+
T cell subpopulation in liver cancer patients under different
states of liver cirrhosis, grade, stage, age, and body weight
were determined, and the activity analysis of metabolic
pathway and hallmark pathway was carried out based on the
pipeline analysis of pathway activity based on single-cell
sequencing data. Cell differentiation trajectory and cell-cell
interaction network analysis was performed, and the hub
genes’ expression in different cancers was determined for
prognosis/treatment marker identification. Different subsets
of CD8+ T cells were found to contribute to heterogeneous
prognosis and pathway activity in HCC. Alterations in an
immune checkpoint and cytotoxic gene expression during
CD8+ T cell differentiation were also identified.

2. Materials and Methods

2.1. scRNA-seq and RNA-seq Data. HCC scRNA-seq was
downloaded from the Gene Expression Omnibus (GEO)
database (GSE149614), and a total of 34,414 cells from 10
HCC tissue samples were screened. From the TCGA Xena
database (https://xenabrowser.net/datapages/), the tran-
scriptome and sample phenotypic data of TCGA-LIHC were
downloaded; a total of 424 samples were obtained, of which
374 were tumor tissues (6 of the samples had no survival
information and were excluded from subsequent analysis)
and 50 were normal tissues. -e expressed value from log2
(count +1) were converted to count for subsequent analysis.
CD8+ Tcell subtypes were obtained from the study by Deng
et al. [37]. A total of 85 metabolic gene sets were obtained
from Xiao et al. [38], and a total of 50 hallmark gene sets
were downloaded from h.all.v7.3.symbols.gmt from
MSigDB.

2.2. Identification of CD8+ T Cell Subsets. -e R package
“Seurat” was used to map the expression profile of CD8A
and CD8B (CD8+ T cell markers) and determine the CD8+
T cell population. CD8+ T cells were selected, and UMAP
cluster analysis was performed again, and each cell sub-
population was annotated according to the expression
distribution of CD8+ Tcell subtypes. -e proportion of each
subtype of CD8+ T cells was counted, and a bar chart was
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drawn using the R package “ggplot2” for display. Hyper-
variable genes of each subtype were examined with the help
of the Seurat package. To find all markers functions, the
min.pct and logfc.threshold parameters set at 0.25 were used.
-e top 10 highly variable genes of each subtype were se-
lected, and the R package “pheatmap” was used to draw the
heatmap of gene expression. Marker genes of previously
reported studies were employed to annotate subpopulations
of CD8+ T cells including naive/memory CD8+ T cells
(CCR7, IL7R, TCF7, SELL, SATB1, GPR183, LTB, LEF1, and
S100A10), exhausted CD8+ T cells (CXCL13, HSPB1, IRF4,
LAYN, GIMAP6, HSPH1, CXCR6, CTLA4, PDCD1, LAG3,
HAVCR2, and TIGIT), and cytotoxic CD8+ T cells (PRF1,
GZMA, GZMK, and NKG7).

2.3. *e Cellular Components of the CD8+ T Cell
Subpopulation. -e Seurat package was used to obtain the
hypervariable genes of each subtype of CD8+ T cells, and
they were screened according to the Bonferroni correction P

value <0.05. For screening of gene expression (count),
CIBERSORTx (https://cibersortx.stanford.edu/) tools were
used following the default parameters of CD8+ Tcell subtype
of liver cancer signature matrix file. -e transcriptome data
of TCGA-LIHC were collated, and the count was converted
into CPM as the input file of CIBERSORTx to estimate the
content of CD8+ T cell subtypes in liver cancer. -e
surv_cutpoint function was used to analyze the cell content
of each subtype, and the cell content of TCGA-LIHC
samples was divided into groups of high and low levels, and
the survival curve of KM was plotted using Survival packet
and survminer packet. -e phenotypic data of TCGA-LIHC
were sorted. Boxplots were drawn to show the difference in
cell content between TP53 mutation and gender, and line
plots were drawn to show the content of CD8+ T cell
subtypes in liver cancer patients under different states of
liver cirrhosis, grade, stage, age, and body weight.

2.4. Pathway Activity Analysis. For scRNA-seq data, the
FindMarkers function of the Seurat package was used to
obtain the hypervariable genes of each subtype of CD8+
T cells and screen them according to the Bonferroni cor-
rection P value <0.05. -e ClusterProfiler package was used
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis, and then using
ggplot2, a bubble chart was drawn to display the results.
According to the research report of Xiao et al. [38], the
activity analysis of metabolic pathway and hallmark pathway
was carried out based on the pipeline analysis of pathway
activity based on single-cell sequencing data.

2.5. Cell Differentiation Trajectory and Cell-Cell Interaction
Network Analysis. Using the package’s default parameters,
the Slingshot package was utilized to assess the cell differ-
entiation trajectory and the distribution of marker gene
expression. -e single-cell sequencing data of CD8+ T cells
were collated, and the interaction network analysis of CD8+
T cell subtypes was conducted using CellPhoneDB software

developed based on Python. -e R package SCENIC was
used to construct the gene regulation network of CD8+ Tcell
subtypes.

2.6. Prognosis/Treatment Marker Identification. CD8+ T cell
subtypes with significant differences in survival analysis were
selected and grouped according to the cell content of the cell
subtypes. Differential analysis was performed on the TCGA-
LIHC expression data (R package DESeq2), following |log2(-
FoldChange)|>1 and corrected the P value <0.05 for differential
genes screening. -e protein-protein interaction (PPI) network
was constructed using the String database (https://www.string-
db.org/), and Cytoscape (v3.7.2) and cytoHubba plug-in were
used to screen the hub genes. -e hub genes were divided into
two groups based on their expression levels: high and low
according to the median number of hub genes. Kaplan–Meier
(KM) survival curves were plotted using the survival package R
and Survminer. Hub genes with survival differences were se-
lected and single-gene gene set enrichment analysis (GSEA) was
performed using the clusterProfiler package. According to
different clinical features, ggstatsplot was used to plot boxplots
to show hub gene expression levels with significant differences
in survival. -e TCGA pan-cancer data was downloaded from
the TCGA Xena database, and hub gene expression in various
tumors was shown in a bar graph.

2.7. Statistical Analysis. Genes differently expressed in dif-
ferent subsets, KEGG, GO, and GSEA analyses were ana-
lyzed statistically using the corresponding software packages
or default methods in the software. Random arrangement
tests exhibited statistical pathway activity. Student’s test was
used to assess the frequency of different cell types in normal
and tumor samples; statistical analysis was also used to
examine the levels of expression in tumors and normal tissue
samples. -e significance of the KM curves was tested using
the log-rank test. -e Kruskal–Wallis test was used to de-
termine dynamic changes in cell proportion and levels of
gene expression at various stages of pathology.

3. Results

3.1. Data Download and Preprocessing. For liver cancer, the
scRNA-seq data set GSE149614 was downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/) and 10
liver cancer tissue samples were screened with a total of
34,414 cells. From the TCGA Xena database (https://
xenabrowser.net/datapages/), the transcriptome and sam-
ple phenotypic data of the TCGA-LIHC were downloaded; a
total of 424 samples were obtained, of which 374 were tumor
tissues (6 samples had no survival information and were
excluded from subsequent analysis) and 50 were normal
tissues.

Single-cell sequencing results showed that the gene
number of the samples was mainly distributed between 1000
and 8000, the gene count was mainly distributed between
100 and 50,000, and the mitochondrial proportion was
mainly distributed between 0 and 5% (Figure 1). -e cor-
relation between the depth of the sequencing and the
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number of genes detected was 0.89, and between the
sequencing depth and mitochondria was 0.16, indicating a
positive correlation of sequencing depth with the number
of measured genes (Figure 2). 2000 differentially
expressed genes that are highly expressed were selected for
principal component analysis (PCA), and the differences
between the first 15 PCs were all highly significant,
suggesting a considerable difference between theoretical
and actual values, which was used for additional analysis
(Figure 3).

3.2. CD8+ T Cell Extraction and Subpopulation Recognition.
-e UMAP method was used for clustering, and 26
clusters were obtained (Figure 4(b)). Because it was a
tumor tissue sample, the heterogeneity was high
(Figure 4(a)). CD8A and CD8B were mainly distributed in
cluster 0, 6, 9, 16, and 24, with a total of 5062 cells
(Figure 5). -e cells of these groups were pulled out, and
UMAP clustering was performed again to obtain 7 CD8+
Tsubgroups (Figure 6). CD8+ Tcell subtype markers were
obtained from the research report of Deng et al. [37], that
is, markers of naive/memory CD8 T cells: CCR7, IL7R,
TCF7, SELL, SATB1, GPR183, LTB, LEF1, and S100A10;

the markers of cytotoxic CD8 T cells: PRF1, GZMA,
GZMK, and NKG7; and the markers of exhausted CD8
T cells: CXCL13, HSPB1, IRF4, LAYN, GIMAP6, HSPH1,
CXCR6, CTLA4, PDCD1, LAG3, HAVCR2, and TIGIT.
Based on the expression of the above markers, 7 cell
subgroups were annotated as follows: naive/memory CD8
T cells, exhausted CD8 T cells 1, exhausted CD8 T cells 2,
cytotoxic CD8 T cells 1, cytotoxic CD8 T cells 2, cytotoxic
CD8 T cells 3, and cytotoxic CD8 T cells 4.

3.3. Cell Proportion and Cell Marker Expression. -e pro-
portion of cells in each subpopulation was shown to be
naive/memory CD8 T cells in the HCC TME. -e pro-
portion of the medium is the highest, followed by
exhausted CD8 T cells 1, and the lowest is cytotoxic CD8
T cells 4 (Figure S1A of the supplementary information
file). At the same time, the expression of top 10 differ-
entially expressed genes in seven CD8+ T subsets was
analyzed (Figure S1B). According to the transcriptome
data of TCGA-LIHC, CIBERSORTx calculated that cy-
totoxic CD8 T cells 4 and exhausted CD8 T cells 2
accounted for the highest proportion (Figure S8,
Table S1).
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Figure 1: Quality control chart of GSE149614 single-cell data set. (a) -e number of genes in a cell. (b) Count distribution of genes. (c)
Figure: mitochondria percentage.
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3.4. Analysis of Prognosis and Clinical Correlation. -e
survival analysis was performed by log-rank test. -e sur-
vival difference of the overall immune cell proportion group
was statistically significant, and there was a significant
survival difference between the groups with a high and low
proportion of cytotoxic CD8 Tcells 4.-e survival difference
between the exhausted CD8 T cells 2 and naive/memory

CD8 T cells was not statistically significant (Figure S2,
Table S2). Cytotoxic CD8 T cells 4 differed significantly
between the TP53 mutant and nonmutant groups (non-
parametric Wilcox rank-sum test) and between sex
(Figures S9A and S9B). Among cirrhosis groups of different
degrees, the proportion of cytotoxic CD8 T cells 4 increased
first and was the lowest in nodular formation and
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incomplete cirrhosis (Figure S9C). In the grading of liver
cancer, the ratio of cytotoxic CD8 Tcells 4 was highest in G2
and then decreased progressively (Figure S9D). -e pro-
portion of cytotoxic CD8 T cells 4 decreased first and then
increased in the stage of liver cancer (Figure S9E). -e
proportion of cytotoxic CD8 Tcells 4 was lowest in the 40–60
years age group (Figure S9F). -e proportion of cytotoxic
CD8 T cells 4 increased with increasing body weight
(Figure S9G).

3.5. *e Landscape of Heterogeneous Pathway Activity. To
investigate the presence of heterogeneous pathways in
CD8+ T cell subsets, we used GO and KEGG analysis. GO
analysis showed that cytotoxic CD8 T cells 4 had an
obvious biological process, cellular component, and
molecular function (Figures 7(a)–7(c), Table 1). KEGG
results showed that cytotoxic CD8 Tcells 4 were related to
ribosomes (Figure 7(d), Table 1). To elucidate the het-
erogeneity of various subgroups further, we also per-
formed the analysis of cell subgroup metabolic pathway
activity and hallmark immune checkpoint pathway ac-
tivity.-e analysis of the metabolic pathway activity of cell
subsets revealed that exhausted CD8 T cells 1, exhausted
CD8 T cells 2, and cytotoxic CD8 T cells 3 had strong
metabolic pathway activity, and cytotoxic CD8 T cells 2
had the lowest metabolic pathway activity (Figures S3A
and S3B). Oxidative phosphorylation was significantly
enriched in 7 CD8+ T cell subgroups (Figure S3C).
Hallmark pathway activity analysis revealed that
exhausted CD8 T cells 1, exhausted CD8 T cells 2, and
cytotoxic CD8 T cells 3 had strong hallmark pathway
activity, and cytotoxic CD8 T cells 2 had the lowest

hallmark pathway activity (Figures 8(a) and 8(b)).
HALLMARK_MYC_TARGETS_V1 was significantly
enriched in 7 CD8+ T cell subgroups (Figure 8(c)).

3.6. Analysis of Cell Differentiation Trajectories and Cell In-
teraction Networks. -e initial differentiation group is not
specified and a lineage is obtained from exhausted CD8
T cells 1 to cytotoxic CD8 T cells 4, as shown in Figure S4A.
-e PRF1, GZMA, and NKG7 genes were first down-
regulated, then upregulated, and finally downregulated
during the development of lineage (Figures S4B–S4E).-e
PDCD1, HAVCR2, LAG3, CD27, CTLA4, TIGIT, and
TNFRSF9 genes remained unchanged during the pre-
differentiation process and significantly differentiated in the
mid-term and then remained unchanged (Figures S4F–S4L).

Considering the heterogeneity of CD8+ Tcell subsets, we
analyzed their communication networks to identify the key
ligand-receptor pairs and cell subsets that dominate the
interactions.-e results showed that cytotoxic CD8 Tcells 2,
cytotoxic CD8 T cells 1, and cytotoxic CD8 T cells 4 had the
highest number of ligand receptors (Figure S5A). -e li-
gand-receptor logarithm between exhausted CD8 T cells 2
and the other 6 subtypes was less (Figure S5B), and the
regulatory factors JUND, EGR1, FOSB, IRF1, IRF8, and REL
were highly expressed in cytotoxic CD8 T cells 1
(Figure S5C).

3.7. Prognosis/TreatmentMarker Identification. Based on the
results of significant differences in survival, the differentially
expressed genes were calculated first by the TCGA database,
and a total of 6813 differentially expressed genes were
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obtained, of which 2378 were upregulated and 4435 were
downregulated (Table S3). -e expression of the first 50
differential genes is shown in Figures 9(a) and 9(b). -en,
according to the results of significant differences in survival,
the corresponding cell subsets and differentially expressed
genes were selected, and the ligand receptors and tran-
scription factors among them were given priority. If the
subsequent analysis was not supported, only differentially
expressed genes were selected, and a total of 168 differen-
tially expressed genes were found. Since the survival analysis
of 4 cases of cytotoxic CD8 Tcells in the high and low groups
showed significant survival differences, the expression of the
first 50 differentially expressed genes of cytotoxic CD8 Tcells
4 was selected for display (Figure S10). According to the
obtained two groups of different genes, the PPI network was
constructed and hub genes were identified. cytoHubba
found 10 hub genes: FGA, APOA1, APOH, AHSG, FGB,

HP, TTR, TF, HPX, and APOC3 (Figure 10). -e log-rank
test showed that APOC3 among the above 10 hub genes had
statistically significant survival differences, while APOH,
HPX, and FGB had significant survival differences
(Figures 11(a)–11(d)).-e Cox test showed that the P-values
of APOC3, APOH, HPX, and FGB were 0.02, 0.14, 0.00067,
and 0.034, respectively. Genetic GSEA of APOC3, APOH,
HPX, and FGB was performed, and the first five enrichment
items are shown in Figures 11(a)–11(d) and Table S4 in the
supplementary file. Table S4 in the supplementary file shows
the analysis results of single-gene GSEA of APOC3, APOH,
HPX, and FGB. -e expression levels of different genes in
different clinical features were further analyzed, and the
expression levels of genes APOC3, APOH, HPX, and FGB
were significantly different in normal tissues and tumors ,
and were further analyzed whether TP53 mutation was
present or not. -ere was a significant difference
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Figure 5: Expression and distribution of CD8+ Tcell markers. (a, c) Expression distribution of CD8A. -e darker the color, the higher the
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(P � 0.0053) in the expression of APOH among the sex
groups. -e expressions of APOC3, APOH, HPX, and FGB
were not significantly different in different cirrhosis degrees
and different ages (P> 0.05). -ere were significant differ-
ences in the grading and staging of liver cancer. -e gene
APOC3 had no significant difference among different body
weights (Figures S6 and S11). Finally, the expression of
different genes in different cancers was analyzed, and the
results showed that the expression of genes APOC3, APOH,
HPX, and FGB was the highest in liver hepatocellular car-
cinoma (LIHC), and the expression in normal tissues was
higher than that in cancer tissues. Genes APOC3, ApoH,
HPX, and FGB were also highly expressed in chol-
angiocarcinoma (CHOL), and their expression levels were
higher in normal tissues than in cancer tissues (Figure S12).

4. Discussion

-e role of tumor-infiltrating immune cells, particularly
T cells, in tumor development has been revolutionized by a
deeper understanding that has opened up new avenues for
immunotherapeutic strategies. Previous studies have indi-
cated that immune cells infiltrating tumors exhibit various
levels of infiltration depending on the type of tumor and
stages [39]. Immune-associated cells, including T cells and
mast cells, have been shown to be novel prognostic markers
in patients with HCC, further suggesting that the combi-
nation of immunoinfiltrating cells in tumor tissue can even
predict the effects of chemotherapy and immunotherapy
[40]. Due to the fact that CD8+ T cells are the most sig-
nificant effector T cells in current tumor immunotherapy
[41], CD8+ T cells detect tumor-associated antigens on the
surface of cancer cells as major histocompatibility complex
class I molecules [42].

It has been found that four coexpression genes (GZMA,
C1QC, CD3D, and PSMB9) have been identified as CD8+
T cell coexpression genes that promote CD8+ T cell infil-
tration in HCC, and these coexpressed genes are favorably
associated with the infiltration of CD8+ T lymphocytes
during antigen presentation. -is biological process may
provide new directions for patients with stem cell cancers
that are not sensitive to immunotherapy [43]. -us, CD8+
T cells are essential for the formation of antitumor immu-
nity, and their increased invasion is related with a favorable
prognosis. CD8+ T cell subsets in the microenvironment of
the tumor, on the other hand, may play distinct roles in
tumor progression, prognosis, and immunotherapy. Cyto-
toxic CD8+ T cells have been reported to be associated with
lymph nodemetastasis and other prognostic factors in breast
cancer [44]. We found that cytotoxic CD8 T cells 4 differed
significantly between the TP53-mutated and nonmutated
groups, as well as with different degrees of cirrhosis, HCC
grade, stage, age, and body weight. Cytotoxic CD8 T cells 4
differential genes were analyzed by the TCGA-LIHC data
and single-cell sequencing data set. Finally, 10 hub genes
were found: FGA, ApoA1, ApoH, AHSG, FGB, HP, TTR,
TF, HPX, and APOC3. -ere were significant survival
differences among APOC3, APOH, HPX, and FGB genes.
Further analysis showed that APOC3, APOH, HPX, and
FGB were significantly different in normal tissues and tu-
mors irrespective of TP53 mutation, liver cancer grade, and
stage. -ere was a significant difference in the expression of
APOH among the sex groups. APOC3, APOH, HPX, and
FGB expression levels were highest in HCC and were greater
in normal tissues than that in cancer tissues. Additionally, it
is significantly expressed in CHOL, and its level of ex-
pression is higher in normal tissues than that in cancer
tissues. Apoprotein C3 (APOC3) is a key regulator of the
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Figure 6: Cluster of CD8+ T cells. (a) An unannotated cluster diagram. (b) A cluster diagram annotated according to CD8+ T subtype
markers.
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metabolism of lipoprotein and has been demonstrated to be
closely associated with hypertriglyceridemia [45]. β-2-gly-
coprotein 1 (APOH) has been shown to be associated with
liver metastasis from colorectal cancer [46]. Hemopexin
(HPX), which acts as a scavenger of toxic plasma heme and a
transporter of it to the liver, has been demonstrated to be
closely associated to the occurrence and development of
breast cancer [47, 48]. Similarly, the fibrinogen β chain
(FGB) gene has been revealed to be related with renal cell
carcinoma invasion and metastasis [49]. All of these provide
strong evidence that APOC3, APOH, HPX, and FGB can be
used as biomarkers for hepatocellular carcinoma.

Tumor immunotherapy is a new method to treat cancer
in recent years, which has greatly changed the prospect of
cancer treatment [50, 51]. Although significant advances can
bemade in treatments such as immune checkpoint blockade,
their efficacy varies greatly among different patients or
cancer types [52]. A detailed understanding of the internal
immune microenvironment of cancer tissue is of great
reference value for the development of new immunotherapy.
Single-cell sequencing technology can be used as an effective
tool to study the immune microenvironment of liver cancer
and plays an essential role in the process of immune cell
therapy and antibody drug development of liver cancer.
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Figure 7: GO and KEGG enrichment analysis of the cytotoxic CD8 T cells 4 subgroup. (a) GO enrichment of biological process. (b) GO
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corrected P value. -e red color is directly proportional to enrichment.
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Table 1: GO analysis and genomic encyclopedia (KEGG) analysis of cytotoxic CD8 T cells 4.

ID Description Gene
ratio

Bg
ratio P value p.adjust Q value Gene ID Count

hsa05171 Coronavirus
disease—COVID-19 37/113 232/

8105 5.79E− 30 1.28E− 27 1.11E− 27

2243/2244/718/2266/6189/712/4792/
713/6173/6206/6158/6137/6171/6224/
6143/6156/6181/6187/6139/5295/6202/
7311/6161/3725/6192/6134/6135/6130/
6159/6167/6228/6218/6133/6205/3921/

6125/51065

37

hsa03010 Ribosome 28/113 158/
8105 7.35E− 24 8.12E− 22 7.08E− 22

6189/6173/6206/6158/6137/6171/6224/
6143/6156/6181/6187/6139/6202/7311/
6161/6192/6134/6135/6130/6159/6167/
6228/6218/6133/6205/3921/6125/51065

28

hsa04610 Complement and
coagulation cascades 9/113 85/

8105 2.45E− 06 0.000181 0.000158 2243/462/2244/7448/718/2266/712/713/
1191 9

hsa04979 Cholesterol metabolism 6/113 50/
8105 6.20E− 05 0.003425 0.002985 350/345/335/341/348/336 6

hsa05133 Pertussis 6/113 76/
8105 0.000636 0.025371 0.022114 718/712/713/805/3725/3659 6

hsa05418 Fluid shear stress and
atherosclerosis 8/113 139/

8105 0.000689 0.025371 0.022114 2938/4257/1843/805/5295/3725/3326/
3320 8

hsa05134 Legionellosis 5/113 57/
8105 0.001133 0.035775 0.031183 718/4792/1915/3329/3312 5
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Figure 8: Continued.
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-e incidence and mortality of liver cancer are high
[53, 54]. In order to understand the immune microenvi-
ronment of liver cancer and to find new targets and ef-
fective biomarkers for the immunotherapy of liver
cancer, Zheng et al. [17] performed sRNA-seq on 5063
human T cells using the SMART Seq2 technique.

Subpopulation classification of Tcells based on single-cell
transcriptional map showed that there were a large
number of dysfunctional lethal CD8+ T cells and in-
hibitory T cells in tumor tissues. -e gene Layilin was
found to inhibit the killing function of CD8+ T cells by
targeting the genes specifically expressed in these two
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Figure 8: Hallmark pathway activity analysis of CD8+ T subsets. (a) Heatmap of hallmark pathway activity of CD8+ T subsets. (b) Active
fiddle diagram of the hallmark pathway in CD8+ T subsets. (c) GSEA enrichment fractional point diagram of the CD8+ T subgroup.
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Figure 10: PPI network diagram.
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types of cells, which may be a new potential target for
immunotherapy.

5. Conclusion

Immune-associated cells, including Tcells, have been shown to
be novel prognostic markers in patients with HCC, suggesting
that the combination of immunoinfiltrating cells in tumor tissue
can even predict the effects of chemotherapy and immuno-
therapy. Because CD8+ T cells are the most important effector
T cells in the current tumor immunotherapy and they also
recognize tumor-associated antigens as major histocompati-
bility complex class Imolecules on the surface of cancer cells, we
used scRNA-seq data of hepatocellular carcinoma (HCC) to
reveal the heterogeneity of different CD8+ Tcell subsets.CD8+
T cells in HCC were divided into 7 subsets, and the subset
cytotoxic CD8 T cells 4 showed significant differences between
the TP53 mutant group and the nonmutant group, as well as
between different degrees of cirrhosis, HCC grades, stages, ages,
and body weights. Hub genes were identified by TCGA-LIHC
and single-cell sequencing data set analysis, and the genes
APOC3, APOH, HPX, and FGB were identified as biological
marker genes by the Cox test. -e expression of APOC3,
APOH, HPX, and FGB in normal tissues and tumors and TP53
mutation were significantly different. -ere was a significant
difference in the expression of APOH among the sex groups.
-ere were significant differences in the grading and staging of
liver cancer. -e gene APOC3 had no significant difference
among different body weights.-e expression levels of APOC3,
APOH, HPX, and FGB were the highest in HCC and were
higher in normal tissues than in cancer tissues. Moreover, it is
also highly expressed in CHOL, and the expression level in
normal tissues is higher than that in cancer tissues. We found
that cytotoxic CD8 T cells 4 is closely associated with survival

and prognosis of HCC and identified four differential genes that
can be used as biological markers for survival, prognosis, and
clinically relevant characteristics of HCC.-is study could help
to find effective targets for immunotherapy of HCC and ac-
celerate the development of immunotherapy for HCC. At the
same time, this work also outlines the map of the tumor-im-
mune environment, which provides a basis for the future study
of other tumor-immune microenvironments.
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Figure 11: Hub gene survival analysis. (a) KM curve of APOC3 high- and low-expression groups. (b) KM curve of APOH high- and low-
expression groups. (c) KM curve of HPX high- and low-expression groups. (d) KM curve of FGB high- and low-expression groups.
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