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Background: Digital subtraction angiography (DSA) is an important technique for diagnosis of moyamoya 
disease (MMD) or moyamoya syndrome (MMS), and computed tomography perfusion (CTP) is essential 
for assessing intracranial blood supply. The aim of this study was to assess whether radiomics features based 
on images of DSA could predict the mean transit time (MTT; outcome of CTP) using machine learning 
models.
Methods: The DSA images and MTT values of adult patients with MMD or MMS, according to the 
diagnostic guidelines for MMD, as well as control cases, were retrospectively collected in the Guangdong 
Provincial People’s Hospital between January 2018 and December 2020. A total of 93 features were extracted 
from the images of each case through 3-dimensional (3D) slicer. After features preprocessing and filtering,  
3–4 features were selected by the least absolute shrinkage and selection operator (LASSO) regression 
algorithm. Prediction models were established using random forest (RF) and support vector machine (SVM) 
for MTT values. Single-factor receiver operating characteristic (ROC) curve analysis and partial-dependence 
(PD) profiles were conducted to investigate selected features and prediction models.
Results: Our results showed that prediction models based on RF models had the best performance in 
frontal lobe {area under the curve (AUC) [95% confidence interval (CI)] =1.000 (1.000–1.000)], parietal lobe 
[AUC (95% CI) =1.000 (1.000–1.000)], and basal ganglia/thalamus [AUC (95% CI) =0.922 (0.797–1.000)] 
in the test set, whereas the SVM model performed the best in the temporal lobe [AUC (95% CI) =0.962 
(0.876–1.000)] in the test set. The AUC values in the test set were greater than 0.9. The PD profiles showed 
good robustness and consistency.
Conclusions: Prediction models based on radiomics features extracted from DSA images demonstrate 
excellent performance in predicting MTT in patients with MMD or MMS, which may provide guidance for 
future clinical practice.
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Introduction

Background

Moyamoya disease (MMD), diagnosed based on cerebral 
angiography, is a cerebrovascular disease with unknown 
cause, characterized by chronic progressive stenosis and 
occlusion of the bilateral internal carotid arteries followed 
by abnormal proliferation of small vessels at the base of the 
skull, forming an abnormal vascular network resembling 
smoke-like changes on angiography (1,2). These fragile, 
smoke-like vessels provide insufficient cerebral perfusion, 
causing various ischemic or hemorrhagic symptoms in both 
children and adults with MMD (3).

Historically, medical imaging has been a qualitative 
or semi-quantitative modality. With the rapid advances 
in computer science and the increasing assimilation of 
medicine and computers, medical data is becoming more 
available in digital format (4,5). Meanwhile, advances in 
computing hardware and machine learning algorithms 
have enabled the development of radiomics. Radiomics 
is a method to extract undiscovered imaging features 
into higher dimensional data, which are not accessible by 
conventional visual image analysis (6). The data might aid 
in enhancing physicians’ clinical decision-making using 
advanced machine learning analysis techniques.

Rationale and knowledge gap

Radiomics has proven valuable in the study of pathological 
lesions. Its concept was initially widely applied mainly in 
the field of oncology (7). With the progression of research, 

radiomics has been used in the study of cerebrovascular 
diseases, such as for predicting the risk of intracranial 
aneurysm rupture from brain computed tomography 
angiography (CTA) data (8), and magnetic resonance (MR)-
based radiomics to analyze the prognosis of acute cerebral 
ischemic diseases (9). A predictive feature of radiomics based 
on precontrast CT imaging could reflect the difference of 
CTP for severe stenosis or occlusion of the middle cerebral 
artery (MCA) (10). Li et al. discovered that a computed 
tomography perfusion (CTP)-based delta-radiomics model 
has the potential to identify collateral vessel formation after 
the operation of MMD (11).

Currently, digital subtraction angiography (DSA) remains 
the gold standard for diagnosing MMD. Concurrently, 
CTP is a common tool used to assess cerebral hemodynamic 
status and has been widely used in clinical practice (12,13). 
CTP has improved patient selection for safe and effective 
treatment, especially for the evaluation of bypass surgery in 
patients with MMD.

Objective

Some researchers have tentatively explored the relationship 
between DSA and CTP in patients with MMD (12). In this 
study, we aimed to explore the relationship between DSA 
imaging and mean transit time (MTT; outcome of CTP) 
from the perspective of radiomics. For MTT, we used DSA 
images combined with radiomics to create a predictive 
model and validate the model. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://cdt.amegroups.com/article/view/10.21037/cdt-
23-151/rc).

Methods

Patients

We retrospectively reviewed patients diagnosed with 
MMD or moyamoya syndrome (MMS) in the Guangdong 
Provincial People’s Hospital between January 2018 and 
December 2020. The Institutional Review Board of 
Guangdong Provincial People’s Hospital approved this 
research (No. KY-Q-2022-344-02), and the requirement 
for written informed consent was waived. This study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). A total of 50 patients were diagnosed 
with MMD or MMS by two experienced physicians (a 
neurovascular surgeon with 10 years’ experience and a 
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neuroradiologist with 20 years’ experience) according to the 
diagnostic guidelines for MMD (14).

The patient inclusion criteria were as follows: (I) 18– 
70 years old; (II) no stroke having occurred within 1 month 
before admission; (III) diagnosis of MMD or MMS by 
CTA, MR angiography, or DSA.

The patient exclusion criteria were as follows: (I) 
comorbidity of other intracranial diseases (intracranial 
tumors, hydrocephalus, etc.), other intracranial vascular 
diseases (intracranial aneurysms, intracranial arteriovenous 
malformations, intracranial arteriovenous fistula, posterior 
circulation vascular stenosis, etc.), or cervical vascular 
stenosis (stenosis at the beginning of internal carotid 
artery and vertebral artery; (II) pregnancy; (III) having not 
undergone DSA.

The enrolled healthy controls met the following criteria: 
(I) 18–70 years old; (II) without any intracranial diseases 
confirmed by neuroimaging. The demographic and clinical 
data of the patients were extracted from the hospital 
information system of our center. The research process of 
this study is detailed in the flow diagram (Figure S1).

DSA images

DSA was performed with Artis Q Zeego (Siemens 
Healthineers, Erlangen, Germany), and two phases of DSA 
images were collected: (I) arterial phase of lateral view; (II) 
capillary phase of lateral view. We collected DSA images 
of both the left and right sides of healthy controls, and the 
lesion side only of patients with MMD or MMS. All images 
were digitally subtracted to remove the skull. An optimal 
slice of DSA images of the cases was selected for further 
analysis.

Radiomics features extraction

Two neurosurgeons with more than 10 years’ experience 
independently segmented the region of interest (ROI) on 
DSA images using open-source software 3D slicer (version 
4.10.20; https://www.slicer.org/). The ROI results were 
reviewed and censored by a neuroradiologist with 10 years 
of experience. Discrepancies were settled by consensus 
discussion. Representative DSA images of lateral arterial 
phase and capillary phase with corresponding ROIs are 
shown in Figure S2 and Figure S3. A total of 93 radiomics 
features, including First Order Statistics, Gray Level 
Co-occurrence Matrix, Gray Level Size Zone Matrix, 
Gray Level Run Length Matrix, Neighboring Gray 

Tone Difference Matrix, and Gray Level Dependence 
Matrix, were extracted from the ROI of each image using 
PyRadiomics 2.2.0 (15), Numpy1.13.1, SimpleITK 1.1.0, 
PyWavelet 1.0.0, and Python 2.7.13.

Data acquisition of cerebral CTP

Cerebral CTP was performed with 128-sprial CT scanner 
(Philips Healthcare, Amsterdam, Netherlands). Post-
processing of images was conducted through Philips 
IntelliSpace Portal software. We selected L, M4, M6, and 
M2 regions (corresponding to basal ganglia/thalamus, 
frontal, parietal, and temporal lobes, respectively)  
(Figure S4) according to the Alberta Stroke Programme 
Early CT (ASPECT) score (16). ROIs were segmented by 
two neuroradiologists independently. Cerebral blood flow 
(CBF), cerebral blood volume (CBV), time to peak (TTP), 
and MTT are commonly used parameters in CTP. Cremers 
et al. (17) showed that MTT (5–6.5 s) has good specificity 
and sensitivity for cerebral ischemia. Therefore, MTT was 
selected for further analysis. With additional reference to 
the previous literature (12,17-19), we considered MTT  
≥6 seconds as poor cerebral perfusion status, and vice versa.

Preprocessing and selection of radiomics features

In order to avoid the disaster of dimensionality caused 
by miscellaneous radiomics features, which may lead to 
overfitting of the prediction model and reduction of its 
generalization ability, we sequentially applied a series 
of feature engineering methods to reduce and screen 
the original radiomics features in our research, all of 
which were carried out by R (version 4.1.2, 20211101; R 
Foundation for Statistical Computing, Vienna, Austria) 
software. Inter-observer reproducibility was first assessed 
using intraclass correlation coefficients (ICCs) to retain 
stable features (20,21). Another junior neurosurgeon 
with 3 years’ experience, who was blinded to the clinical 
information, randomly selected 15 cases and conducted 
image segmentation and feature extraction abiding the 
same protocol. These data were merely used to calculate 
ICC and evaluate interobserver concordance. Features 
with ICC <0.9 were excluded. Ahead of formal feature 
selection, we performed some preprocessing procedures to 
standardize radiomics features. Z normalization was applied 
to unify the magnitude of different features, and therefore 
improve the comparability and repeatability of the data (22). 
Missing values were imputed using the K-nearest neighbors 
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algorithm, which is a widely used imputation technique that 
shows its robustness against parameter tuning and varying 
numbers of missing values. Then, we implemented Box-
Cox transform to solve data skewness and eliminate near-
zero variance features, that is, features with low frequencies 
of a few unique values (23,24). After that, we calculated the 
Spearman correlation of features. Features with Spearman 
correlation >0.9 were considered highly correlated and 
subsequently excluded. After the preprocessing steps, 
cases were randomly divided into a training set and test 
set according to the perfusion status at a ratio of 8:2. The 
least absolute shrinkage and selection operator (LASSO) 
regression algorithm was then used to further filter and 
select the radiomics features (25). The LASSO regression 
algorithm is a famous method that has been widely used 
to handle high-dimensional data in previous radiomics 
studies. By setting the parameter λ, the algorithm tends to 
shrink coefficients of features towards 0, which would make 
coefficients of redundant features become 0. The optimal 
λ value was selected according to the minimum error of  
10 times cross-verification. Radiomics features with non-
zero coefficients at the optimal λ value were chosen 
to construct the final radiomics signature. At last, we 
performed single-factor ROC analysis to explore the 
diagnostic ability of the radiomics signature. Feature 
selection and dimensionality reduction were carried out on 
the training set.

Performance evaluation of the prediction model

Two widely used supervised machine learning methods, 
support vector machine (SVM) and random forest (RF), 
were exploited to build classic and robust prediction 
models using a radiomics signature based on the training 
set. Model parameters were adjusted through 5 times 
repeated 10-fold cross-validation process on the training 

set. The performance of models was evaluated on the test 
set. Corresponding ROC curves were plotted and area 
under the curve (AUC) values were utilized as evaluation 
criteria. Youden indexes were also calculated and selected 
as threshold values, which were used to further calculate 
models’ confusion matrixes and performance metrics, 
such as accuracy, sensitivity, specificity, positive predictive 
value, and negative predictive value. Besides, waterfall 
plots were created to visualize models’ confusion matrixes 
on the training set and test set, respectively. Lift curves 
were also introduced in this study to assess the model’s 
ability to discover events in a binary classes data set. Brier 
score is calculated to comprehensively assess the predictive 
ability of the models. In order to further investigate the 
relationship between the expected value of model prediction 
and radiomics signature, we analyzed ceteris-paribus (CP) 
profiles and partial-dependence (PD) profiles of prediction 
model. PD was first introduced by Friedman et al. in 2000 
and has become increasingly popular in recent years (26).

Statistical analysis

The chi-square test and the Mann-Whitney test were 
performed to examine the differences between two groups 
for categoric and continuous variables, respectively. A  
P value <0.05 was considered statistically significant. All 
statistical analyses were implemented using R language 
software (version 4.1.2, 20211101) with the psych, glmnet, 
caret, tidyverse, pROC, and DALEX packages.

Results

Cohort demographic

A total of 68 cases, including 50 patients with MMD or 
MMS and 18 healthy controls, were enrolled in the final 
analysis, the demographic and clinical characteristics of the 
study population was shown in Table 1. A total of 98 DSA 
images were collected. Among them, there were 37 cases 
with bilateral DSA images, 10 cases with right-sided DSA 
images, and 14 cases with left-sided DSA images. As for 
perfusion status, high perfusion of the frontal lobe, temporal 
lobe, parietal lobe and basal ganglia/thalamus was detected 
in 28, 32, 20, and 51 cases, respectively. Low perfusion of 
the frontal lobe, temporal lobe, parietal lobe, and basal 
ganglia/thalamus was detected in 70, 66, 78, and 47 cases, 
respectively. The training sets and test sets included 79 and 
19 cases, respectively.

Table 1 Demographic and clinical characteristics of the study 
population

Characteristics
Healthy controls 

(N=18)
Patients (N=50) P value

Gender   0.410 

Male 7 (38.9) 27 (54.0) 

Female 11 (61.1) 23 (46.0) 

Age (years) 53.0 (44.8–57.0) 51.0 (46.0–55.8) 0.369 

Data are shown as n (%) or median (interquartile range).
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Features selection and dimensionality reduction

We extracted 93 radiomics features from each image. A 
total of 38 features were remaining after preprocessing 
procedures. LASSO regression was applied to further 
filter features (Figure 1). For the frontal lobe, temporal 
lobe, parietal lobe, and basal ganglia/thalamus, 4, 3, 3, and 
3 features were finally selected and used to construct a 
corresponding radiomics signature.

Single-factor ROC analysis

In order to investigate diagnostic ability of selected 
radiomics features, we performed single-factor ROC 
analysis on radiomics signatures from the frontal lobe, 
temporal lobe, parietal lobe, and basal ganglia/thalamus 
on the whole dataset (Figure 2). The result showed that 
the AUC values of selected features in all subgroups were 
greater than 0.7. For the frontal lobe, the AUCs of selected 
features were all above 0.9 (Figure 2A), and for the temporal 
lobe and parietal lobe, the AUCs were all greater than 0.8 
(Figure 2B,2C). Single-factor ROC analysis demonstrated 
good diagnostic ability of selected radiomics features.

Model establishment and evaluation

SVM and RF algorithm were utilized to establish prediction 
models based on the radiomics signature of the frontal lobe, 
temporal lobe, parietal lobe, and basal ganglia/thalamus. 
We plotted ROC curves and calculated corresponding AUC 
values and Youden indexes (Figure 3). AUC values were 
chosen as evaluation criteria to select the best prediction 
models. As for machine learning models, RF models had 
the best performance on the frontal lobe, parietal lobe, and 
basal ganglia/thalamus, whereas the SVM model performed 
the best on the temporal lobe. The AUC values of all final 
prediction models on the test set were greater than 0.9. For 
the frontal lobe and parietal lobe, RF models could perfectly 
distinguish all cases no matter on the training set or test 
set with AUC values of 1.000 [95% confidence interval 
(CI): 1.000–1.000], whereas for the temporal lobe and basal 
ganglia/thalamus, prediction models also had excellent 
prediction power on the test set with AUC values of 0.962 
(95% CI: 0.876–1.000) and 0.922 (95% CI: 0.797–1.000), 
respectively. In addition, the final prediction models were 
all built based on positive images of DSA. Arterial phase 
images were used for building prediction models on frontal 
lobe, parietal lobe, and temporal lobe, and capillary phase 

images for the basal ganglia/thalamus. We then chose the 
Youden indexes of models as threshold values to calculate 
corresponding confusion matrixes and performance 
metrics of models (Table 2). The final prediction models 
achieved a sensitivity of 100.0% and a specificity of 
100.0% on the frontal lobe and parietal lobe, respectively, 
and a sensitivity of 100.0%, 88.9% and specificity of 
83.3%, 90.0% on the temporal lobe and basal ganglia/
thalamus, respectively. In order to visualize the models’ 
performance and confusion matrixes, we created waterfall 
plots on the training set and test set in all subgroups 
(Figure 4). Lift curves, a tool to examine the number of 
samples detected by a model above a completely random 
selection of samples, were also created to assess the ability 
of a model to detect events in a data set with two classes  
(Figure 5). The Brier scores of the models are all below 0.25, 
which show high accuracy of probabilistic predictions of the 
models (Table 3). Our results described above showed that 
the final prediction models we built could nicely distinguish 
cases with high perfusion from those with low perfusion of 
different brain lobes on the data set (Tables S1-S5).

CP profiles and PD profiles analysis of prediction models

We conducted CP profiles and PD profiles analysis of 
the final prediction models and plotted corresponding 
diagrams (Figure 6). This analysis was performed by using 
all observations from the dataset for all subgroups. Grey 
lines were used to display CP profiles that represent each 
observation in data set. Blue lines on the left-side panel 
displayed PD profiles that were estimated by the mean of 
the CP profiles, whereas red lines and green lines on the 
right-side panel displayed PD profiles representing two 
classes. From the diagrams, we could see that PD profiles 
were parallel to most of corresponding CP profiles and had 
basically the same shape, which means that the selected 
features are mainly independent and have little interaction 
with each other. Besides, the PD profiles of two classes are 
clearly separated, which implies that the selected feature 
could differentiate two classes nicely. Our PD profiles 
analysis results show that the final prediction models built 
has good robustness and consistency.

Discussion

Key findings

In this study, we used 3D slicer software to extract radiomics 
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Figure 1 LASSO regression for feature selection, each row represents a different subgroup. (B,D,F,H) LASSO coefficient profiles for 
radiomics features from the frontal lobe (B), temporal lobe (D), parietal lobe (F), and basal ganglia/thalamus (H). Each line represents 
coefficients of a radiomics feature. (A,C,E,G) 10-fold cross-validation was performed to select tuning parameter (λ) by deviance for the 
frontal lobe (A), temporal lobe (C), parietal lobe (E), and basal ganglia/thalamus (G). LASSO, least absolute shrinkage and selection 
operator.
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features from the 2D DSA images of patients with MMD or 
MMS and obtained quantitative imaging parameters. These 
data were then analyzed with the patient’s CTP results and 
found to be good predictors of the outcome of CTP in 
patients with MMD or MMS.

Strengths and limitations

The use of radiomics analysis provided a quantitative and 
objective approach to assessing cerebrovascular disease, 
specifically MMD and MMS. The study utilized a software 
tool, 3D slicer, to extract radiomics features from 2D DSA 
images, which allowed for a comprehensive analysis of 
the images. The findings of this study have the potential 
to improve the diagnosis and prediction of outcomes in 
patients with MMD or MMS. However, the study had some 
limitations, such as selection bias due to the retrospective 

nature of the study and a relatively small sample size. A 
prospective multi-center cohort study with a larger sample 
size is needed to confirm the results of this study.

In this study, we selected a healthy control group. 
Our primary concern was that patients who were being 
considered for alternative diagnoses might produce 
unreliable results due to potential intracranial ischemia. 
This  could have s igni f icant  impl icat ions  for  the 
interpretation of our findings. Therefore, we decided to 
include a healthy control group to ensure the credibility of 
our results. We can better understand the characteristics 
of the patient population and confirm if the differences we 
observed are disease-related. The purpose of doing so is to 
provide more comprehensive and accurate research findings, 
which can serve as more reliable evidence for further 
clinical applications. In this way, we can better understand 
the contributions of different factors and provide more 
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Figure 3 ROC curves for predictive models with Youden index and corresponding specificity, sensitivity labelled on ROC curve. (A,B) RF 
model of frontal lobe on the training set (A) and test set (B). (C) SVM model of temporal lobe on training set and test set. (D) RF model of 
ganglia/thalamus on training set and test set. (E,F) RF model of parietal lobe on the training set (E) and test set (F). AUC, area under the 
ROC curve; ROC, receiver operating characteristic; RF, random forest; SVM, support vector machine.



Cardiovascular Diagnosis and Therapy, Vol 13, No 5 October 2023 887

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2023;13(5):879-892 | https://dx.doi.org/10.21037/cdt-23-151

Table 2 Performance metrics of prediction models

Group Subset AUC (95% CI) Accuracy (95% CI) Kappa (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training 
set

Frontal 1.000 (1.000–1.000) 1.000 (0.954–1.000) 100.00 100.00 100.00 100.00 100.00

Temporal 0.936 (0.873–1.000) 0.873 (0.780–0.938) 73.42 83.02 96.15 97.78 73.53

Parietal 1.000 (1.000 –1.000) 1.000 (0.954–1.000) 100.00 100.00 100.00 100.00 100.00

Thalamus 1.000 (1.000 –1.000) 1.000 (0.954–1.000) 100.00 100.00 100.00 100.00 100.00

Test set Frontal 1.000 (1.000–1.000) 1.000 (0.824–1.000) 100.00 100.00 100.00 100.00 100.00

Temporal 0.962 (0.876–1.000) 0.947 (0.740–0.999) 87.25 100.00 83.33 92.86 100.00

Parietal 1.000 (1.000–1.000) 1.000 (0.824–1.000) 100.00 100.00 100.00 100.00 100.00

Thalamus 0.922 (0.797–1.000) 0.895 (0.669–0.987) 78.89 88.89 90.00 88.89 90.00

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

effective strategies.

Comparison with similar research

DSA has long been the gold standard in the diagnosis of 
cerebrovascular disease. For the diagnosis of MMD, DSA 
results still rely on the subjective judgment of physicians 
to assess the vascularity of smoke-like changes at the skull 
base and the staging of MMD, but the information of DSA 
images obtained by the naked eye alone are still limited. 
The physician is unable to predict the outcome of the 
patient’s cerebral perfusion by visualizing and analyzing the 
anatomical structures in the traditional way.

During the 1980s, researchers started exploring the 
selection of textural characteristics in medical images for the 
purpose of identifying clusters of microcalcifications in lung 
nodules (5,27). With the rapid development of computer 
science and artificial intelligence, the development of 
quantitative feature mining and extraction of medical 
images has been further promoted, and medical images have 
been transformed into quantitative data for analysis, thus 
radiomics was born. The research of radiomics has been 
fruitful in the field of oncology, such as lung cancer (28),  
liver cancer (29), and glioma (30,31). In the area of 
cerebrovascular diseases, the use of radiomics to analyze 
cerebral hemorrhage, stroke, and cerebral aneurysm has 
also been reported in the literature (8,9,32,33), but in the 
area of MMD, it has not been reported much.

Explanations of findings

Since angiography results are dynamic continuous imaging 
data, the images in the arterial and capillary phases are 

distinctly different. We select the static 2D images in the 
arterial phase and capillary phase for image feature extraction 
separately. From the results, it can be ascertained whether the 
images are positive images or negative images, and whether 
the images are in the arterial phase or capillary phase; they 
can well predict the results of MTT in CTP results. MTT is 
the ratio of CBV to CBF, and is the most reproducible CTP 
parameter in patients with unilateral symptomatic carotid 
artery stenosis (34). For the various values measured in CTP 
imaging (e.g., CBF, CBV, and TTP), the MTT has been 
established as the surrogate parameter for changes in the 
microvasculature perfusion (35). MTT was found to have a 
large role in assessing the ischemic status of patients with 
aneurysmal subarachnoid hemorrhage (35). Therefore, we 
chose MTT as the primary parameter of CTP.

We selected the ROI of CTP for analysis according to 
the ASPECT score, such as the frontal, temporal, parietal, 
and basal ganglia/thalamic regions. Our research suggested 
that features extracted from the angiography images can 
predict the CTP results by either RF or SVM, especially 
with better performance for the frontal and parietal lobes.

This may be because the frontal and parietal lobe sites are 
in the location of the small distal branches of the anterior or 
MCA. The proximal MCA is occluded or severely stenosed 
due to MMD, resulting in insufficient blood supply to the 
small distal branches of the MCA. In contrast, the blood 
supply to the temporal lobe and basal ganglia region is 
compensated to some extent by the proliferating small 
vessel which is the reason of smoke-like vessel, so the brain 
tissue in this area is slightly better perfused than that in the 
parietal and frontal lobes. This might be the reason that 
prediction models had superior capability in predicting 
cerebral perfusion of parietal and frontal lobes.
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Figure 4 Waterfall plots for training set and test set. (A,B) RF model of frontal lobe on training set (A) and test set (B). (C,D) SVM model 
of temporal lobe on training set (C) and test set (D). (E,F) RF model of parietal lobe on training set (E) and test set (F). (G,H) RF model of 
basal ganglia/thalamus on training set (G) and test set (H). Threshold values were selected as baseline of x-axis. Cases with prediction values 
over threshold were classified as high MTT (upward bars), vice versa. True classes of cases were labelled as red (high MTT) or green (low 
MTT). RF, random forest; SVM, support vector machine; MTT, mean transit time.
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Figure 5 The lift charts on test set demonstrated prediction models of subgroups. (A) Frontal lobe, (B) temporal lobe, (C) parietal lobe, (D) 
basal ganglia/thalamus. Each line shows the percentage of samples found when given percent of samples tested.

Implications and actions needed

The findings of this study highlight the potential of 

radiomics analysis in improving the diagnosis and prediction 

of outcomes in patients with MMD or MMS. Further 
research is needed to validate the results of this study in 
a prospective multi-center cohort with a larger sample 
size. The implementation of radiomics analysis in clinical 
practice may require the development of standardized 
protocols and algorithms for image feature extraction and 
analysis. Radiologists and clinicians should be aware of the 
potential benefits of radiomics analysis in cerebrovascular 
diseases and consider incorporating it into their diagnostic 
and treatment decision-making processes.

Conclusions

Prediction models based on radiomics features extracted 

Table 3 Brier scores of prediction models

Prediction models Brier score

RF for basal ganglia/thalamus 0.058

SVM for temporal lobe 0.094

RF for parietal lobe 0.024

RF for frontal lobe 0.015

SVM, support vector machine; RF, random forest.
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Figure 6 Partial-dependence profiles for prediction models of subgroups. (A,B) Frontal lobe, (C,D) temporal lobe, (E,F) parietal lobe, (G,H) 
basal ganglia/thalamus. Grey lines are ceteris-paribus profiles, blue line is partial-dependence profiles for the whole dataset. Red line and 
green line are partial-dependence profiles that represent 2 classes. The X-axis represents feature value.
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from DSA images demonstrate excellent performance in 
predicting MTT of CTP in patients with MMD or MMS, 
which may provide help in future clinical practice.
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