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Background. Lung squamous cell carcinoma (LUSC) is a subtype of highly malignant lung cancer with poor prognosis, for which
smoking is the main risk factor. However, the underlying genetic and molecular mechanisms of smoking-related LUSC remain
largely unknown. Methods. We mined existing LUSC-related mRNA, miRNA, and lncRNA transcriptome data and
corresponding clinical data from The Cancer Genome Atlas (TCGA) database and divided them into smoking and
nonsmoking groups, followed by differential expression analysis. Functional enrichment analysis of the unique differentially
expressed mRNAs of the two groups was performed using the DAVID database. Subsequently, the lncRNA-miRNA-mRNA
competing endogenous RNA (ceRNA) network of LUSC in smoking and nonsmoking groups was constructed. Finally, survival
analyses were performed to determine the effects of differentially expressed lncRNAs/mRNAs/miRNAs that were involved in
the ceRNA network on overall survival and to discover the hub genes. Results. A total of 1696 lncRNAs, 125 miRNAs, and
3246 mRNAs and 1784 lncRNAs, 96 miRNAs, and 3229 mRNAs with differentially expressed profiles were identified in the
smoking and nonsmoking groups, respectively. The ceRNA network and survival analysis revealed four lncRNAs (LINC00466,
DLX6-AS1, LINC00261, and AGBL1), one miRNA (hsa-mir-210), and two mRNAs (CITED2 and ENPP4), with the potential
as biomarkers for smoking-related LUSC diagnosis and prognosis. Conclusion. Taken together, our research has identified the
differences in the ceRNA regulatory networks between smoking and nonsmoking LUSC, which could lay the foundation for
future clinical research.

1. Introduction

Lung cancer accounts for the highest incidence of all malig-
nant tumors and is the leading cause of cancer-related death
worldwide [1]. It is a disease that poses great health and life
threat to the population. Lung squamous cell carcinoma

(LUSC) is the main histological subtype accounting for
30%-51% of lung cancer cases [2]. The cause is still not
completely clear. A large amount of data indicates that smok-
ing is the main factor influencing the risk of lung cancer, with
90% of these cases and 80% of lung cancer deaths attributed
to cigarette smoking [3–5].
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Cigarette smoke contains more than 5000 chemicals
and over 60 carcinogens. The major carcinogens include
nicotine-derived nitrosamine ketone (NNK) and polycyclic
aromatic hydrocarbons (PAH), which can induce lung can-
cer formation in fully immune laboratory animals [6, 7].
The effect of smoking on lung cancer is not only related to
genetic mutations but also leads to insensitive EGFR tyrosine
kinase inhibitor (TKIs) and poor progression-free survival
[8, 9]. In the past few years, researchers have attempted to
provide novel insights into the molecular mechanisms of
LUSC. However, the underlying molecular mechanism
remains unclear. Therefore, it is imperative to find out how
smoking-related carcinogens alter the intracellular signaling
pathways and gene mechanisms in LUSC.

Only 2% of the human transcriptome is composed of
protein-encoding RNAs, and the remaining 98% are noncod-
ing RNAs. Recently, there has been increasing evidence that
many noncoding RNAs are major regulators of target gene
expression levels [10, 11]. Among them, although long non-
coding RNAs (lncRNA) have little or no protein coding abil-
ity, they play an important role in many biological processes
such as transcription, splicing, and translation and have the
potential to be used as a biomarker for diagnosis and progno-
sis [12, 13]. In 2011, Prof. Pandolfi proposed the hypothesis
of competing endogenous RNAs (ceRNAs) [14]. Subse-
quently, a large number of studies confirmed that ceRNA
could regulate human cells [15, 16]. Messenger RNA
(mRNA) and lncRNA share one or more miRNA response
elements (MREs) and may act as natural microRNA
(miRNA) sponges that lead to the downregulation of the
intracellular miRNA function [17]. Studies have found that
various types of RNAs, such as mRNA, pseudogenes,
lncRNA, circular RNA, and miRNA, can communicate with
each other through the ceRNA mechanisms, thereby regulat-
ing various tumor cells and their microenvironment and
affecting tumor proliferation and migration [18]. Therefore,
an imbalance in the ceRNA network may lead to the patho-
genesis of the disease.

Recent studies have indicated that HMGA2 and
LINC00858 function as ceRNA to promote lung cancer pro-
gression and MTAT rs1061451 was a protective factor of
non-small-cell lung cancer (NSCLC) [19–21]. miRNA
expression is heterogeneous in NSCLC patients in the smok-
ing state. miR-574-5p, miR-874, and miR-361-3p dysregula-
tion was associated with metastasis of non-small-cell lung
cancer (NSCLC) [22, 23]. miR-21 and miR-10a could be used
as predictive markers for overall survival and disease-free
progression of lung cancer patients [24]. However, the differ-
ences between the complex RNA mechanisms among smok-
ing and nonsmoking LUSC patients have not been fully
explored, highlighting the importance of studying the ceRNA
networks for smoking-related LUSC.

In the present study, we obtained the LUSC-related
mRNA, miRNA, and lncRNA transcriptome data and the
corresponding clinical data from The Cancer Genome Atlas
(TCGA) database. It was divided into two groups based on
smoking. In the next step, the differentially expressed
lncRNA, miRNAs, and mRNA were analyzed. Based on a
composite profile of the data from these three RNAs, we con-

structed a ceRNA coexpression network of LUSC. To the best
of our knowledge, this is the first study to investigate the
smoking-related LUSC ceRNA network. Finally, we found
that some RNAs were closely related to smoking in patients
with LUSC. The results of this study help elaborate the
underlying mechanisms in LUSC through ceRNA networks,
identify potential therapeutic and prognostic target genes,
and provide new directions for future research.

2. Materials and Methods

2.1. Patient Datasets and Data Preprocessing. Sequencing
data of the three types of RNAs in lung squamous cell carci-
noma and adjacent noncancerous tissues and their corre-
sponding clinical data was obtained from The Cancer
Genome Atlas (TCGA) database. Integration of this RNA
data and extraction of the lncRNA expression profiles was
done using the R bioconductor package TCGABiolinks
[25]. Genes were annotated using the Ensembl online data-
base (http://www.ensembl.org). Based on the clinical data,
we divided the samples into two groups, smoking and non-
smoking. Finally, we obtained lncRNA, miRNA, and mRNA
expression profiles of the two groups. This study was in com-
pliance with the publication guidelines provided by TCGA,
and the data obtained from TCGA did not require approval
from the ethics committee.

2.2. Differential Expression Analysis. We utilized the R Bio-
conductor package edgeR to identify the differentially
expressed lncRNAs (DElncRNA), miRNAs (DEmiRNA),
and mRNAs (DEmRNA) [26]. Filtering criteria for the differ-
ential expression of these three RNAs in the smoking and
nonsmoking groups were as follows. (1) At least 25% of the
samples have a gene expression raw count level greater than
2. (2) The original RNA sequencing was normalized using
the trimmed mean of M-values (TMM) method. (3) Thresh-
olds of ∣log2 fold change∣ > 2 and false discovery rate (FDR)
or adjusted P value < 0.01. We visualized the corresponding
heat map and clustering results using gplots package in R.

2.3. Functional Enrichment Analysis. In order to annotate the
different underlying biological processes of dysregulated
mRNAs in the smoking group, compared to the nonsmoking
group, we removed the DEmRNAs that were common in
both groups. The Integrate Discovery Database (DAVID
6.8) (https://david.abcc.ncifcrf.gov/) [27] was used to per-
form Gene Ontology.

GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed for the remaining
dysregulated genes. The adjusted P value of less than 0.05
was considered meaningful. Ggplot2 and GOplot R packages
were used to visualize the results [28].

2.4. ceRNA Network Construction. We constructed a ceRNA
network in accordance with the theory that lncRNA can
affect miRNAs and further regulate mRNA expression by
acting as a miRNA sponge. First, we decoded the miRNA
sequences by using the starBase v2.0 database (http://
starbase.sysu.edu.cn) [29] and successfully paired DEmiR-
NAs 3p or 5p transcript information. The miRcode database
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(http://www.mircode.org) [30] and DIANA-LncBase v2 [31]
were used to construct lncRNA-miRNA interaction pairs.
miRDB (http://www.mirdb.org/) [32], miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw/) [33], and TargetScan (http://
www.targetscan.org/) [34] were used to predict target genes
of the DEmiRNAs and establish miRNA-mRNA interaction
pairs. To increase the reliability of the results, only genes
present in all three databases were regarded as target genes
of these DEmiRNAs. To compare the target genes with
DEmRNAs, we used the Venny online website, and only
the overlapping portions of the genes and their interaction
pairs were further analyzed. Then, based on the lncRNA-
miRNA pairs and miRNA-mRNA pairs, we established the
lncRNA-miRNA-mRNA ceRNA network, and the results of
the smoking and nonsmoking groups were visualized using
the Cytoscape v3.6.1 software [35]. Finally, the top analysis
was performed by using the APP CentiScaPe [36], and the
hub genes were selected from the ceRNA network with a
degree of ≥5 as standard.

2.5. Overall Survival Analysis. To determine the relationship
between prognosis and differentially expressed RNA signa-
tures, we divided the LUSC samples into two groups: high
or low, based on tumor expression data for each type of
RNA in the ceRNA network. Survival analysis was performed
using a standard Kaplan–Meier univariate curve with the
“survival” package in R3.3.2. P values < 0.05 were considered
statistically significant.

3. Results

3.1. Patient Characteristics and Differentially Expressed
RNAs. The LUSC transcriptome profiling data and the cor-
responding clinical information were obtained using R bio-
conductor package TCGABiolinks. A total of 551 gene
expression quantification data, which included 245 smok-
ing samples and 306 nonsmoking samples, and 523 miRNA
expression quantification data, which included 229 smok-
ing samples and 294 nonsmoking samples, were used for
this study. Using the edgeR package of R, with the cut-off
criteria of ∣ log 2FC∣ > 2 and FDR < 0:01, we identified
1324 upregulated lncRNAs, 372 downregulated lncRNAs,
100 upregulated miRNAs, 25 downregulated miRNAs, 2179
upregulated mRNAs, and 1067 downregulated mRNAs in
the smoking group (Supplementary Tables 1–3). 1345
upregulated lncRNAs, 403 downregulated lncRNAs, 72
upregulated miRNAs, 26 downregulated miRNAs, 2026
upregulated mRNAs, and 1203 downregulated mRNAs were
identified in the nonsmoking group (Supplementary
Tables 4–6). Heat maps and volcano plots of the differences
between lncRNA, miRNA, and mRNA expression among
the smoking and nonsmoking groups are shown in Figures 1
and 2.

3.2. GO and KEGG Pathway Analysis. In order to enhance
our understanding of the functions of DEmRNAs between
the smoking and nonsmoking groups, we removed the
DEmRNAs common in both groups. As a result, 423 DEmR-
NAs in the smoking group and 406 DEmRNAs in the non-

smoking group were included in the functional enrichment
analysis. The results showed unique GO terms in the smok-
ing LUSC group. Biological process (BP) mainly included cell
differentiation, phagocytosis, recognition, immune response,
complement activation, and classical pathway; cell compo-
nents (CC) mainly included extracellular region, immuno-
globulin complex, circulating, plasma membrane, and cell
junction; and molecular functions (MF) mainly included
antigen binding, immunoglobulin receptor binding, endo-
peptidase inhibitor activity, and growth factor activity. In
the nonsmoking LUSC group, BP mainly included cell-cell
signaling, cellular response to tumor necrosis factor, cellular
response to interleukin-1, and drug metabolic process; CC
mainly included integral component of membrane, extracel-
lular space, integral component of plasma membrane, and
plasma membrane; and MF mainly included calcium ion
binding, carbohydrate, polysaccharide, and CCR chemokine
receptor binding, and steroid hydroxylase activity. All GO
analysis results are shown in Figure 3. Additionally, in terms
of KEGG pathway analysis, the smoking group included
unique pathways like neuroactive ligand-receptor interac-
tion, serotonergic synapse, and cocaine addiction. However,
the important cancer pathways in the nonsmoking group
were enriched in the following pathways: retinol, ether lipid,
and linoleic acid metabolism, cytokine-cytokine receptor
interaction, steroid hormone biosynthesis, and thyroid hor-
mone synthesis. The specific results of KEGG analysis are
shown in Figure 4.

3.3. Construction of ceRNA Network in LUSC. The ceRNA
network graph was constructed based on the lncRNA-
miRNA pairs and miRNA-mRNA pairs and visualized using
Cytoscape v3.6.1 (Figures 5 and 6). There were 131 common
RNAs (102 lncRNAs, 10 miRNAs, and 19 mRNAs) in the
ceRNA network. The smoking group consisted of 120
lncRNAs, 13 miRNAs, and 30 mRNAs, a total of 163 nodes
and 433 edges, and the nonsmoking group consisted of 128
lncRNAs, 10 miRNAs, and 23 mRNAs, a total of 161 nodes
and 348 edges. Node connections in the network can reflect
the interaction between RNAs, and the stronger the connec-
tivity, the more the importance of biological functions of this
RNA in the network. Therefore, hub RNAs were defined as
having a degree ≥ 5 by using topology analysis, and these
hub RNAs were used for further analysis. The top three
hub RNAs were hsa-miR-338, hsa-miR-182, and hsa-miR-
205 in the smoking group and hsa-miR-338, hsa-miR-205,
and hsa-miR-96 in the nonsmoking group.

3.4. Survival Analysis of Smoking- and Nonsmoking-Related
RNAs in LUSC. After topological analysis of the ceRNA net-
work, we performed a survival analysis on the selected hub
RNAs. As shown in Figure 7, two DElncRNAs of high
expression levels (LINC00466, DLX6-AS1), two DElncRNAs
of low expression levels (LINC00261, AGBL1), two DEmR-
NAs of low expression levels (CITED2, ENPP4), and one
upregulated DEmiRNA (hsa-miR-210) were significantly
related to the survival of LUSC in the smoking group
(P < 0:05). ceRNA theory argues that lncRNA can competi-
tively bind to miRNA and regulate its downstream target
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genes; based on this hypothesis, we inferred that LINC00261
and AGBL13 may serve as ceRNAs of CITED2 and all
of them were predicted to interact with hsa-miR-182.
LINC00466 and AGBL1 may serve as ceRNAs of ENPP4,
and all of them were predicted to interact with hsa-miR-
205. In the nonsmoking group, we only found one DEmRNA
(PRDM16) and four DElncRNAs (AC002511.1, MAGI2-
AS3, MYO16-AS1, and UCA1) that are closely related to
the survival of LUSC with a P value < 0.05. Unfortunately,
we did not find a ceRNA regulatory axis associated with the
nonsmoking groups. In addition, compared to the nonsmok-
ing group, all seven prognostic-related RNAs in the smoking
group were unique.

4. Discussion

Lung cancer is the leading cause of cancer-related deaths
worldwide, and the overall five-year survival rate is still

not more than 15% [37]. Lung squamous cell carcinoma
(LUSC) is the second most common type of lung cancer
with a wide range of genomic features, and its occurrence
is closely related to smoking [38–40]. Therefore, under-
standing the effect of smoking is critical to the intrinsic
genetic susceptibility of LUSC. High-throughput sequencing
and bioinformatics can help us screen the entire DNA
mutation profile in order to understand the origins and
characteristics of LUSC. The ceRNA hypothesis provides a
deeper understanding of the mechanism of tumorigenesis
and provides important new clues and new guiding theories
to direct the research of tumor diagnosis and treatment.
However, many of the specific genetic alterations, especially
associated with the mechanisms of smoking-induced patho-
genesis in LUSC, remain unknown. Hence, looking for
available biomarkers and finding better therapeutic targets
for smoking-related LUSC are essential for improving its
prognosis in patients.
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Figure 1: Clustered heat maps of the differentially expressed RNAs in LUSC. The rows represent RNAs and columns represent the samples;
∣ log 2FC∣ > 2, FDR < 0:01. (a–c) Differentially expressed lncRNAs, miRNAs, and mRNAs in smoking LUSC. (d–f) Differentially expressed
lncRNAs, miRNAs, and mRNAs in nonsmoking LUSC. FC: fold change; FDR: false discovery rate; LUSC: lung squamous cell carcinoma;
lncRNAs: long noncoding RNAs; miRNAs: microRNAs; mRNAs: messenger RNAs.
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In our study, we divided the LUSC data obtained from
TCGA into the smoking and nonsmoking groups. Through
differential expression analysis, a total of 1696 DElncRNAs,
125 DEmiRNAs, and 3246 DEmRNAs in the smoking group
and 1784 DElncRNAs, 96 DEmiRNAs, and 3229 DEmRNAs
in the nonsmoking group were identified. The results
showed that the smoking group had stronger heterogeneity
than the nonsmoking group. The functional enrichment
analysis consisted 423 unique DEmRNAs in the smoking
group and 406 unique DEmRNAs in the nonsmoking group.
The DEmRNA-related GO analysis revealed that smoking

could promote cell differentiation, phagocytosis, recognition,
immune response, and antigen binding. Compared to the
nonsmoking group, the pathway analysis demonstrated that
there were four unique pathways in the smoking group,
neuroactive ligand-receptor interaction, alcoholism, seroto-
nergic synapse, and cocaine addiction. Therefore, our
enrichment results might suggest that smoking plays an
important role in LUSC via those pathways. Studies have
shown that smokers have increased hypothalamic activity
after intravenous injections of nicotine and characteristics
of the hypothalamus associated with drug addiction [41,
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Figure 2: Volcano plot of differentially expressed RNAs in LUSC; ∣ log 2FC∣ > 2, FDR < 0:01. (a–c) Differentially expressed lncRNAs,
miRNAs, and mRNAs in smoking LUSC. (d–f) Differentially expressed lncRNAs, miRNAs, and mRNAs in nonsmoking LUSC. The red
dot represents upregulated RNAs and green dot represents downregulated RNAs.
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Figure 3: GO analysis of unique differentially expressed mRNAs (DEmRNAs) in smoking and nonsmoking LUSC. (a) Unique DEmRNA
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Figure 5: ceRNA networks of smoking LUSC. Red represents upregulation, and blue represents downregulation. lncRNAs, miRNAs, and
mRNAs in the networks are represented as diamonds, round rectangles, and circles, respectively.

Figure 6: ceRNA networks of nonsmoking LUSC. Red represents upregulation, and blue represents downregulation. lncRNAs, miRNAs, and
mRNAs in the networks are represented as diamonds, round rectangles, and circles, respectively.
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Figure 7: Continued.
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42]. Importantly, the extent of hypothalamic activation was
significantly correlated with cocaine addiction severity [43],
suggesting that cocaine addiction is an important pathway
in smoking LUSC patients. Furthermore, neuroactive
ligand-receptor interaction pathway in vivo could induce
the dysregulation of miRNAs [44]. These studies indicate
that smoking could directly or indirectly affect LUSC.

Studies indicate that lncRNA has important biological
functions in regulating gene expression at different levels
such as epigenetic levels, transcriptional regulation, and post-
transcriptional regulation [12, 45]. Abnormally expressed
lncRNAs can play an important role in tumor suppressor
or oncogenes, in tumorigenesis and development of lung
cancer, breast cancer, and prostate cancer [46–48]. lncRNA
can regulate mRNA expression as ceRNA. According to the
ceRNA network and overall survival analysis, a total of 4
lncRNAs and 2 mRNAs were identified as biomarkers of
the smoking-related LUSC. LINC00466, AGBL1, CITED2,
and ENPP4 were negatively related to overall survival,
and LINC00261 and DLX6-AS1were positively related to
overall survival. Interestingly, our analysis confirmed that
LINC00261andAGBL1mayserveashsa-miR-182.LINC00466
and AGBL13 may serve as hsa-miR-205 sponges to modulate
CITED2ENPP4. So far, LINC00261, LINC00466, andAGBL13
had not been reported in any of the related studies. How-
ever, previous studies have shown that DLX6-AS1 was
highly expressed in gastric cancer and lung adenocarcinoma
[49, 50], which is consistent with our findings. In our study,
we found that DLX6-AS1 had a good prognosis in LUSC
and was significantly associated with smoking. Additionally,
we also found that the two oncogenes CITED2 and ENPP4
were highly related to the prognosis of smoking-related
LUSC. Numerous studies have shown that CITED2 can pro-
mote cancer metastasis, cell proliferation, and apoptosis and
participate in the regulation of various transcriptional
responses [51–53]. ENPP4 is a BCG-activated tumoricidal
macrophage protein that can indirectly or directly contact

receptors such as ATP receptors or insulin receptors on
the surface of tumor cells and also destroy the release of
tumor cells [54, 55]. Finally, we believe that our study is
the first to find that CITED2 and ENPP4 could be prognos-
tic biomarkers for smoking-related LUSC.

ceRNAs can competitively bind to microRNA response
elements (MREs), revealing that miRNAs are at the center
of ceRNA networks. It has been reported that dysregulated
miRNAs play various roles in initiation, progression, inva-
siveness, and metastasis of tumors [56]. In the smoking
ceRNA network, we found that hsa-miR-338, hsa-miR-
182, and hsa-miR-205 were the top three RNAs with wide
range of connections. More importantly, comparative anal-
ysis of the two groups of ceRNA network showed only
three unique DEmiRNAs (hsa-miR-140, hsa-miR-193b,
and hsa-miR-182) in the smoking group. Considering its
unique role in the smoking ceRNA network, we conclude
that the upregulated miRNA hsa-miR-182 plays an impor-
tant role in smoking-related LUSC. Studies have confirmed
that miR182 is highly expressed in melanoma, colon can-
cer, and lung cancer and can promote cell migration and
invasion by inhibiting FOXO3 and MITF [57–59]. More-
over, survival analysis demonstrated that upregulated hsa-
miR-210 could prolong patient survival time. Upregulation
of miR-210 induced by a hypoxic microenvironment has
been found to be a biomarker for many cancers such as
breast cancer, clear cell renal cell carcinoma, and non-
small-cell lung cancer [60–62]. Our study revealed the dif-
ference between smoking and nonsmoking ceRNA and
identified specific prognostic biomarkers for smoking-
related LUSC.

TCGA is a large-scale sequence database, which can be
used to perform comprehensive multidimensional analysis.
We constructed a ceRNA network using a large amount of
data in TCGA; however, the interactions in this network
are complex. Therefore, further research is needed to confirm
the current findings.
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Figure 7: Overall survival analysis of RNAs in the ceRNA network of smoking LUSC; P < 0:05. (a–d) DElncRNAs; (e, f) DEmRNAs; (g)
DEmiRNA. Horizontal axis is OS time (years) and vertical axis stands for survival function.
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5. Conclusion

In conclusion, we have identified the differences in the
ceRNA regulatory networks between smoking and nonsmok-
ing LUSC. Seven specific ceRNAs (LINC00466, DLX6-AS1,
LINC00261, AGBL1, CITED2, ENPP4, and hsa-miR-210)
associated with smoking-related LUSC prognosis that could
be potential biomarkers for smoking-related LUSC diagnosis
and prognosis were identified. Our research will contribute in
further understanding the pathogenesis of LUSC and lay the
foundation for future clinical research.
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