
Journal of Vision (2022) 22(7):6, 1–19 1

Identifying specular highlights: Insights from deep learning

Eugen Prokott
Department of Experimental Psychology,

Justus-Liebig-University Giessen, Giessen, Germany

Roland W. Fleming

Department of Experimental Psychology,
Justus-Liebig-University Giessen, Giessen, Germany

Center for Mind, Brain and Behavior,
University of Marburg and Justus-Liebig-University

Giessen, Giessen, Germany

Specular highlights are the most important image
feature for surface gloss perception. Yet, recognizing
whether a bright patch in an image is due to specular
reflection or some other cause (e.g., texture marking) is
challenging, and it remains unclear how the visual
system reliably identifies highlights. There is currently
no image-computable model that emulates human
highlight identification, so here we sought to develop a
neural network that reproduces observers’ characteristic
successes and failures. We rendered 179,085 images of
glossy, undulating, textured surfaces. Given such images
as input, a feedforward convolutional neural network
was trained to output an image containing only the
specular reflectance component. Participants viewed
such images and reported whether or not specific pixels
were highlights. The queried pixels were carefully
selected to distinguish between ground truth and a
simple thresholding of image intensity. The neural
network outperformed the simple thresholding
model—and ground truth—at predicting human
responses. We then used a genetic algorithm to
selectively delete connections within the neural network
to identify variants of the network that approximated
human judgments even more closely. The best resulting
network shared 68% of the variance with human
judgments—more than the unpruned network. As a first
step toward interpreting the network, we then used
representational similarity analysis to compare its inner
representations to a wide variety of hand-engineered
image features. We find that the network learns
representations that are similar not only to directly
image-computable predictors but also to more complex
predictors such as intrinsic or geometric factors, as well
as some indications of photo-geometrical constraints
learned by the network. However, our network fails to
replicate human response patterns to violations of
photo-geometric constraints (rotated highlights) as
described by other authors.

Introduction

Humans easily perceive and distinguish materials
visually. One important optical aspect of materials
is glossiness. It is useful in determining whether a
piece of food is fresh, whether the floor is slippery, or
whether a surface is clean or greasy. Arguably the most
important image feature for gloss perception is the
presence of highlights (Beck & Prazdny, 1981; Fleming,
2012; Marlow, Kim, & Anderson, 2012)—direct
reflections of light sources or other bright elements in
the environment.

The exact computations underlying human
perception of highlights and gloss remain poorly
understood. Factors other than the physical reflectance
properties of a material itself, such as shape or
illumination, can impact perceived gloss (Doerschner,
Boyaci, & Maloney, 2010; Fleming, 2012; Fleming,
Dror, & Adelson, 2003; Ho, Landy, & Maloney, 2008;
Olkkonen & Brainard, 2011; Wijntjes & Pont, 2010).
This has been taken to indicate that the human visual
system does not accurately estimate the physical
reflectance of surfaces but rather arrives at a subjective
impression of gloss through the use of heuristics, in
which properties of highlights, such as shape, contrast
and size play an important role (Fleming, 2012; Marlow
et al., 2012). The importance of highlights is well
known (Beck & Prazdny, 1981; Todd, Norman, &
Mingolla, 2004), but it remains unclear what exact
computations the visual system uses to recognize
highlights—that is, to distinguish specular highlights
from other bright patches in the image, such as texture
markings. The perception of materials and glossiness is
typically associated with mid-level vision (Anderson,
2011; Fleming, 2014; Komatsu & Goda, 2018) in which
low-level image features such as edge orientation,
color, brightness and gradients, or scale are pooled and
compared to arrive at surface representations. Several
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studies have shown the importance of three-dimensional
(3D) surface representations and the need for specular
highlights to be congruent with surface geometry
and shading patterns to elicit a perception of gloss
(Anderson & Kim, 2009; Beck & Prazdny, 1981; Kim
& Anderson, 2010; Kim, Marlow, & Anderson, 2011;
Marlow, Kim, & Anderson, 2011; Todd et al., 2004).
Anderson and Kim (2009) showed that images in which
the highlight component has been rotated with respect
to the matte component are less likely to be perceived
as glossy. Marlow, Todorović, and Anderson (2015)
and Marlow and Anderson (2015) demonstrated how
identical image gradients can be interpreted as blurry
highlights on a glossy surface or shading on a matte
surface depending on perceived 3D surface structure.
Yet, despite progress in determining many of the factors
that influence the identification and interpretation of
highlights, there is still no image-computable model
that emulates human judgments.

To address this need, in this study we took a big data
approach to modeling highlight perception. Specifically,
we sought to develop a model that distinguishes
whether bright markings in images of surfaces appear
as highlights rather than texture or some other
non-highlight feature. We used machine learning as a
method that allows us to train a model on thousands of
images with random variations in geometry, texture,
and illumination to capture those features that are
useful for identifying highlights over a wide range of
surfaces and appearances.

This is essentially an “intrinsic image decomposition”
task—a well-known problem in the computer vision
literature that has been studied since the late 1970s
(Barrow & Tenenbaum, 1978; for a recent review,
see Bonneel, Kovacs, Paris, & Bala, 2017). Most
computational models on highlight detection, however,
focus on removing highlights, as they interfere
with identifying other intrinsic components such as
shading or surface reflectance. Here, we focus not
on a full decomposition into intrinsic components
but specifically on isolating the specular component
of images. Importantly, rather than solving the
engineering goal of identifying highlights as accurately
as possible, we focus on reproducing the pattern of
behavior that humans exhibit— both successes and
failures.

Previous work comparing convolutional neural
networks (CNNs) to humans has shown both striking
similarities (Gomez-Villa, Martin, Vazquez-Corral,
& Bertalmio, 2018; Ward, 2019; Watanabe, Kitaoka,
Sakamoto, Yasugi, & Tanaka, 2018) and also
discrepancies where CNNs react very differently from
humans to slight changes in a stimulus (Kurakin,
Goodfellow, & Bengio, 2019; Nguyen, Yosinski, &
Clune, 2015; Sharif, Bhagavatula, Bauer, & Reiter, 2016;
Szegedy et al., 2014), show different generalization
behavior to humans (Nguyen et al., 2015), or have

difficulties solving visual tasks that are very simple
for humans (Stabinger, Rodríguez-Sánchez, & Piater,
2016). Networks are often susceptible to being fooled
by specific small changes that are almost imperceptible
to humans called adversarial attacks (Szegedy et al.,
2014), and the performance of a CNN often decreases
catastrophically when confronted with degraded
stimuli (Geirhos, Temme, Rauber, Schütt, Bethge,
& Wichmann, 2018), unlike humans. In addition to
picking up on pixel artifacts, there are also reports of
CNNs learning different cues and mechanisms than
humans. For example, CNNs have been found to make
different use of scene context than human observers,
outperforming humans in recognizing objects from
their backgrounds only (Zhu, Xie, & Yuille, 2017).
Geirhos, Rubisch, Michaelis, Bethge, Wichmann,
and Brendel (2018) found that CNNs trained on the
ImageNet classification task (Russakovsky et al., 2015)
tend to rely heavily on texture rather than object shape.

As one approach to mitigating these tendencies, here
we use pruning as a method for fine-tuning a trained
neural network to make it respond more similarly to
humans. Although many other approaches are possible,
pruning is straightforward and does not require enough
human data to train a network from scratch. It has been
used for over three decades as a method for reducing
network complexity and computational requirements
(Janowsky, 1989; LeCun, Denker, & Solla, 1990; Mozer
& Smolensky, 1989). In simple terms, the rationale for
pruning is that a complex network will typically contain
both necessary and unnecessary units. Identifying
and pruning unnecessary units can reduce network
complexity while retaining high performance. There
is usually a trade-off between network performance
and reducing network complexity. The exact criteria
for evaluating the importance of single units and
the pruned network overall are a subject of much
research (for a recent review, see Blalock, Gonzalez
Ortiz, Frankle, & Guttag, 2020). It has been observed
that pruning can improve generalization performance
(Bartoldson, Morcos, Barbu, & Erlebacher, 2020;
Hassibi & Stork, 1993; LeCun et al., 1990) and in some
cases that pruned networks outperform the original
unpruned networks (Han, Pool, Tran, & Dally, 2015;
Suzuki et al., 2020) on the training objective.

Yet, here, we use pruning as a method for optimizing
the network functionality not in terms of the original
training criterion but rather human responses on the
same task. We expect that a neural network trained
to identify physically accurate highlights will learn an
approximate solution that includes features similar to
those the human visual system uses but also includes
different features. We therefore hypothesized that in a
second fitting stage we can prune the trained network
to identify a variant that emphasizes the similarities to
human responses while de-emphasizing the differences.
Given this pruned network, we can also test whether
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it is possible to gain insights into the processes
that make the model respond similarly to human
observers.

To do this, we created a large dataset of 164,085
images containing glossy surfaces with varying textures
or without texture. To limit the number of human
responses required, we investigated the similarities in
predictions only in certain pixels that we expected to
be particularly informative. To identify these pixels,
we used two extreme predictions as baseline models.
One is a very simple model that we trained to learn a
global intensity threshold value for classifying brighter
points as highlights. Although crude, such a heuristic
can correctly identify highlights in many conditions.
However, as it lacks any knowledge of surface or image
geometry, it can also be readily fooled by bright texture
markings. The other extreme was the physical ground
truth from our rendering simulations, representing
a physically correct solution—the upper limit on
performance that any observer system could achieve.
We expect the human visual system to make more
sophisticated decisions than an intensity threshold
but also simpler inferences than a fully accurate
inverse physics estimate. We therefore expect to find
informative image locations that are particularly
descriptive of human highlight perception where
our two baseline models contradict each other. We
chose image locations based on these two predictors,
including some where both models agree, to check
whether our stimuli and experimental method yield
meaningful perceptual responses in conditions where we
have a clear expectation of subjects’ responses. We ran
two parallel experiments, the stimuli being constructed
and chosen according to the same principles but chosen
from a different set of images.

To anticipate the main results as a basis for outlining
the modeling approach, we find that observers respond
to pixels where both models agree mostly in line with
model predictions. For the two disagreement categories,
subjects’ responses are mixed, and neither ground
truth nor the threshold model better predicts human
highlight perception. This provides us with a promising
basis to develop a better model of human perception.

We trained a novel CNN architecture (see Methods)
to predict for each point in the image whether or not
it contains a highlight, using supervised training with
the ground truth rendered specular component of the
images as a label for each pixel. This model predicted
human responses on the probe locations better than
ground truth or the threshold model. To further fit
our model to human responses we pruned network
connections using a genetic algorithm in order to
identify those configurations of pruning that maximize
correlations to humans on the target dataset. A genetic
algorithm allows us to test model fitness of various
configurations of several connections being pruned at
the same time.

We find that indeed a large set of pruned
configurations correlate higher with human
responses than the full network. We examined one
representative subnet in detail, investigating where
the differences to the full network lie. We also
conducted a representational similarity analysis (RSA)
(Kriegeskorte, Mur, & Bandettini, 2008) to compare
intermediate layers of the pruned network to various
candidate predictors. We find that representations
within the network are similar to various simple
and more complex predictors suggested in human
gloss perception literature. We also demonstrate
that our network is weakly sensitive to violations of
photo-geometrical constraints of highlights. In a lesion
analysis, however, we find no evidence that neurons
with high similarity to geometric predictors are more
important than other neurons for the model to react
like human observers.

Our main result is that we have developed, to the
best of our knowledge, the first image-computable
model that predicts human highlight judgments better
than ground truth. Although the network learned
representations related to photo-geometrical predictors,
surprisingly we find that these features are no more
important than simpler image-computable features for
the model to respond similarly to humans. Our findings
also show an application of pruning neural networks
based on a relatively small human dataset as a method
for fine-tuning neural networks that were previously
trained on simulated physical data. This method could
be beneficial in other research areas where machine
learning would be useful, but target data are slow or
costly to obtain and simulated data are more readily
available.

Methods

Training data and stimuli for experiment with
human observers

To train and test our networks and to test human
observers we rendered 164,085 grayscale images of
glossy surfaces like those shown in Figure 1. The image
size was 256 × 256 pixels. Every image was filled by
a surface viewed at 45° and perturbed by waves and
illuminated by a square light source parallel to and at
a random position above the surface. The geometry
was generated using the Ocean Modifier in Blender.
The light source was located near the surface, between
3.8 and 4.8 times the vertical distance between the
camera and the surface. We used a simple illumination
environment with a single light source before a dark
background to make sure it is well defined which pixels
contain specular highlights. Images were rendered in
Blender using the Cycles render engine. We used four
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Figure 1. Example images showing all different texture conditions for one scene.

spatial scales of surface geometry. For every surface
geometry, we rendered a plain surface consisting of an
untextured specular and diffuse component combined,
as well as 12 texture conditions (four spatial scales
each of Voronoi patterns, marble patterns, and checker
patterns). These textures were created as procedural
textures in Blender using the Voronoi, Wave, and
Checker nodes, respectively, and applied to the surface
using UV mapping. In order to create texture patterns
that could reasonably be confused with the highlights,
we also rendered two versions of each scene where we
used the specular reflections from a randomly chosen
different surface as a texture map by multiplying it
with the diffuse component (see examples in Figure 1,
under “false highlights”). We chose these conditions to
include textures that consist of highlight-like patches in
positions and orientations that are incongruent with
the surface, as Anderson and Kim (2009) have shown
that matte surfaces with physically correct highlights
imposed at a wrong orientation or position are less
likely to be perceived as glossy. Our intention was that
a network trained on these stimuli would be forced to
learn something about highlight positioning (rather
than just intensity), possibly yielding a wider range of
strategies that could show up during the pruning stage
of our network fitting.

Of the rendered images, 7200 were withheld from
network training, balanced for surface scale and
patterns, leaving 156,885 training images. The withheld
images were used as candidates in selecting images and
probe locations for the first human experiment and as
a validation set during training. We also rendered a
second set of 15,000 images constructed the same way
as the initial dataset. These images were also not shown
during training. They were used to select the images
and probe locations for the second human experiment
and as stimuli for additional network analysis.

Experiment with human observers

Human observers were asked to judge specific
pixels in an image and to respond whether or not the
pixel contained a highlight. To make these pixelwise
responses more informative, we did not select the
locations at random (also because only about 3% of all
pixels contained highlights). To select probe locations
(see Figure 2 for an example), we trained a simple
model that used a single global intensity threshold to
identify highlights and obtained a prediction for each
of 7200 test images. We also looked at the specular
map (ground truth) for these images. From these two
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Figure 2. (a) An example image as shown to the network and observers. (b, left) Predictions by a simple threshold model (TM) of the
image in (a). (b, bottom right) Ground-truth specular component (GT) used as labels during network training. (b, top right) The four
categories from which probe locations for experiments with human observers were chosen. Green: TM correctly identifies a highlight
at these locations. Yellow: TM wrongly identifies a highlight. Blue: TM fails to identify a highlight. Red: TM correctly identifies no
highlight. (c) Example of the display seen by observers during the experiment. Subjects saw an image with one pixel marked by a red
cross and a magnified close up (8×) of a 32 × 32 pixel patch that they could move with the mouse. The location mark could be
toggled on and off.

response maps we could sort each pixel into one of four
categories: (a) both ground truth and the threshold
predictor agree there is a highlight, (b) threshold
predicts a highlight but there is no highlight according
to ground truth, (c) there is a highlight but threshold
does not predict one, and (d) threshold and ground
truth agree that there is no highlight. Note that both the
ground-truth specular map and the threshold predictor
contained continuous information about the strength
of specularity (i.e., the image intensity of specularly
reflected light) or the strength of the estimate. The
intensity varies, for example, at the edges of highlights
and is thus a continuous quantity. To categorize pixels,
we treated the predictions as binary (i.e., measuring
whether there is any specularity in the prediction). For
selecting single pixels from these categories, we used
the original continuous information to maximize the
function of each category. For each category we chose
one pixel per image that maximized this function; for
example, for category (b), we chose that pixel per image
where the threshold model gave the highest prediction,

although there was no highlight according to ground
truth. The ground truth and threshold prediction
are described in more detail in the next section. For
120 images we chose one probe for each of the four
categories, and for another 120 images we chose one
probe only for categories (b) and (c) where threshold
and ground truth disagreed. These are likely to be
more informative in discriminating between predictors
than pixels where a simple model already agrees with
ground truth. Pixels from categories (a) and (d) provide
a useful baseline to determine whether our method
of single-pixel judgments yields expected results for
easy stimulus conditions and to confirm that observers
perceive highlights in our stimuli as such.

We constructed two test sets. For the first—which
we refer to as the target set—the images were chosen
randomly from a pool of 7200 candidate images. For
the second test set, which we used as a validation set,
images were chosen from a pool of 15,000 images.
For both sets, images were chosen in such a way as to
balance surface scale and texture conditions. In both
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cases, we tested subjects on 720 probe locations on 240
images, showing images in random order. Each trial
consisted of a display of the image, with the current
probe location marked by a red cross. Next to the image
was a second display of a close-up of a 32 × 32-pixel
image patch, magnified 8×. Figure 2 shows an example
display. By default, this was centered on the probe
location but could be moved using the mouse. The
cross indicating the probe pixel could be toggled on
and off. Subjects were asked to judge the central pixel
and respond with one of two keys whether this pixel
contained a highlight/reflection or texture.

Thirteen participants 20 to 39 years of age (mean,
25.9) took part in the first experiment. In the second
experiment, 15 observers 19 to 33 years of age
(mean, 25.0) participated. They all had normal or
corrected-to-normal vision and signed informed
consent according to the tenets of the Declaration
of Helsinki. The procedures were consistent with
those approved by the local ethics committee of the
Psychology Department at the Justus-Liebig-University
of Giessen. Both experiments lasted about an hour.

Ground-truth and threshold model predictions

The ground-truth information used for choosing
probe locations for the experiments with human
observers was obtained as a rendering of the untextured
surface in a material reflecting only specularly in
Blender. Note that these ground-truth maps are
not binary, although they may look so, and contain
variation in specular intensity. For the threshold
predictor, we trained a model to determine a global
threshold for the 156,885 images that we also used
for training the neural network. This model was
implemented in TensorFlow as a neural network
with one convolutional layer consisting of a single
pixel filter and a ReLU output. A second layer with
a sigmoid activation function mapped the activations
into the displayable intensity range. This way the
model prediction was only based on the individual
intensity of each pixel, regardless of neighbors and
context. The model contained a threshold below which
predictions were 0 and otherwise gave a continuous
prediction between 0 and 1. We trained the model for
50 epochs using binary cross entropy as the objective
loss function. This results in near-optimal threshold for
approximating the ground truth.

To categorize candidate pixels into categories (a)
to (d) described earlier, we used binary data from
each predictor (whether a predictor gave a zero or
non-zero prediction to each pixel). To choose pixels
within each category we used the continuous prediction
values to maximize the function for each category. For
example, for category (b), where the threshold predicts
a highlight where there is none, we picked out of all
candidate pixels in an image the pixel for which the

threshold model gave the highest prediction. For an
example of the model outputs and the probe location
selection see Figure 2.

Network architecture

The network architecture we used is shown
in Figure 3a. It was designed to give the network
capabilities of performing image computations at
different spatial scales and to exchange processing
results between scales between layers. The network
consists of four tiers of parallel convolutional layers. We
refer to these as “tiers” to avoid confusion with “layers,”
as they are implemented in deep learning software.
The first three of these tiers consist of seven parallel
convolutional layers each. These parallel layers each
receive the same input at different scales ranging from
1/1 size to 1/64 size. Each convolutional layer contains
eight filters. Before the first tier of convolutional layers,
the input image is scaled to these seven different sizes.
After convolutional processing, there are again scaling
layers so that the output of all layers operating at
different scales is scaled up and/or down in order that
each of the parallel layers in the next tier receives input
from each of the parallel layers in the previous tier. This
scaling happens again between the second and third
tier. The fourth tier consists of one layer with eight
convolutional filters at full image scale, after which
comes an output layer of one channel.

Network training

We performed feedforward training on our network,
using the ground-truth specular maps as labels and
with binary cross-entropy as our loss criterion.
Training lasted for 50 epochs; that is, the training
algorithm circled through the entire training image set
in randomized order 50 times.

Network pruning

Pruning was performed on the trained network.
Rather than pruning individual neurons, we deleted
connections between the first, second, and third tiers
of parallel layers, where each layer contained eight
convolutional filters. Each of these tiers consists of
seven parallel convolutional layers processing the image
at different spatial scales, each of which feeds into each
of seven parallel nodes in the subsequent layer. This
amounts to 98 connections between the layers in the
first and second and the second and third tiers.

To perform and evaluate pruning we used a genetic
algorithm. Each network configuration can be described
by a 98-parameter vector, where each parameter can
either be a 1 (connection on) or a 0 (connection off).
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Figure 3. (a) Network architecture. The first three tiers (columns) consist of seven parallel convolutional layers (boxes), each processing
at different resolutions from full resolution to 1/64 resolution. Each convolutional layer contains eight filters (filter size is 3 × 3 pixels).
The connections shown in blue are the ones that were subject to the pruning search. (b) A schematic of the search algorithm. The
initial generation consisted of the full network and 99 random subnets. Each following generation consisted of 10 clones of the fittest
networks of the previous generation, one mutated version of each of these 10, and 80 subnets created through crossover from two
members of the previous generation, picked according to fitness. Fitness was defined as the correlation to humans on the target set.

The “full network” refers to the network configuration
vector of only 1s, where all connections are active.
During training all connections were active. We started
each run of the algorithm with a population of 99
random configurations (in which every connection had
a 50% chance of being pruned) and the full network.
We applied each configuration to the trained network,
obtained predictions for the test images, and took the
predictions for those pixels that we showed to humans
in our experiment. From the response vector on these
pixels, we calculated a correlation to humans and used
it as a fitness criterion in the genetic algorithm. After
calculating the fitness for an entire population (i.e., 100
configurations) we kept the 10 fittest members as sur-
vivors, added a mutated (5% chance of a switch between
0 and 1 for each connection) copy of each survivor to the
next generation, and added 80 configurations through
cross-over from members of the previous generation
(chosen randomly, weighted by fitness, 1% mutation
chance). We repeated this process for 30 generations
and ran 300 instances of the genetic algorithm.

Results

Humans

Human observers were asked to judge whether or not
720 individual probe locations contained a highlight.

These probe locations (single pixels) were picked based
on ground truth and a threshold model that used only
an intensity threshold to predict highlights. Figure 2
illustrates the probe location selection process.

Mean responses from Experiment 1 grouped by the
categories of probe locations are shown in Figure 4a.
Results from the first experiment were later used as a
target for our pruning algorithm and are referred to
as the target set. Mean responses from Experiment 2
are shown in Figure 4b. The probe locations in this
experiment were selected from a different set of images
according to the same criteria as the target set. Results
from the second experiment were used for validation
and are referred to as the validation set. Note that the
purpose of the validation set was not to validate human
behavior in the target set, but rather to validate how well
the model’s imitation of human behavior generalizes to
a new set of stimuli and locations. We therefore do not
test for behavioral differences between the two human
response sets.

Results show, as expected, that category (a) pixels,
which contain highlights and are brighter than the
threshold (see Methods), are most likely to be classified
as highlights. Similarly, category (d) pixels, which do not
have a highlight and are darker than the threshold, are
least likely to be classified as highlights. Interestingly,
pixels from categories (b) and (c), which either contain
a highlight but are darker than the threshold or contain
no highlight but are brighter than the threshold, are on
average similarly likely to be judged as a highlight. This
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Figure 4. (a) Mean results from 13 human observers on the target set, one point from each category described in Figure 2b selected
for each of 120 images. One point from only the blue and orange categories (disagreement categories) for another 120 images. (b)
Mean results from 15 human observers on the validation set; a second set of probe locations and images constructed and selected
according to the same criteria as those in the target set.

suggests that sheer relative pixel intensity does have an
impact on human highlight perception, but that further
factors play a role.

The pattern of results for the four pixel categories
is very similar for both experiments. It shows that
human observers perceived highlights in our stimuli
and that they were able to interpret and respond to
single pixel probe locations. Both ground-truth and
threshold predictions seem to partially predict mean
human responses equally well (correlation to mean
human responses r = 0.57 and r = 0.58 for the target
dataset and r = 0.51 and r = 0.49 for the validation
dataset, respectively). As a comparison we calculated
the intercorrelation among human observers. Because
human responses were binary, we randomly divided
the observer group in two 10,000 times, correlating
the mean responses of the two groups every time. The
maximum correlations we observed were r = 0.82
for the target dataset and r = 0.69 for the validation
dataset (mean correlations were r = 0.73 and r = 0.57,
respectively). Figure 5 shows the distributions of these
human-to-human correlations. A large proportion of
the variance in human responses remains unexplained
by other observers.

To test whether this is due to idiosyncratic response
behavior or simply noisy responses, we compared
inter-rater and intra-rater agreement. Because the
responses of individual observers are binary, we could
not calculate this as a correlation and chose to use
the rate of agreement as a measure of consistency. To
calculate inter-rater consistency, we defined comparable
pixels according to the same pixel categories (a) to
(d) (Figure 2), same image texture category, and
same surface geometry scale. We split each group of

comparable pixels in half randomly, thus splitting the
entire target set in half with a comparable counterpart
for each pixel in the two halves. We calculated
intra-rater consistency as the rate of agreement between
an individual’s responses to comparable pixels in the
two halves and inter-rater consistency as the rate of
agreement between an individual’s responses and
other individual’s responses to comparable pixels. We
repeated this process 1000 times to get an estimate of
the inter- and intra-rater consistency. A paired t-test
of the per-subject means of these two consistency
distributions showed a significant difference, t(12) =
6.62, p < 0.001, with intra-rater consistencies higher
than inter-rater consistencies (mean ± SD, 0.71 ± 0.06
vs. 0.61 ± 0.07, respectively). As a measure of the
effect size, Cohen’s d = 1.84. The same analysis for
the validation set responses also revealed a significant
difference in the same direction, t(14) = 6.39, p < 0.001,
0.70 ± 0.07 vs. 0.58 ± 0.04, Cohen’s d = 1.65. This
indicates that variance in human responses that could
not be explained by human-to-human correlations or
our model predictions is not just due to noise but also
to idiosyncratic behavior.

Network

The full architecture of the network is shown
in Figure 3a. There are four tiers of convolutional
processing. The first three of these consist of seven
parallel layers of eight filters each that perform
convolutional processing at different scales of the image
ranging from 1/1 scale to 1/26. In between these are a
number of parallel scaling layers, such that every one
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Figure 5. (a, left) Histogram of human-to-human correlations between responses to the target set calculated by randomly splitting the
group of participants in two 10,000 times and correlating their mean responses. (a, right) Correlation of the threshold model (TM),
ground truth (GT), and full network to the mean of human observers on the target set. (b, left) Histogram of human-to-human
correlations between responses to the validation set calculated by randomly splitting the group of participants in two 10,000 times
and correlating their mean responses. (b, right) Correlation of the TM, GT, and full network to the mean of human observers on the
validation set.

of the parallel convolutional layers receives the output
from all processing scales as input. The fourth tier
consists only of one convolutional layer of eight filters
that processes the image at full scale. We compared
predictions by our full network as well as our threshold
model and ground-truth values to human responses
(see Figure 5). The full network after training correlated
higher than the threshold model or ground truth to the
mean of human observers on the target set (r = 0.78)
and on the validation set (r = 0.69).

Pruning

We then sought to improve further the fit of the
network to human performance through pruning. We
searched for pruned configurations of our network
that responded more similarly to humans using a
genetic algorithm. The genetic algorithm searched
through configurations (different combinations of
on/off settings) for the connections between the first
and second and the second and third tiers, shown in
blue in Figure 3a.

The results of pruning in terms of correlation with
humans on the target pixel set are shown in Figure 6a.
Although many pruning configurations reduced
correlation to humans, in every run the genetic
algorithm discovered pruned configurations of the
network that responded more like humans than the full
network. The highest correlation between a pruned

version of the network and humans was r = 0.83, at
the upper limit of human-to-human correlations that
we observed. Figure 6b shows similarity of pruned
configurations to humans for all runs plotted against
the number of active connections. Interestingly, there
is a large range in the number of connections that are
active in configurations that improve the correlation of
the network with humans.

Validation performance

To validate whether pruning according to our target
dataset yields generalizable results, we compared
responses from a subset of the configurations against
humans on the validation dataset. We picked the 10
fittest configurations from the last generation and 10
random configurations from the initial generation
from each run of the genetic algorithm, resulting
in 3000 fit and 3000 random configurations in total
(shown in Figure 6b). The validation performance
of these pruned versions of the network can be seen
in Figure 6c, along with the validation fitness of ground
truth, the threshold model, and the full network (r
= 0.51, r = 0.49, and r = 0.69, respectively). The
maximum correlation of a pruned network to humans
on the validation set we observed was r = 0.73.
Correlations of the pruned networks with humans
on both datasets correlate at r = 0.99. The purpose
of this analysis is not to test how well the pruned



Journal of Vision (2022) 22(7):6, 1–19 Prokott & Fleming 10

Figure 6. (a) Distribution of correlations to human responses on the target set in each generation, summed across 300 runs of the
genetic algorithm. Correlations between humans and ground truth, threshold model and the full network are plotted as lines. (b)
Distribution of correlations to human responses on the target set plotted against the number of connections active in each subnet.
Plotted in green and pink are 10 random and the 10 fittest subnets from each run of the genetic algorithm (3000 in total each) that
are used in (c) and other subsequent analyses. (c) Correlations of a subset of 3000 random and 3000 fittest subnets to human
responses on the target set and on the validation set. Correlation between the fit on these two datasets is r = 0.99

networks match human performance but rather how
well this similarity generalizes to other human data.
We included random and fit pruning configurations to
test this generalizability for configurations that show
both higher and lower similarity to humans compared
with the full network. The results indicate that the
component of human performance that we capture
is highly generalizable and not limited to images in
the target set. It also indicates that improvement in
correlations to humans on the target set suggest a robust
shift in network behavior toward more human-like
responses. Of the 3000 fit configurations, all correlated
with humans higher than the full network on the target
set, and 21 did not improve on the correlation of the
full network with humans on the validation set.

Example pruned network

For the following analysis we picked a candidate
pruned configuration of our network. Our choice was
based on four criteria: (a) variance in human observer
data explained (R2), (b) variance in ground-truth data
explained (R2), (c) variance in human errors explained
by network errors (R2 between the differences of
prediction and ground truth and human responses
and ground truth), and (d) lowest root mean square
error (RMSE) to human observers. We rank-ordered
the 3000 fit network combinations used previously in
the validation analysis according to each criterion and
picked the configuration that showed the lowest sum of
ranks. The predictors were all highly intercorrelated (all
r = 0.82 or greater). We chose to use several selection

criteria to avoid possible outliers, such as configurations
that correlate well with humans but show very weak
responses close to 0 (high correlation but high RMSE
to humans). The network we picked according to the
four criteria was also the third fittest in terms of R2 to
humans on the target set.

Differences from full network

To better understand what the pruned network does
differently than the full network, we compared network
responses to human responses in more detail. We looked
at the responses of both networks to different spatial
scales of surfaces. The correlation to human observers
separated for surface perturbation size (Figure 7a)
shows that the pruned network has a tendency to
better predict human responses than the full network
for all surface scale conditions. This improvement
shows in the target and validation datasets. As a
test of statistical significance, we calculated the 95%
confidence intervals for the difference between each pair
of correlations (r between the pruned net and humans
– r between the full net and humans) as suggested
by Zou (2007). For the subsets per surface scale of
the target dataset, these confidence intervals were
(0.03–0.09), (0.05–0.12), (0.02–0.08), and (–0.01 to
0.06), respectively from smallest to largest perturbations
(left to right in Figure 7a). For the subsets of the
validation dataset, the 95% confidence intervals were
(0.05–0.12), (0.01–0.07), (0.00–0.07), and (–0.03 to
0.07), respectively. In the target dataset the pruned
net correlated significantly higher than the full net
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Figure 7. (a) Correlation to humans of the full (gray) and pruned (black) network on the target and validation datasets (filled and
empty squares, respectively) seperated for spatial scales of surface geometry. (b) Mean predictions for all pixels in 15,000 images
separated into pixels that contain a highlight, bright texture patches, or neither. (c) True-positive and false-negative decision rates for
highlight pixels from the target dataset for the full network, pruned network, and human observers if different predictor values act as
a threshold in a binary decision. (d) False-positive and true-negative decision rates for non-highlight pixels from the target dataset for
the full network, pruned network, and human observers if different predictor values act as a threshold in a binary decision.

with humans for all perturbation categories, except
for the image category with largest perturbations.
In the validation dataset, the pruned net correlated
significantly higher than the full net with humans
for the two image categories with smallest surface
perturbations. Where correlations were not significantly
different, the observed direction of the difference was
also that the pruned net correlated higher with humans
than the full net. This indicates that the improvement of
the pruned network is larger for images of surfaces with
smaller perturbations but not limited to specific spatial
scales and includes a mechanism that is applicable over
a wide range of geometries.

In another step we looked at the responses of the
networks to different categories of pixels to test how
the pruning affected sensitivity to highlights (i.e., to
answer the question whether pruning elicited a criterion
shift). Specifically, we divided the pixels in every image
into three groups: specular, bright texture patches
(excluding areas that overlapped with specular), and
other pixels. For 15,000 images we summarized the
network responses as the mean response per pixel
category. This result is shown in Figure 7b. Our pruned

network appears to give higher responses than the
full network to pixels of all categories, but to different
degrees. The largest increase in mean glossiness
rating is for pixels containing a highlight with a lesser
increase for texture pixels and a very small increase
for pixels that contain neither highlights nor bright
texture patches. In other words, the pruned network
seems to make a criterion shift compared with the full
network that raises the responses to correctly identified
highlights but also (to a lesser degree) to bright texture
pixels.

This seems to suggest that the pruned network makes
more or stronger true-positive decisions at the cost of
an increased false-positive rate. Because the predictors
do not make binary decisions but rather give continuous
predictions, we visualize this as the rate of true-positive
and false-positive decisions if a certain predictor value
served as the threshold for binary decisions. Figures 7c
and 7d show network predictions of the 720 pixels in
the target dataset in this way, compared with mean
human ratings. The pruned network does indeed favor
true-positive but also false-positive decisions compared
with the full network. In doing so, the pruned network
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Figure 8. RMSE between predictions by the pruned network
and the ground truth specular component for 1000 untextured
images with differently rotated specular components. A
specular rotation of 0° indicates the correct alignment.

shows more similar behavior to the mean of human
observers, where this tendency appears to be even more
pronounced.

Network predictions for stimuli with modified
highlights

To further investigate similarities between the
pruned network and humans, we constructed a set
of images containing highlights that we manipulated
in the image space. Specifically, we altered the global
rotation of the entire specular component of the
images in angles of 0°, 90°, 180°, and 270°. Anderson
and Kim (2009) showed that surfaces with displaced
highlights are less likely to be perceived as glossy than
when highlights are in their correct positions. These
test images contained no texture. We fed the same
1000 images with every rotation condition through
our pruned network and compared responses to the
(manipulated) highlights contained in the images.
We used the RMSE per image between the network
predictions and the highlight component (correctly
or wrongly oriented) of the images as a measure of
how much the network responses match the highlights.
Lower RMSE values indicate a stronger tendency to
recognize the manipulated highlights as highlights.

The RMSE between pruned network predictions and
rotated highlight components is shown in Figure 8.
Global rotations affect the RMSE, but to a very small
degree. The original, non-rotated highlights produce
the lowest RMSE, indicating that globally rotated
highlights are less likely identified as highlights by the
network. It is important to note that, although the
direction of this effect is in line with what we expect

from a human-like model, it is also very small. For
comparison, the RMSE between 1000 pairs of random
noise images of the same size as our stimuli is 0.412
(SD = 0.007). This means that most of the manipulated
highlights are still mostly recognized as highlights, only
slightly less than the original highlights. Interestingly,
this seems to indicate that a highlight detection
model can behave much like a human observer in
conventional images, without being very sensitive to
photo-geometrical constraints.

Learned representations

To investigate what kinds of representation the
pruned network has learned, we compared the responses
of units to a number of hand-engineered image and
surface descriptors (predictors) in a RSA (Kriegeskorte
et al., 2008). We calculated representational dissimilarity
matrices (RDMs) consisting of the pairwise Euclidean
distances between pairs of images as they are
represented in the output of every convolutional
neuron throughout the pruned network, as well as
by the different predictors. RDMs were calculated
based on 4500 images, including all of the texture
conditions we used in the training set. We included 34
possible predictors ranging from image-computable
local filters and summary statistics to more complex
geometrical and intrinsic image (Barrow & Tenenbaum,
1978) components. We grouped the predictors into
seven categories (for detailed descriptions, see the
Supplementary Material):

1. Input Image—original grayscale input image
2. Summary statistics—mean, SD, skewness, and

kurtosis of image intensity
3. Edge detection/direction—pixel gradients in x- and

y-directions, local contrast, locally normalized image
4. Image gradients/anisotropy—orientation of the

smoothed image gradient in x and y, anisotropy of
the smoothed image

5. Geometry information—camera distance, angle
to camera, light distance, angle to light source,
convexity, pointiness (magnitude of local curvature,
as calculated by Blender), x normal, y normal, z
normal, occluding edges, distance from occluding
edges

6. Intrinsic components—texture, matte (shading),
specular, specular direct, specular indirect, specular
coverage, texture coverage

7. Scene information—surface scale, texture type,
texture condition, scene

We correlated the top triangles of unit and predictor
RDMs. Figure 9a gives an overview of where in our
pruned network the internal representations show
greatest similarities to each predictor category in
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Figure 9. (a) Representational similarities between single filters of the pruned network and predictor categories. Each box represents
one convolutional layer with eight filters, and each column of boxes represents seven parallel layers. For a more detailed description
of the architecture, see Figure 3 and Methods. The color of each box shows the maximum variance explained for any filter’s first-order
RDM (upper triangle) per layer (out of eight each) by all predictors in a given category. Layers marked with an × contain only “dead”
filters. Markings on the scales below each network schematic show the variance explained (R2) of all network filter representations by
the predictors in the category. (b) The first two dimensions of an MDS representation of all active filters in the pruned network. MDS
is calculated on the pairwise similarities between first-order RDMs of representations of 4500 images by individual filters (upper
triangle). Each filter is shown as a dot colored according to the category of the most similar single predictor.

terms of maximal total variance explained. Every
layer contains eight filters; shown in Figure 9a is the
maximum per layer that any of these filters is explained
by all predictors in a given category. Note that boxes
in the figure represent layers, and columns of boxes
represent parallel layers that receive the same input
at different scales (see Methods). In addition to the
predictors mentioned above, we compared network
representations with representations according to
the texture analysis model by Portilla and Simoncelli
(2000), also shown in Figure 9a. This is another
hand-engineered model of mid-level vision that has very
successfully been used in texture analysis and synthesis.

The results of the RSA broadly agree with the
expectation that later network stages are associated
with more complex representations. Simpler, directly
image-computable predictors tend to show similarities
earlier in the network, becoming less relevant toward
the output. Surprisingly, however, we see that filters
in deeper intermediate layers also show similarities to
edge detection and gradient predictors. Similarities to
more complex predictors such as geometric or intrinsic
parameters emerge only late in the network. Summary
predictors show greatest similarities to units that
process lower resolution, more spatially summarized
representations of the image. The low similarity
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to predictors from the scene information category
means that our network has likely not learned the
categorical factors by which we constructed the dataset.
Portilla–Simoncelli statistics are most similar to units
in the first and second tier, especially those operating
on spatially summarized representations. This indicates
that our model indeed makes use of features similar
to hand-engineered mid-level features. The placement
of similar neurons in the network suggests that these
features occur at intermediate processing stages, with
other features in later layers computed based on them.

Figure 9b shows an arrangement of the individual
units of the pruned network according to the
similarity of their response characteristics. Specifically,
we used the RDMs of individual network units
(described above) to compute a second-order RDM.
This second-order RDM contained the pairwise
dissimilarities between individual network units
(calculated as the correlation coefficients of the upper
triangles of first-order RDMs subtracted from 1). We
then visualized the similarities in two dimensions using
multidimensional scaling (MDS). Each point represents
a single unit, colored according to the categories of
their single most similar predictors. This reveals broad
clusters of qualitatively similar units. Most filters show
the greatest similarities to the original input image or
to image-computable predictors from the categories
edge detection/direction and image gradients/anisotropy.
A small number of filters (the network output among
them) are most similar to geometric predictors or to
intrinsic image components. In the case of the output
layer, this presumably reflects the objective function,
which was to return a per-pixel highlight map (i.e., an
intrinsic image of the specular component). Thus, as
expected, units that correlate with relatively high-level
factors such as surface geometry or intrinsic images
tend to be more prevalent in later stages of the network.

Lesion analysis

Having broadly classified the functions of individual
neurons, to assess their relative importance for to the
network’s overall functionality we performed a lesion
analysis. We lesioned every neuron in the pruned
network individually by setting all weights of the
respective neuron to 0. For every neuron we tested the
lesioned network in terms of loss on the validation
image set (15,000 images) and correlation to humans on
the target set we used earlier (720 individual pixels). It is
important to note that this analysis is different from the
pruning used to identify network variations that more
closely matched humans, where we pruned outgoing
connections of neurons (of which there are several for
each neuron in the first two tiers).

We correlated both lesion scores with the variance
of representations of each neuron explained by

representations in each category of predictors
(summarized in the bars under each network plot
in Figure 9a). We find no substantial proportion of
variance in loss or similarity to humans due to lesioning
explained by the similarity of the lesioned neurons to
any predictor category (the largest being R2 = 0.03
between the similarity of individual neurons to edge
detection/direction predictors and loss of the network
with the respective neuron lesioned). The importance of
neurons to network performance cannot be explained
by similarity to any of the predictor categories. Put
differently, the function of the network as a whole
seemingly depends on all of the different classes of
function roughly equally. This can be contrasted with
previous findings, where particular classes of node were
of special importance to overall network function (van
Assen, Nishida, & Fleming, 2020).

Discussion

We trained a neural network to identify specular
highlights in computer renderings of surfaces. This is a
challenging mid-level visual inference about the causal
origin of bright patches in images, which is considered
a key stage in the perception of gloss (Beck & Prazdny,
1981; Berzhanskaya, Swaminathan, Beck, & Mingolla,
2005; Fleming, 2012; Kim et al., 2011; Todd et al.,
2004). Unlike other recent work using deep learning
to identify highlights in the machine vision literature
(Attard, Debono, Valentino, & di Castro, 2020; Fu,
Zhang, Lin, Zhu, & Xiao, 2020; Lin, el Amine Seddik,
Tamaazousti, Tamaazousti, & Bartoli, 2019; Madessa,
Dong, Gan, & Gao, 2020), our focus was on matching
human performance rather than achieving the best
possible accuracy from an engineering perspective.
To do this, we trained a neural network to identify
highlights and used pruning to identify a subnetwork
within the trained network that responds more like
human observers than the full network. We found not
one but many configurations that do this (Figure 6a).
The best of these significantly outperformed both
a simple threshold operation and ground truth at
predicting human judgments. To our knowledge, this
is the first image-computable model that predicts
average human highlight perception judgments at
approximately the same level as individual participants
do.

An important limitation of this study is that it only
concerns rendered stimuli under a very simple lighting
environment. We chose to use renderings because
this gave us access to ground truth, which would not
be possible with natural images. Although a number
of approaches exist for approximating the specular
component, such as other image decomposition models
or polarizing filters, to the best of our knowledge
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none of these provides such a good estimate of the
ground truth as rendering. Our reason for choosing
a simple illumination environment was to ensure that
it is clearly defined whether or not a pixel contains
a highlight, which was necessary for our experiment
with human observers. It is reasonable to consider
only specular reflections of light sources (direct
illumination) as highlights, as reflections of other
surfaces (indirect illumination) are usually significantly
dimmer. Yet, under natural lighting (e.g., with a light
probe illumination), light sources usually occupy only
a small proportion of incoming directions. Most
incident directions deliver light from secondary sources.
There is no simple way to separate direct from indirect
illuminations with complex natural illumination
patterns, so we used a more controlled approach with
simple artificial light sources, allowing highlights to
be formally defined and identified. In a natural image,
every pixel would contain some component of specular
reflection. Due to this difference in specular distribution
throughout the images we would expect our model
to perform poorly on photographs of natural scenes.
Several studies on the human perception of gloss
have focused on highlights as distinct visual elements,
which has been a successful approach for modeling
human gloss responses (e.g., Fleming, 2012; Marlow
et al., 2012). An important question along the way
to generalizing this present study to natural images
is to what extent humans perceive isolated specular
highlights or continuous specular images in natural
scenes.

Our network consists of 61,505 trainable parameters
and is designed to respond to 65,536 pixels for
one individual image. Importantly, we find that the
similarity of pruned networks to humans is highly
consistent on both target and validation datasets,
correlating at r = 0.99 for a subset of 3000 random
and 3000 fit pruning configurations. A small dataset
of 720 individual pixels was sufficient to identify a
component of network responses that transfers to
another independent dataset with data from different
observers responding to different stimuli. This indicates
strongly that the component in the network that
was emphasized by pruning is robust across random
variations in our dataset. This opens up other possible
applications for pruning where target data are difficult
to come by and a small target dataset could be used to
fine-tune a model that is pretrained on simulated data.

We found configurations that correlate better with
humans than the full network in which more than
half of all connections were pruned. This can have
several possible explanations. One is that there are
superfluous connections that make little or no impact
on the behavior of the network overall or do not
influence its similarity to humans. Another possibility
is that connections are redundant. A third explanation
could be that there are many alternative routes that

the network can take to act more human. It seems
likely that superfluous connections and neurons play
at least a part in this, due to the high number of dead
neurons (55 out of 177 in the pruned network) that
we have seen in later analysis. In the RSA we also saw
that a large number of neurons show a high similarity
in their representations to image-computable features.
This high similarity to the same predictor or groups
of predictors also makes the possibility of alternative
routes within the network seem plausible.

Picking one representative pruned configuration,
we summarized the different responses of the pruned
and the full network in terms of mean predictions of
pixels belonging to different image regions (specular
patches, bright texture patches, and all other pixels).
The pruned network shows a higher prediction mean
for all categories (i.e., it is more likely to recognize
them as highlights), but the increase is largest for
specular pixels, making the difference between overall
predictor mean for specular and texture pixels larger
than it is for the full network. Put another way, the
pruned network acts as if it has a (liberal) criterion shift
relative to the full network, accepting more highlights
than the original. Although it might be tempting to
think that the pruned network performs better in
terms of the original training criterion of identifying
highlights, this is not the case. The mean per-pixel
predictions in Figure 7b ignore the number of pixels
in each category whereas the training loss does not.
This criterion shift opens up questions about whether
human perceptual decisions (especially in ambiguous
cases) are driven by maximizing true positives or
correct reject decisions, and indeed our results indicate
that humans are more likely than the full or pruned
networks to make true-positive decisions, at the same
time also increasing the rate of false positives compared
with our networks. Perhaps false-positive decisions in
recognizing highlights are not as important to humans,
and it is questionable whether the exact area covered
by highlights plays a similar role to humans in this
context as it does to our networks as defined by the
training loss. If a measurement related to coverage
does play a role in human decisions, it seems likely that
highlights weigh more than their actual coverage, given
that highlights propagate the impression of glossiness
to a larger image area (Berzhanskaya et al., 2005), but
this requires further investigation.

Previous studies have emphasized the role of so-
called photo-geometric constraints in identifying and
interpreting highlights (Anderson & Kim, 2009; Beck
& Prazdny, 1981; Kim et al., 2011; Marlow et al., 2011;
Todd et al., 2004). In order for a bright image patch to
be a specular reflection, it must align in orientation and
position with the underling surface geometry and/or
shading patterns. We do find that global rotation of the
highlight component in our stimuli leads to a slight
increase in prediction error (RMSE) by our pruned
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network compared with the manipulated specular map.
This indicates that the network has learned to a limited
degree to use orientations and positions of patches as
a cue to identify highlights; however, the magnitude of
the effect is small, suggesting that these constraints do
not weigh heavily. Although it shows some sensitivity to
these constraints, our model still largely characterizes
misaligned highlights as highlights, failing to replicate
human behavior under such conditions as reported by
Anderson and Kim (2009) and Marlow et al. (2011). It
is interesting to note that a model can predict a large
amount of variance in the human data without being
very sensitive to violations of these constraints. This is
similar to the results of Prokott, Tamura, and Fleming
(2021) where we found that neural networks trained to
discriminate high- from low-gloss materials show little
difference in their response when presented with images
with displaced specular components.

Similar to these globally rotated highlights, our
training and test images included conditions with false
highlights, where we applied highlights from a different
scene as texture. We included these as a challenging
condition similar to stimuli used in Anderson and
Kim (2009), but with both correctly and incorrectly
placed highlights in one image. As with rotated
highlights, our network erroneously identified most of
these false highlights as highlights. Although this is
underperformance in terms of the training objective,
our network is a better predictor of human responses to
these images than the threshold model or ground truth,
and the pruned network predicts human responses
even better for the target set. Correlations to humans
on pixels from these images in the target set are r =
0.66, r = 0.27, r = 0.76, and r = 0.78 for threshold
model, ground truth, full network, and pruned network,
respectively (validation set r = 0.65, r = 0.24, r = 0.74,
and r = 0.73, respectively). Although Anderson and
Kim (2009) and Kim et al. (2011) showed that surfaces
with displaced highlights are less likely to be perceived
as glossy, we find some evidence that false highlights are
rather equally perceived as highlights. We also find that
the threshold model relying only on image intensity is
a better predictor for human responses to these stimuli
than for other texture conditions. However, it should be
noted that this is not the focus of this study and that
this subset of stimuli consisted of only 96 individual
pixels.

In an RSA, we find similarities between the
representation at single neurons in the network to
various candidate predictors. Generally, we find
that similarity to low-complexity predictors that
are computable directly from the image occurs
throughout the network but also earlier than more
complex predictors. Complex geometric and intrinsic
predictors show similarities only to very late neurons.
We find similarities to summary predictors in spatially
summarized units of the network. An alternative

way of looking at the data is to classify each neuron
according to the category of its most similar predictor
(Figure 9b). This reveals that a very large proportion
of neurons is most similar to either the input image
or an image-computable predictor describing either
edges and pixel contrast or the image gradients and
anisotropy. However, in a lesion analysis, the similarity
of a neuron to any category of predictors was not
predictive of its impact (when lesioned) on the model
loss or its similarity to humans. Our data do not attest
particular importance to any predictor category. This
suggests that neurons similar to various predictors
are important for the network to perform well and to
predict human highlight perception.

A possible way of interpreting these results is
that humans use different strategies. Where there are
conflicting cues such as congruent and incongruent
highlight-like patches, it might be that humans resort
to simpler, less conflicting cues, such as luminance.
Human responses to stimuli containing false highlights
as textures are more similar to predictions by the
threshold model than human responses are overall. This
represents one case in which humans responded very
much like a simple intensity-based model. Our results
suggest that photo-geometrical constraints are not the
single most important cue to human gloss and highlight
perception and will not prevail over simpler factors
such as overall relative brightness under all conditions.

Conclusion

We investigated human perception of highlights on
glossy surfaces that also contain different types of bright
texture patches. We developed, to our knowledge, the
first image-computable highlight-detection algorithm
that reproduces many of the successes and failures
of human judgments (with the notable exception of
effects of highlight orientation). We demonstrated an
application of pruning using a genetic algorithm as
a method for fine-tuning a neural network trained on
simulated physical data to a sparse dataset of human
responses. Improvements due to pruning in network
similarity to human judgments on a target dataset
transfer well to a parallel dataset and are consistent
over different stimulus conditions. On both datasets,
the pruned networks correlate with humans better
than the full network and as high as the maximum
human-to-human correlation we observed. Compared
with the unpruned network, a pruned example network
shows a criterion shift that makes false-positive
judgments slightly more likely while at the same time
increasing the average difference in responses between
pixels that contain a highlight and pixels that do
not. We see modest evidence that our network has
learned to use photo-geometric cues to identify whether
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bright patches are highlights, but these effects are
very small. In an RSA and subsequent lesion analysis,
we find no evidence that neurons that are similar to
geometric predictors (or any other class of predictors)
are especially important for the network to achieve low
objective loss or high similarity to humans. The lesion
analysis provides no evidence that photo-geometric cues
are particularly important for the network to respond
similarly to human observers, suggesting that not only
these relatively complex computations are being used
by the human visual system in perceiving highlights.

Keywords: material perception, intrinsic image
analysis, gloss, reflectance, specularity, inverse optics,
surface
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