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Plasma lipid levels and risk
of retinal vascular occlusion:
A genetic study using
Mendelian randomization

Changwei Zheng, Yi Lin, Bingcai Jiang, Xiaomin Zhu,
Qianyi Lin, Wangdu Luo, Min Tang and Lin Xie*

Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University,
Chongqing, China
The causal effects of plasma lipid levels and the risk of retinal vascular occlusion

(RVO) have not been clearly identified, especially for high-density lipoprotein-

cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C). Here,

we try to identify these causal risk factors using a two-sample Mendelian

randomization (MR) analysis. Single nucleotide polymorphisms (SNPs) were

chosen as instrumental variables (IVs). We obtained genetic variants associated

with lipid exposure at the genome-wide significance (P<5×10−8) level from a

meta-analysis of GWAS from the Global Lipids Genetics Consortium (GLGC)

based on 188,577 individuals of mostly European ancestry for MR analyses.

Meanwhile, we used lipid GWAS from UK Biobank (UKB) with a sample size of

115,078 individuals as a supplement. We obtained genetic predictors of RVO

from a FinnGen biobank study. We conducted both univariable and

multivariable MR (MVMR) analyses to identify the causal effects of RVO.

Although inverse variance weighted (IVW) was the primary method used for

MR analyses, MR–Egger and weighted-median methods were used as

supplements to IVW. We determined the heterogeneity of IVs using

Cochrane’s Q test and I2, and used the MR–Egger intercept and MR-PRESSO

Global test to detect horizontal pleiotropy. A leave-one-out sensitivity analysis

was conducted by removing a single variant from the analysis. Genetically

predicted increased HDL-C level was associated with decreased risk of RVO

from GLGC [OR=0.806; 95% CI=(0.659, 0.986); P=0.036], which was

consistent with UKB results [OR=0.766; 95% CI=(0.635, 0.925); P=0.005].

MVMR analysis for plasma lipids [adjusted OR=0.639; 95% CI=(0.411, 0.992);

P=0.046] or diabetes [adjusted OR=0.81; 95% CI=(0.67, 0.979); P=0.029]

suggested that low HDL-C may be an independent risk factor for RVO.

However, there was no evidence to support a causal association between

LDL-C {GLGC [adjusted OR=1.015; 95% CI=(0.408, 2.523); P=0.975], UKB

[OR=1.115; 95% CI=(0.884, 1.407); P=0.359]}, total cholesterol {GLGC

[adjusted OR=0.904; 95% CI=(0.307, 2.659); P=0.854], UKB [OR=1.047; 95%

CI=(0.816, 1.344); P=0.716]} or triglycerides {GLGC [OR=1.103; 95% CI=(0.883,

1.378); P=0.385], UKB [OR=1.003; 95% CI=(0.827, 1.217); P=0.098]} and RVO.

Using two-sample MR analysis, our study suggested that dyslipidemia was a risk

factor for RVO. Furthermore, our results indicated that a low HDL-C level may
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be an independent risk factor for RVO, suggesting that controlling HDL-C level

may be effective in RVO development.
KEYWORDS

retinal vascular occlusion, plasma lipid, low-density lipoprotein-cholesterol, high-
density lipoprotein-cholesterol, mendelian randomization
Introduction

Retinal vascular occlusion (RVO), including retinal arterial

occlusion and retinal vein occlusion, is the second most common

retinal vascular disorder and is a major cause of visual

impairment (1). Macular edema is the main cause of visual

impairment in RVO, while neovascularization of the optic disc

and retina is the most serious complication. These complications

lead to retinal detachment, vitreous hemorrhage, and

neovascular glaucoma, causing irreversible vision loss. Risk

factors for RVO are associated with local conditions such as

glaucoma (2) and systemic conditions such as hypertension,

diabetes, and dyslipidemia (3, 4). Lifestyle factors, including

smoking and high body mass index (BMI), are also involved in

the development of RVO (4, 5). Due to its multifactorial nature,

RVO management remains challenging, such that identifying

effective approaches for preventing the development of RVO

remains necessary.

A series of clinical studies demonstrated a significant

association between plasma lipid levels and the risk of RVO (6–

8). However, the association between RVO and LDL-C, HDL-C,

and total cholesterol level remains unclear. While some studies

have indicated that low HDL-C was an independent risk factor for

the development of retinal artery occlusion (9, 10) or retinal vein

occlusion (11, 12), other studies failed to show significant

correlations (13, 14). Decreased HDL-C even associated with

worse visual acuity in retinal artery occlusion (10). Meanwhile,

the relationship between LDL-C and RVO remains controversial.

An early retrospective study indicated patients with RVO had

significantly higher levels of LDL-C (8), and LDL-C levels were

independently associated with the occurrence of RVO in

multivariate logistic regression analysis (15). But these data are

not consistent with previously published results (11). In addition,

Song reported total cholesterol was a risk factor for RVO in their

meta-analysis (16). Plasma lipid levels are easily altered by

medication and lifestyle. These confounding factors may not

have been accurately assessed in these studies. These

relationship can also be confounded by other unknown factors,

often leading to inconsistent and controversial results in

traditional retrospective studies (17).
02
Thus, it is necessary to clarify the causal relationship

between RVO and HDL-C, LDL-C and total cholesterol.

Mendelian randomization (MR) is an emerging method used

for potential causal inference that has demonstrated great

success in finding risk factors for diseases. MR treats genetic

variations as a natural experiment in which individuals are

randomly assigned to higher or lower exposure levels over

their lifetime (18). MR is not affected by common

confounding factors, and the causal sequence is reasonable

(19). To date, the two-sample MR analysis has not been used

to examine the effects of plasma lipid levels on the risk of RVO.

The ultimate aim of the MR analyses performed in the present

study is to clarify the causal relationship between plasma lipids

and RVO.
Methods

Study design

We followed the Strengthening the Reporting of

Observational Studies in Epidemiology using Mendelian

Randomization (STROBE-MR) guideline to report the MR

study (19). MR analyses were performed to estimate the causal

relationships between lipid levels and RVO risk. The MR study

was performed using publicly available GWAS summary statistics,

and ethical approval was obtained in all original studies. The

following assumptions are made for MR inference: 1), The genetic

variants were strongly and causally related to exposure; 2), the

genetic variants were not associated with any potential

confounders; 3), each genetic variant and the outcome did not

have common causes (Figure 1). In univariable MR analysis, we

simply tested the causation between each lipid risk factor and

RVO. However, in MVMR analysis, we included the significant

risk factors (HDL-C, LDL-C and total cholesterol) from the

univariable analysis and tried to identify the independent risk

factor for plasma lipids. In addition, a low HDL-C level is

associated with a higher risk of type 2 diabetes (20) that

increases the risk of RVO. So we also used MVMR to mitigate

potential pleiotropic effects via diabetes in UK Biobank (UKB).
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Data sources and instrumental variable
extraction

Four lipid phenotypes, HDL-C, LDL-C, triglycerides and

total cholesterol, were included in this study as the exposure

variables. For the exposure data, publicly available summary

statistics data, based on 188,577 individuals of mostly European

ancestry, were identified through a meta-analysis of GWAS from

the Global Lipids Genetics Consortium (GLGC) in 2013 (21).

This study was adjusted for sex, age, age squared, body mass

index, and genotyping chips. Since the GWAS from GLGC

contained mixed populations, we also used the lipid GWAS

with a sample size of 115,078 individuals from UKB, conducted

by Nightingale Health 2020 as a supplement. For the outcome

data, we extracted the summary statistic datasets from a recent

GWAS of RVO conducted by the FinnGen biobank adjusting for

age, sex, genotyping batch and ten first principal components.

Participants included 1,595 cases and 203,108 controls of

individuals with European ancestry, and access to the MR-

Base database was free (http://www.mrbase.org/). We obtained

genetic associations with type 2 diabetes adjusted for BMI from

Mahajan et al. (22). We included SNPs reaching GWAS (GWAS

P<5×10−8) whose minor allele frequency was > 0.01. These SNPs

were clumped based on the linkage disequilibrium (r2<0.001) in

the given genome region (kb=10,000). Palindromic SNPs were

discarded. To evaluate the strengths of the selected genetic

predictors for the RVO, an F statistic (F=beta2/se2; beta: beta

for the SNP-exposure association, se: variance) was calculated

for each SNP (23). Generally, an F value >10 indicates no

obvious bias is caused by weak IVs. SNPs with less statistical

power were removed (F value <10). MR-Steiger filtering was

used to remove variations that were more strongly correlated

with RVO than with lipids (24). Full details of the SNPs, MR-
Frontiers in Endocrinology 03
Steiger and F value are provided in the Supplementary Datasets

1–8. We extracted the SNPs having an association with at least

one of LDL-C, HDL-C, and total cholesterol at GWAS

significance (P<5×10−8) from GLGC for MVMR analysis. We

used the IVW model and excluded triglycerides from this

analysis. Since there is no association between triglycerides

and RVO, meaning that there is no need to adjust for

secondary exposure.
Statistical analyses

We used a standard inverse variance weighted (IVW)

method to estimate the causal effects in the two-sample MR

analysis. In addition, we used MR–Egger and weighted-median

methods as supplements to IVW. We determined the

heterogeneity of IVs using Cochrane’s Q test and I2. P<0.05 of

Cochrane’s Q indicated the existence of heterogeneity (25). I2

was categorized as low, moderate, or high, and a value >25% was

regarded as significant heterogeneity (26). In addition, the

heterogeneity within the MR–Egger analysis was evaluated by

calculating Rucker’s Q (27). P<0.05 of Cochran’s Q and Rucker’s

Q (Q-Q’) indicates MR-Egger to be a better method because of

unbalanced horizontal pleiotropy (27). We used the MR–Egger

intercept (28) and MR-PRESSO Global test (29) to detect

horizontal pleiotropy, with a P value <0.05 indicating that the

exposure may have the other pathway for IVs to influence the

outcome. We conducted a leave-one-out sensitivity analysis by

removing a single variant from the analysis (Supplementary

Figures 1–8).

P<0.05 was considered to be statistically significant. All MR

analyses were performed using R software (4.1.2) and the R

packages “TwoSampleMR” and “MR-PRESSO”.
FIGURE 1

Basic assumptions of Mendelian randomization. Assumption 1: The genetic variants were strongly and causally related to exposure; Assumption
2: the genetic variants were not associated with any potential confounders; Assumption 3: each genetic variant and the outcome did not have
common causes.
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Results

Our results show that 86, 77, 53, 81 SNPs from GLGC and

78, 45, 65, 57 SNPs from UKB were associated with HDL-C,

LDL-C, triglycerides and total cholesterol respectively

(Supplementary Datasets 1–8). The software tool SNiPA (30)

was used to identify the overlapping SNPs between the two

independent datasets (SNPs in high LD, r2>0.8). There were 54

and 32.93% overlapping SNPs in HDL-C, 34 and 27.87%

overlapping SNPs in LDL-C, 20 and 16.95% overlapping SNPs

in triglycerides, and 58 and 42.03% overlapping SNPs in total

cholesterol. We listed these overlapping SNPs in Supplementary

Table 2. The F statistics were all greater than the empirical

threshold of 10, suggesting that all SNPs had sufficient validity,

and the minimum F statistics in each subgroup are shown in

Table 1. The explained variances varied from 4.31% to 9.41%

(Table 1). The results of the MR analysis from GLGC are

presented in Figure 2 and the results from UKB are presented

in Figure 3.
Causal effect of HDL-C on RVO

In our MR analysis of the relationship between HDL-C level

and RVO, our overall causal estimate obtained using the IVW

method suggested a causal association between them. As shown

in Figure 2, genetically predicted increased HDL-C level was

associated with decreased risk of RVO [OR=0.806; 95% CI=

(0.659, 0.986); P=0.036)] from GLGC. Similarly, genetically

predicted increased HDL-C level was associated with lower

risk of RVO [OR=0.766; 95% CI=(0.635, 0.925); P=0.005]

from UKB (Figure 3). Moreover, our MVMR analysis for

plasma lipids [adjusted OR=0.639; 95% CI=(0.411, 0.992);

P=0.046] or diabetes [adjusted OR=0.81; 95% CI=(0.67, 0.979);
Frontiers in Endocrinology 04
P=0.029] suggested that low HDL-C may be an independent risk

factor for RVO. Our sensitivity analysis showed that there were

no heterogeneity via Cochrane’s Q test [GLGC (Q=90.256,

P=0.328); UKB (Q=79.793, P=0.391)] or I2 [GLGC (I2

=5.82%); UKB (I2 =3.5%)] and no horizontal pleiotropy via the

MR–Egger test [GLGC (intercept=-0.007, P=0.418); UKB

(intercept=-0.008, P=0.404)] or MR-PRESSO Global test

[GLGC (P=0.345); UKB (P=0.394)], as shown in Table 1. Our

leave-one-out analysis found that no single genetic variant

strongly drove the overall effect of plasma lipids on RVO

(Supplementary Figure 1). Using the MR-Steiger test, none of

the variants were removed and results remained unchanged.
Causal effect of LDL-C on RVO

Next, we assessed the causal relationship between LDL-C

level and RVO. High LDL-C level was suggestively associated

with the risk of RVO using the IVW analysis method

[OR=1.233; 95% CI=(1.054, 1.442); P=0.009)] (Figure 2).

However, UKB results showed a null effect on RVO

[OR=1.115; 95% CI=(0.884, 1.407); P=0.359)]. This was

consistent with our MVMR analysis for lipids [adjusted

OR=1.015; 95% CI=(0.408, 2.523); P=0.975]. Nonsignificant

heterogeneity was detected across the instrument SNP effects

by Cochrane’s test [GLGC (Q=74.604, P=0.523); UKB

(Q=41.444, P=0.582)] or I2 [GLGC (I2 =0%); UKB (I2 =0%)]

(Table 1). The MR–Egger intercept test did not reveal any signs

of horizontal pleiotropy regarding LDL-C level [GLGC

(intercept=-0.004, P=0.615); UKB (intercept=-0.005, P=0.678)],

similar to results obtained using MR-PRESSO [GLGC

(P=0.509); UKB (P=0.576)] (Table 1). The leave-one-out test

showed that MR results were not significantly affected by a single
TABLE 1 Mendelian randomization results of lipid traits on RVO.

Cochrane's Q statistic MR-Egger test MR-PRESSO Global test

NSNP R2 (%) F statistic I2 (%) Q P value intercept P value P value

GLGC

HDL-C 86 6.42 29.95 5.82 90.256 0.328 -0.007 0.418 0.345

LDL-C 77 9.41 27.79 0 74.604 0.523 -0.004 0.615 0.509

Triglycerides 53 5.46 29.86 0 45.623 0.721 0.007 0.405 0.738

Total cholesterol 81 8.36 28.93 11.42 90.315 0.202 -0.018 0.018 0.205

UKB

HDL-C 78 7.42 26.37 3.5 79.793 0.391 -0.008 0.404 0.394

LDL-C 45 4.31 28.35 0 41.444 0.582 -0.005 0.678 0.576

Triglycerides 65 4.45 25.23 0 63.561 0.492 0.003 0.405 0.79

Total cholesterol 57 7.22 27.11 14.17 65.242 0.186 -0.003 0.803 0.176
NSNP, number of single nucleotide polymorphisms; RVO, retinal vascular occlusion; GLGC: Global Lipids Genetics Consortium; UKB, UK Biobank; R2, phenotype variance explained by genetics.
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SNP leave-out (Supplementary Figure 2). No one SNP was

excluded by MR-Steiger.
Causal effect of triglycerides on RVO

We further investigated the relationship between

triglycerides and the risk of RVO using MR analysis. The

causal association of genetically predicted triglyceride level

with RVO determined by the IVW [OR=1.103; 95% CI=

(0.883, 1.378); P=0.385] demonstrated null effects (Figure 2),

consistent with results obtained from UKB [OR=1.003; 95% CI=

(0.827, 1.217); P=0.098]. Cochrane’s test [GLGC (Q=45.623,

P=0.721); UKB (Q=63.561, P=0.492)] or I2 [GLGC (I2 =0%);

UKB (I2 =0%)] detected no significant heterogeneity among

SNPs. Subsequently, MR–Egger regression analysis [GLGC

(intercept=0.007, P=0.405); UKB (intercept=0.003, P=0.405)]

or MR-PRESSO [GLGC (P=0.738); UKB (P=0.79)] (Table 1)

detected no horizontal pleiotropy.
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Causal effect of total cholesterol on RVO

Finally, we explored the causal relationship between total

cholesterol and RVO. The MR–Egger test showed a causal

effect between total cholesterol level and the risk of RVO

[OR=1.441; 95% CI=(1.083, 1.916); P=0.014)], while the IVW

method showed a null causal effect [OR=1.116; 95% CI=(0.93,

1.338); P=0.236]. The MVMR analysis for lipids [adjusted

OR=0.904; 95% CI=(0.307, 2.659); P=0.854] and UKB results

[OR=1.047; 95% CI=(0.816, 1.344); P=0.716] demonstrated

null effects. No heterogeneity presence by Cochrane’s test

[GLGC (Q=90.315, P=0.202); UKB (Q=65.242, P=0.186)] or

I2 [GLGC (I2 =11.42%); UKB (I2 =14.17%)]. Although

pleiotropy was present (MR–Egger intercept =-0.018,

P=0.028) in GLGC, no significant outlier was tested by MR-

PRESSO (P=0.205) (Table 1). No pleiotropy was present in

UKB [(MR–Egger intercept =-0.003, P=0.803); MR-PRESSO

(P=0.176)]. In addition, Rucker’s Q of total cholesterol was

significantly lower (P=0.02) than Cochran’s Q, indicating MR-
FIGURE 2

Forest plot of Mendelian randomization results from GLGC. IVW: inverse variance weighted, Egger: MR–Egger, Median: weighted-median, MVMR:
multivariable mendelian randomization, 95%LCI: lower limit of 95% CI, 95%UCI: upper limit of 95% CI. GLGC, Global Lipids Genetics Consortium.
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Egger to be a better method because of unbalanced horizontal

pleiotropy (Supplementary Table 1). So we adopted the results

analyzed by MR–Egger in GLGC. No one SNP was excluded by

MR-Steiger.
Discussion

This study substantiates the conclusion that low HDL-C is a

risk factor for RVO both from GLGC and UKB. In contrast, we

found no evidence of a causal association between LDL-C, total

cholesterol or triglycerides and RVO. After adjusting for each

lipid profile component or diabetes using MVMR, our results

indicated the association between HDL-C and the risk of RVO,

suggesting that low HDL-C may be an independent risk factor

for RVO.

Although the exact pathogenesis of RVO remains elusive,

numerous studies have reported that RVO is associated with

atherosclerosis, a chronic inflammatory disease of the arteries (5,

15, 31). Hyperlipidemia is a major risk factor for atherosclerosis,

and abnormal lipid metabolism is an important component of

atherosclerosis. Meanwhile, LDL-C is the most abundant

atherogenic lipoprotein in plasma (32) and leads to the

initiation and progressive growth of atherosclerotic plaque
Frontiers in Endocrinology 06
increases in a dose-dependent manner (33). Thus, LDL-C may

play an important role in the development of RVO. And the

association between elevated LDL-C level and the development

of RVO has been demonstrated by previous studies (8, 15).

GLGC results suggested that high LDL-C may be a risk factor for

RVO. However, many lipid trait SNPs carry pleiotropic lipid

trait effects and overlap between genetic determinants of LDL-C

and HDL-C is widespread (34). MVMR is useful to estimate the

direct causal effect of each lipid profile component, independent

of the other lipid profile variables (35). MVMR analysis for

plasma lipids suggested that high LDL-C may not be an

independent risk factor for RVO. This result was consistent

with UKB.

A few studies have reported that the total cholesterol is

significantly related to the risk of RVO (15, 16). However,

MVMR analysis for lipids and UKB results showed null effects

on RVO. Total cholesterol and LDL-C are easy direct targets for

medical treatments, such that baseline total cholesterol and

LDL-C level may vary substantially in clinical trials,

complicating the interpretation of results regarding RVO risk.

Our findings suggested that total cholesterol and LDL-Cmay not

be independent risk factors for RVO. Thus, more studies are

required to determine the causal relationship between total

cholesterol, LDL-C and RVO.
FIGURE 3

Forest plot of Mendelian randomization results from UKB. IVW: inverse variance weighted, Egger: MR–Egger, Median: weighted-median, 95%
LCI: lower limit of 95% CI, 95%UCI: upper limit of 95% CI. UKB: UK Biobank.
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Unlike LDL-C, HDL-C is widely believed to exert

atheroprotective effects. Despite the evidence from various

previous reports indicating an association between HDL-C and

the risk of RVO, this conclusion remains controversial. HDL-C

directly mediates reverse cholesterol transport that hinders the

accumulation of cholesterol in the arterial wall and prevents the

progression of atherosclerosis (36). Additionally, HDL-C has

been shown to inhibit the endothelial inflammatory response

and oxidation of LDL-C (37). Through these underlying

mechanisms, increasing HDL-C level may have improved the

endothelial health of the retinal vessel, and decreased the risk of

RVO. An early Study from Beaver Dam Eye demonstrated a

relationship between higher baseline HDL-C levels and RVO,

but the results were not statistically significant (38). Recently,

two national cohort studies verified that low HDL-C was a risk

factor for retinal artery occlusion and retinal vein occlusion (9,

11), consistent with our MR results both from GLGC and UKB.

The MR study reported here provides genetic evidence that low

HDL-C is a risk factor for RVO. In addition, many lipid trait

SNPs carry metabolic syndrome trait effects, especially diabetes,

which is an important and concerning confounder. A low HDL-

C level is associated with a higher risk of type 2 diabetes (39) and

studies have shown that RVO is associated with diabetes (40).

After adjusting for diabetes, MVMR analysis demonstrates that

low HDL-C may be an independent risk factor for RVO,

suggesting that controlling of HDL-C level may be effective in

managing RVO.

To the best of our knowledge, this is the first study to clarify

a causal associations between plasma lipid levels and RVO risk

using the MR method. This study has several strengths. The use

of MR design reduces the risk of bias from confounding factors

and is suitable for causal inference. This MR study was analyzed

using two independent lipid GWAS datasets, which makes the

results more reliable. However, our MR study does have several

limitations that should not be ignored. The greatest concern in

MR studies is the horizontal pleiotropy, which occurs when the

genetic variants influence the outcome of more than one

pathway (25). Furthermore, the horizontal pleiotropy can be

classified into uncorrelated pleiotropy and correlated pleiotropy,

in which the former means SNPs affect exposure and outcome

independently and the latter means SNPs affect the two traits

through a shared pathway (41). In an effort to minimize this bias,

we used two main means to detect the uncorrelated pleiotropy,

the MR–Egger intercept and MR-PRESSO methods. However,

unmeasured confounding may still exist such as correlated

pleiotroy. Therefore, MR-Steiger test was used to filter all

selected SNPs, hoping to minimize the bias (24). However, it

is not possible to completely rule out the presence of residual

pleiotropy. Last but not least, care should be taken when

expanding our conclusions to other populations, as the present

MR analysis utilized subjects of primarily Europeans.

In conclusion, the present study indicated that exposure to

abnormal lipid level may increase the risk of RVO. Furthermore,
Frontiers in Endocrinology 07
our findings demonstrated a causal association between HDL-C

and the risk of RVO, after adjustment for lipid components or

diabetes, suggesting that controlling of HDL-C level may be

effective in managing RVO.
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