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It is a well-known fact that voltage-activated ion channels are expressed in non-excitable cells
(Jagannathan et al., 2002; Piskorowski et al., 2008; Sontheimer, 2008). However, their putative
physiological functions and the regulation of their activity in non-excitable cells are controversial
topics (Stokes et al., 2004; Badou et al., 2013). This also holds true for red blood cells (RBCs).

In the context of investigating ion transport across the membrane of RBCs, especially in low
ionic strength media, the existence of ion transport dependent on the membrane potential was
reported for the first time approximately 50 years ago (Donlon and Rothstein, 1969). In an
investigation based on comparative physiology, it became evident that the low ionic strength-
induced cation permeability in RBCs is not due to electrodiffusion but due to a transport protein-
based process (Halperin et al., 1990; Bernhardt et al., 1991). Later, in addition to the K+(Na+)/H+

exchanger (Richter et al., 1997; Kummerow et al., 2000), the existence of a voltage-activated
non-selective cation channel was functionally demonstrated utilizing the patch-clamp technique
(Christophersen and Bennekou, 1991; Kaestner et al., 1999; Rodighiero et al., 2004). At present,
the molecular identity of this particular channel remains unknown (Kaestner, 2011; Bouyer et al.,
2012), and it has alternatively been proposed to reflect a conductance state of the voltage-dependent
anion channel (VDAC) (Bouyer et al., 2011). On the other hand, evidence for the existence of a
number of voltage-activated Ca2+ channels that are abundant in RBCs has been reported (Pinet
et al., 2002; Romero et al., 2006), and the most convincing evidence is for CaV2.1, based on
molecular biology data (Western blot) (Andrews et al., 2002) and, presumably, CaV2.1-specific
pharmacological interactions (ω-agatoxinTK) (Andrews et al., 2002; Wagner-Britz et al., 2013).
Nevertheless, so far, we and others have failed to obtain direct functional evidence for the existence
of CaV2.1 or other voltage-activated Ca2+ channels in RBCs by patch-clamp techniques.

Although RBCs are undoubtedly non-excitable cells, sudden changes in membrane potential
occur, when increased cation permeability is induced. This is the case because the restingmembrane
potential is determined by Cl− conductance (Hunter, 1977; Lassen et al., 1978). For example,
when the Gardos channel (Gardos, 1958; Hoffman et al., 2003) is activated, the resting membrane
potential changes from approximately −10 to −90mV (Tiffert et al., 2003). The physiological
function of the Gardos channel remained elusive for decades, until it was discovered that it is
a major component of the suicidal process of RBCs (Kaestner and Bernhardt, 2002; Lang et al.,
2003; Bogdanova et al., 2013) triggered by Ca2+ entry (Yang et al., 2000; Kaestner et al., 2004),
resulting in cell shrinkage (Begenisich et al., 2004; Lew et al., 2005), and phosphatidylserine
exposure (Chung et al., 2007; Nguyen et al., 2011). Only very recently was the interplay between
the mechanosensitive channel Piezo1 and the Gardos channel established (Faucherre et al., 2013;
Cahalan et al., 2015; Danielczok et al., 2017a), showing a Ca2+-mediated response when RBCs pass
through constrictions such as small capillaries.
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Since patch-clamp protocols for CaV2.1 in RBCs are lacking,
imaging approaches based on the Ca2+ fluorophore Fluo-4 are
the method of choice (Minetti et al., 2013). The sudden change
in membrane potential following Gardos channel activation
suggests that there is a link between Gardos channel activity
and voltage-activated channels. Such an interplay was already
demonstrated in a recent publication showing an 80% reduction
in lysophosphatidic acid (LPA)-induced Ca2+ entry by the
Gardos channel blocker charybdotoxin (Figure 4A in Wesseling
et al., 2016). It would be nice to show CaV2.1 activity in
direct response to Gardos channel activation. This is challenging
because the activation stimulus for the Gardos channel (an
increase in intracellular Ca2+) is the same parameter used
to measure CaV2.1 activity. However, Gardos channel activity
is increased in patients carrying a mutation that affects the
calmodulin-binding site (R352H) (Rapetti-Mauss et al., 2015;
Fermo et al., 2017). This could be used as a model to investigate
the putative interplay between the Gardos channel and CaV2.1.
One would expect an increase in CaV2.1 activity due to increased
Gardos channel activity. Consequently, intracellular Ca2+ levels
should be elevated in the RBCs of these patients, which indeed
is the case (Figure 6 in Fermo et al., 2017). The finding that
only a subpopulation of cells showed increased Ca2+ levels
(Fermo et al., 2017) can probably be explained by the highly
heterogeneous distribution of the participating channels, which is
well-established for the Gardos channel (Grygorczyk et al., 1984;
Lew et al., 2005) but is also likely to apply to other channels in
RBCs (Kaestner, 2015).

Nevertheless, we are still left with one peculiarity: According
to previous investigations, CaV2.1 activation is induced by
depolarization (Catterall, 2011), not by hyperpolarization,
which is the outcome of Gardos channel activity. However,
hyperpolarization is a requirement to switch CaV2.1 channels
from the inactivated state to the closed state, which is
a prerequisite to subsequently transition to the open state
(Catterall, 2000) (Figure 1A). Closing of the Gardos channels
after their initial activation could well provide the necessary
conditions for subsequent depolarisation to activate CaV2.1.
Since the hypothetical switching behavior of the Gardos channel
would be crucial for the activation of CaV2.1, we would like to
discuss this aspect in more detail. We envision three principle
modes by which this switching could occur:

(i) Because channel activity is a stochastic event and because
the number of Gardos channels per RBC is rather low (in
the single digit numbers; Grygorczyk et al., 1984; Wolff
et al., 1988), depolarisation could be the result of stochastic
Gardos channel closures. This hypothesis is supported by
the rather sparse whole cell patch-clamp recordings of
Gardos channel activity in human RBCs (Qadri et al., 2011;
Kucherenko et al., 2012, 2013; Fermo et al., 2017). Whole
cell current traces do not show a smooth appearance but
rather a flickering pattern similar to that observed with
single channel recordings, especially at higher (positive and
negative) membrane potentials.

(ii) When looking at Gardos channel-induced changes in the
membrane potential of cell populations, a gradual Ca2+

concentration-dependent effect can be seen (Baunbaek

and Bennekou, 2008), i.e., the hyperpolarisation observed
in RBC suspensions is a gradual Ca2+ concentration-
dependent effect. However, the abovementioned study
(Baunbaek and Bennekou, 2008) as well as another report
(Seear and Lew, 2011) showed that the activation of
the Gardos channel at the cellular level is an all-or-
none response. This means that the gradual change in
membrane potential would be the result of the summation
of cells with open or closed Gardos channels. Taking
into consideration that the Ca2+ pump (Schatzmann,
1973) continuously operates in response to any increase
in intracellular Ca2+ levels, one would imagine that the
state of the Gardos channels is exclusively modulated
by variations in intracellular Ca2+ concentrations. Hence,
the switching behavior of the Gardos channel would be
the direct consequence of continuous variations in RBC
intracellular Ca2+ concentrations.

(iii) Localized interactions between the Gardos channel and
CaV2.1 in RBCs could occur in lipid rafts or nanodomains,
as is the case with closely related ion transporters in other
cell types, for example, within the fuzzy space or dyadic
cleft in myocytes (Lines et al., 2006). Although RBCs
do not possess membrane-constricted subspaces, there are
indications for functional compartments in the immediate
vicinity of the plasma membrane (Chu et al., 2012).
Colocalization of ion channels is common in excitable cells
(Rasband and Shrager, 2000; Bers, 2002). For RBCs, it is still
unknown if the different ion channels colocalize or cluster
to allow their interaction in nanodomains. However, in
support of this idea is the observation that local activation of
mechanosensitive channels (most likely Piezo 1) by patch-
clamp micropipettes resulted in local activation (single-
channel recordings) of the Gardos channel (Dyrda et al.,
2010).

Although the previous three lines of argumentation are to some
extent speculative and although we are unable to favor one over
the others, we believe it is worthwhile to share our thoughts with
both the RBC and CaV channel research communities in this
opinion article. The concerted activity of channels is essential
in numerous physiological mechanisms, such as the generation
of action potentials in neurons (Rojas et al., 1970), excitation-
contraction coupling in the heart (Bers, 2002), and during the
formation of the immunological synapse (Quintana et al., 2006).
In RBCs, there is evidence that the Gardos channel is activated in
response to the opening of Piezo1 (Dyrda et al., 2010; Danielczok
et al., 2017a), but the inverse process may also occur; activation
of the Gardos channel may induce Piezo1 activity. Since Gardos
channel activation is supposed to be associated with RBC volume
changes, this effect is likely to activate the mechanosensitive
channel Piezo1.

To imagine what may happen when Piezo1 is activated,
we need to consider the membrane potential. Activation of
Piezo1, which is a non-selective cation channel, would lead to
a disruption of the hyperpolarisation induced by the Gardos
channel, thus preventing voltage activation of CaV2.1. Therefore,
if Piezo1 is closed, CaV2.1 activation would be facilitated,
resulting in increased intracellular Ca2+ compared to control
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FIGURE 1 | Interplay between CaV2.1, Piezo1 and the Gardos channel. (A) Activation scheme for the CaV2.1 channel modulated by underlying Gardos channel

activity. (B) Proposed interactions between CaV2.1, the Gardos channel and Piezo1. (Ba) illustrates a mechanism that is compatible with the measurements

presented in Wesseling et al. (2016) and that explains the pathophysiological events seen in Gardos channelopathy (Fermo et al., 2017). (Bb) illustrates a sequence of

events that is more likely to be relevant to physiological mechanical stimulation conditions in the circulation (Faucherre et al., 2013; Cahalan et al., 2015; Danielczok

et al., 2017a). Whether Piezo1 would exert an inhibitory effect in this scenario is an open question, and therefore, this is depicted with a dashed line. For more details,

see the main text.

conditions. We propose two scenarios explaining the interplay
between the Gardos channel, CaV2.1 and Piezo1 (Figure 1B).

The first scenario takes into account the RBCs of patients
carrying the R352H mutation (Rapetti-Mauss et al., 2015; Fermo
et al., 2017) or the V282M/E mutation (Andolfo et al., 2015;
Glogowska et al., 2015; Rapetti-Mauss et al., 2015). The RBCs of
these patients show increased baseline Gardos channel activity,
which is schematically sketched in Figure 1Ba. This sequence of
events can be initiated by the abovementionedmutations or by an
increase in intracellular Ca2+ independent of mechanical stress,
e.g., by NMDA receptor activity (Makhro et al., 2013), TRPC
channel openings (Danielczok et al., 2017b), or VDAC activity
(Bouyer et al., 2011).

The second scenario envisions an alternative, independent
sequence of events. Piezo1 may indirectly modulate CaV2.1

activity, as outlined in Figure 1Bb. If Piezo1 is the source of
the increase in intracellular Ca2+, then subsequent Gardos
channel activity would induce the opening of CaV2.1 channels,
while Piezo1 channels might still be in an inactivated state.
It is likely that Piezo1 channels would remain inactive.
After mechanical stimulation, inactivation occurs within
100ms (Wu et al., 2017), and channel reopening would
require a new (repetitive; not lasting) mechanical stimulation
(Lewis et al., 2017). Whether the volume change induced
by mechanical stress is sufficient for repetitive activation
remains unclear, and therefore, the inhibitory effect by Piezo1
is indicated by a dashed line in Figure 1Bb. This mechanism
(Figure 1Bb) might explain the long-lasting Ca2+ signal seen
after mechanical stimulation and reported in this Research Topic
(Danielczok et al., 2017a).
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In summary, here, we propose several reasonable mechanisms
(Figure 1) to explain how voltage-activated (Ca2+) channels
could fulfill a physiological function in non-excitable RBCs. We
hope to initiate a discussion on this topic and to encourage
further investigations beyond the content of this paper.
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