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ABSTRACT: The emission reduction of the main greenhouse gas,
CO2, can be achieved via carbon capture, utilization, and storage
(CCUS) technology. Geological carbon storage (GCS) projects,
especially CO2 storage in deep saline aquifers, are the most promising
methods for meeting the net zero emission goal. The safety and
efficiency of CO2 saline aquifer storage are primarily controlled by
structural and capillary trapping, which are significantly influenced by
the interactions between fluid and solid phases in terms of the
interfacial tension (IFT) between the injected CO2 and brine at the
reservoir site. In this study, a model based on the random forest (RF)
model and the Bayesian optimization (BO) algorithm was developed to
estimate the IFT between the pure and impure gas−brine binary
systems for application to CO2 saline aquifer sequestration. Then three heuristic algorithms were applied to validate the accuracy and
efficiency of the established model. The results of this study indicate that among the four mixed models, the Bayesian optimized
random forest model fits the experimental data with the smallest root-mean-square error (RMSE = 1.7705) and mean absolute
percentage error (MAPE = 2.0687%) and a high coefficient of determination (R2 = 0.9729). Then the IFT values predicted via this
model were used as an input parameter to estimate the CO2 sequestration capacity of saline aquifers at different depths in the Tarim
Basin of Xinjiang, China. The burial depth had a limited influence on the CO2 storage capacity.

1. INTRODUCTION
In recent years, reducing anthropogenic carbon emissions has
aroused broad concern in countries around the world.
Significant amounts of greenhouse gases have been emitted
over the years, according to previous research data.1,2

Significantly, China, whose energy system mainly relies on
fossil fuels, emitted 10.76 GT of CO2 and is currently the
world’s largest emitter of CO2.

3,4 Thus, to address the global
warming caused by anthropogenic carbon emissions, China
proposed the carbon peak and carbon neutrality goal of the
“3060” plan in 2020.5−7

There are several emission reduction methods, including
energy structure transformation and energy use efficiency
enhancement. Among these methods, the carbon capture,
utilization, and storage (CCUS) technique is not only a key
technology for reducing carbon emissions but also has
significant commercial value compared with other technolo-
gies.8−10 Geological CO2 storage combined with enhanced
water recovery (CO2-EWR) technology, considered a newly
developed carbon utilization technique, has the ability to safely
store a significant amount of CO2 without increasing the
reservoir pressure, which can be utilized to facilitate reverse

osmosis desalination of reservoir brine to produce drinkable
water.11,12 This solves the problem of an industry that suffers
from water leakage, sometimes discharging wastewater to the
neighborhood. Thus, this technology offers a dual solution to
environmental and water scarcity challenges.8,13 The geological
storage and utilization of CO2 has great potential both
worldwide11,14,15 and in China, and the Xinjiang region is
suitable for CO2 saline aquifer sequestration.

11 During this
process, the thermodynamic properties of the gas−liquid
phase, especially the interfacial tension (IFT) between the gas
and liquid phases, play a crucial role in the flexibility of this
scheme due to its direct influence on the efficiency of capillary
trapping, which is one of the most critical trapping mechanisms
in the CO2 geological storage (CGS) process.
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In the process of CO2 geological storage, CO2 is generally in
a supercritical state. Supercritical CO2 is lifted by buoyancy
and settles beneath the cap. The increase in capillary pressure
is caused by the numerous linked pore throats of varying sizes
in the cap layer, as depicted in Figure 1. The breakthrough

pressure occurs when the pressure differential across the entire
cap layer�that is, the pressure differential between the
injected CO2 and saline water�exceeds the capillary pressure
of the pore throat. The nonwetting phase�in this case, CO2�
flows through the pore throat after the breakthrough pressure
is reached, creating issues with CO2 leakage. The consequences
of capillary pressure breakthrough leakage are severe and occur
far more quickly than leakage due to CO2 diffusion.
Consequently, one of the most critical metrics for evaluating
the effectiveness of cap layer sealing is exceeding this threshold
capillary pressure. The threshold capillary pressure can be
represented by Laplace’s law as follows:

P
R

ce
2 cos

(1)

where Pce is the threshold capillary pressure at the orifice
throat; σ is the IFT between CO2 and brine; φ is the contact
angle between the caprock, CO2, and brine system; and R is
the size of the most prominent pore throat or microfracture in
the caprock because the larger R is, the lower the breakthrough
pressure. The orifice throats frequently connect to each other,
leading to leakage when the maximum orifice throat is
exceeded. It is essential to conduct necessary studies on the
influence of temperature, pressure, and other factors on the
IFT between the CO2 and brine. These findings provide
crucial guidance for improving the safety of CO2 injection and
increasing the capacity for storage.20 In addition, these studies
provide insights into the factors that affect the IFT, which will
facilitate future research and advancements in the field.
Numerous academic researchers have conducted extensive

investigations on the IFT in CO2−brine systems utilizing a
wide range of approaches, including experimental measure-
ments,21−27 molecular dynamics simulations,28,29 empirical
formulations,30,31 density gradient models,32 machine learn-
ing,33−35 and various other techniques. Li et al.36 conducted
IFT measurements on a mixed salt system (0.864 NaCl and
0.136 KCl) using the pendant drop method and discovered a
linear relationship between the IFT and the salt concentration.
They also developed empirical equations with high accuracy
and reached a good agreement with the experimental data. In
our previous work, we37 analyzed the relationships between the

IFT and temperature, pressure, and salinity in detail via the
pendant drop method. The results indicate that in the low-
pressure phase, the IFT between CO2 and brine decreases
markedly with the increase in pressure. Upon reaching the
high-pressure regime, the IFT enters a pseudoplateau where it
becomes pressure-independent. In contrast, they fluctuate with
temperature and increase with molality. Jerauld et al.38

improved the empirical formula for the IFT in a CO2−brine
system. This empirical formula improved the correlation
between the IFT and temperature, reducing the standard
deviation to 3.4%. Iglauer et al.29 utilized molecular dynamics
to simulate IFT phenomena and discovered that their model
aligned with the experimental data. However, it was not a
reliable predictor at high pressures, exhibiting an error rate of
up to 20%. As a result, the inclusion of a correction factor
became necessary.
With the rapid development of computer science, machine

learning has also experienced significant growth and is now
being applied in various fields. Many scholars have recognized
its effectiveness in multiple areas.39 Ratnakar et al.40 used
machine learning to develop models for predicting the
solubility of carbon dioxide in brine. They utilized two primary
models, namely, a random forest and a decision tree. The final
predictions of the models exhibited a relative error of 2−7%
compared to the experimental observations. Liu et al.41

constructed an optimized wavelet neural network to predict
the IFT of a CO2−brine system with a Model R2 of 0.95 but
used a small data set. Amooie et al.42 conducted a machine
learning prediction of IFT for a CO2−brine system. However,
the model they used was outdated. Amar33 studied an IFT
system, using genetic programming to improve the system.
Currently, machine learning has been widely used in various

fields due to its high computing speed, strong adaptability, and
fault tolerance.43 A random forest model combined with the
Bayesian optimization algorithm (BO-RF) was developed to
estimate the IFTs between CO2 and brine/water binary
systems corresponding to the CGS conditions in this work. In
regard to predictors, random forests outperform other
conventional models and exhibit better stability. However, a
disadvantage of random forests is that they erode over time, in
contrast to the recently proposed hybrid algorithms. Here, a
Bayesian optimization algorithm was applied to optimize the
random forest hyperparameters to increase the accuracy of the
prediction results. Then, the Tarim Basin in China’s Xinjiang
Province was used as a case study to investigate the influence
of the IFT on the estimation of the storage capacity of the
selected site. This study provides a high-precision model for
interfacial tension acquisition in CO2−brine systems, which
may be helpful for CO2 geological storage technology.

2. METHODOLOGY
2.1. Principles of Random Forests. Breiman44 proposed

random forest (RF), an integrated learning method based on
several decision trees (weak learners). Machine learning
applies the notion of integrated learning, which is often
referred to as ensemble learning. It is an optimized
combination of several different models.45 Weak learners are
the models that are employed in this combination, which
enables more accurate predictions. The training sample set
during training must be used to train these weak learners in a
sequential manner. Then, these weak learner models are
combined and used for predictions.

Figure 1. Comparative subsurface CO2 flow.
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2.1.1. Regression Tree. In the prediction process of the
regression tree model, objective evaluations and decisions are
made along the branches of the tree based on the input
eigenvalues until the leaf nodes are reached and the prediction
is made. The associations are represented using a structure that
resembles a tree, in which each inner node represents a feature,
each branch represents a value obtained from that character-
istic, and each terminal node represents the output of a
prediction. The following steps are primarily involved in the
creation of regression trees:
1. Selection of features: To obtain the best classification

result for the split data set, the selection of the appropriate
characteristics for the root node is carried out.
2. A finite number of subsets are created from the training

data set, and the division of those subsets can be explained as
follows: The jth eigenvector value is chosen for the input and
output variables. For the purpose of categorizing characteristics
and labeling points, the following two subsets are defined:

R j s x x s( , ) j
1

( )= { | } (2)

R j s x x s( , ) j
2

( )= { | > } (3)

where R1(j, s) represents the left subset of the partition of the
values s of the jth feature vector and R2(j, s) represents the
right subset of the partition of the values s of the jth feature
vector.
The best cutoff variable and cutoff point for resolution are

selected as follows:
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Iterate over the variable j, search the intersection s for a fixed
intersection variable j, choose the (j, s) that minimizes the
above equation, and then divide the set into two subsets in
turn. This process is repeated until the end conditions are met.
Regression trees operate on a simple, straightforward basis,

which makes them easy to apply. However, they are sensitive
to changes in the input data and prone to overfitting.
Therefore, a regression tree can be optimized by applying
integrated learning or pruning techniques to address the
unpredictability problems of the data.
2.1.2. Random Forest. Regression trees are the fundamental

basis of the random forest method, which integrates several
regression trees to improve the accuracy and integrity of
predictions, as illustrated in Figure 2. The construction of a
random forest is as follows:
1. A data point n from the complete training data is chosen,

where n is much smaller than N (the total training data set).
This is achieved by selecting the input training data. The out-
of-bag data are a subset of the complete training data set that
cannot be chosen for analysis. Error estimates can be made
using this particular subset.
2. At each segment node, m features are chosen from the

whole feature set M to form a regression tree.
3. When building each regression tree, the splitting nodes

are selected according to the lowest Gini index. Until the
maximum depth of the tree is reached or all training samples

within a node belong to the same class, the remaining nodes of
the regression tree are built using the same splitting strategy.
4. Steps two and three are repeated multiple times. Each

input corresponds to a regression tree. Then, a random forest
model that can be used for predictive analysis will be
established.
5. When the data to be predicted are entered, multiple

regression trees can be used to make decisions at the same
time, and the corresponding predicted values are obtained. The
regression predicted value should be averaged from the
predicted value of each regression tree to meet the final result.
The prediction process of the Random Forest is shown in eq

6 as follows:

h x
n

h x( )
1

( )
i

n

i
1

=
= (6)

Where n represents the number of decision trees, each Ti
providing a prediction hi(x) for a given input x, and the final
prediction of the Random Forest, denoted as h(x), is the mean
of all the predictions from the decision trees.
Following the above steps, a random forest can utilize the

combination of results from multiple regression trees to make
regression predictions. This approach can reduce the variance
of the model and enhance its generalization ability.
2.2. Principles of Bayesian Optimization Algorithms.

To guarantee quick and accurate predictions while using a
random forest for regression forecasting, it is critical to
determine the model’s optimal hyperparameters. In this study,
the Bayesian optimization algorithm was used as a global
optimization technique to determine the ideal hyperparameters
for this model. Bayes theorem is the primary tool used in this
method to identify the best results. To precisely fit the genuine
goal function and determine the next evaluation position based
on the fitted function, a probabilistic agent model was applied.
This improves the search efficiency and makes it possible to
find the ideal fit more quickly. The Bayesian optimization
flowchart is shown in Figure 3. The two main parts of this

Figure 2. Random Forest flowchart.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c04888
ACS Omega 2024, 9, 37265−37277

37267

https://pubs.acs.org/doi/10.1021/acsomega.4c04888?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04888?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04888?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04888?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c04888?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


optimization approach are the collection function and the
probabilistic agent model.

Models of probabilistic agents can be roughly categorized as
parametric or nonparametric. In this study, the collection
function was subjected to the confidence boundary technique
using a Gaussian process as the nonparametric model.
2.2.1. Probabilistic Agent Model. Regression, classification,

and other fields require the inference of black-box functions
based on Gaussian processes. Additionally, they have less
tendency to “overfit”. This model was used for this study.
Generally, a neural network and a Gaussian process are related.
In particular, a neural network with an infinite number of
hidden layer units corresponds to a Gaussian process.46 The
basic model for the distribution of multivariate Gaussian
probability is the Gaussian process. It consists of a mean
function, m, and a covariance function, k, which refers to a
semipositive definite.

In a Gaussian process, a finite set of random variables all
follow a Gaussian joint distribution, assuming a prior
distribution with a mean of zero:

( )p f X( , ) N 0,| = (7)

k x y( , )
i j

i i
,

=
(8)

where X is the training set, X = {x1, x2,..., xi}f is the set of values
of the unknown function f,f = {f(x1), f(x2),..., f(xi)}; ∑ is the
covariance matrix formed by k(x, x′); and θ is the
hyperparameter.
The probability distribution is obtained by assuming the

presence of noise that follows a Gaussian distribution, which is
independent and identically distributed:

Np y f f I( ) ( , )2| = (9)

where y represents the set of observed values. The marginal
likelihood distribution x is obtained based on the prior
distribution and likelihood distribution equation:

( )Np y X p y f p y X f I( , ) ( ) ( , ) d 0, 2| = | | = +
(10)

Usually, by maximizing the marginal likelihood distribution
to optimize hyperparameters, according to the properties of
Gaussian processes, the following joint distribution exists:
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where f * denotes the value of the prediction function and X*
represents the prediction input K*

T = {k(x1, X*), k(x2, X*),...,
k(xi, X*)}, K** = k(X*, X*)
The predictive distribution derived from the joint distribu-

tion can be easily determined via the following equations:

Np f X y X f f( , , ) ( , cov( ))*| * = * * (12)

f K I yT 2 1Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ* = * + (13)

f K K I Kcov( ) 2 1Ä
Ç
ÅÅÅÅÅ
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ÑÑÑÑÑ* = ** * + * (14)

where ⟨f*⟩ denotes the predicted mean and cov( f *) represents
the expected covariance.

Figure 3. Flowchart of the Bayesian optimization algorithm.

Table 1. Statistical Table of the Evaluation Indicators for Each Type of Model

Source System m/(mol·kg−1) T/K p/MPa Number

Aggelopoulos, 201022 pure CO2-brine 0.045−2.7 300−373 4.9−25 103
Aggelopoulos, 201123 pure CO2-brine 0.045−1.5 300−373 5−25 95
Bachu et al, 200949 pure CO2-brine 0.117−4.087 293−398 2−27 280
Chalbaud, 200924 pure CO2-brine 0.085−2.75 300−373 4.8−25.8 107
Li, 2012a36 pure CO2-brine 0.98−4.95 298−448 2−50 336
Li, 2012b25 pure CO2-brine 0.98−5 343−423 2−50 232
Mutailipu, 201937 pure CO2-brine 1.05−4.9 298−373 2.98−15 160
Liu,201750 pure CO2-brine 0.98−1.98 298−423 2−69 42
Pereira,201751 pure CO2-brine 0.2−1.8 300−353 3−12 152
Ren, 200026 impure CO2-pure water 0.0 298−373 1−30 90
Yan, 200152 impure CO2-pure water 0.0 298−373 1−30 120
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2.2.2. Collection Function. The collection function is
primarily used in the process of Bayesian optimization to
determine the next most likely point of evaluation to achieve
optimal model performance. A confidence-bounding strategy
known as GP-UCB, proposed by Srinivas et al.47 for use with
Gaussian processes, was applied in this study.
When maximizing the objective function, the acquisition

function of the upper confidence bound (UCB) strategy was
calculated via the following equations:

x D x x( ; ) ( ) ( )t t t t t1: = + (15)

where the β parameter balances the expectation and variance.

3. MODEL ESTABLISHMENT
3.1. Collecting and Preprocessing Data. The exper-

imental data used in the training of the model for the CO2 and
H2O/brine binary system are detailed in Table 1. The
assembled database contained 1507 IFT data points of CO2
and brine systems and 210 IFT data points of impure CO2
mixed with CH4 or N2 and brine systems, with a total of 1717
points covering temperatures ranging from 293.15 to 448.15 K,
with pressures up to approximately 69 MPa and salinities
between 0 and 5.0 mol·kg−1. According to previous research,
the IFT in CO2−brine systems is primarily influenced by
pressure, temperature, the molar concentration of brine, and
the molar fractions of methane and nitrogen.48 Correlation
analysis of the data can clarify the relationships between
variables, and this study adopted Pearson correlation analysis.
The correlation between each influencing factor and the IFT is
illustrated in Figure 4. The subsequent section includes an
examination of the impact of every variable on the IFT.
There are two primary phases to the effects of pressure. In

the low-pressure phase (p < 10 MPa), IFT decreases
significantly with the increase in pressure. This is considered
the initial stage of IFT variation concerning pressure. The
primary reason for this phase is the direct correlation between
IFT and the density difference. As pressure increases, the

density of CO2 also increases, reducing the density difference
between the two phases, thereby decreasing the IFT of CO2-
brine. However, once the critical pressure point is reached,
known as the “pseudoplateau”, IFT tends to stabilize, entering
the second phase where the effect of pressure on IFT is no
longer significant.53,54 Within the range of low temperature and
high pressure, the IFT between CO2 and brine increases with
the rise in temperature. However, at high temperatures (T >
343 K) and low pressures (p < 5 MPa), the IFT between
carbon dioxide and brine decreases as the temperature rises.
This phenomenon can be explained by the theory of Gibbs−
Duhem surface energy, which posits that as the temperature
increases, the kinetic energy of molecules at the interface also
increases. This leads to more intense intermolecular inter-
actions, thereby causing an increase in IFT.37,55 The
correlation between the salt molar concentration and the
outcome is shown in Figure 4. As the salinity of the brine
increases, the IFT also increases accordingly. This occurs
because the high salinity enhances the intermolecular forces
between water molecules, requiring more energy to expand the
droplet’s surface, thus increasing the IFT. The impact of brines
containing divalent cations on IFT is mainly more
pronounced.56,57 For impurity gases, namely, CH4 and N2,
the correlation is second only to that of pressure and bivalent
cations. As the content of impurity gases increases, IFT also
rises, which is highly beneficial for carbon dioxide storage in
saline aquifers.58 This must be taken into account by the
geological sequestration of CO2.
There are some outliers in the data collected from the

experiment for measurement reasons. These outliers can
impact the authenticity and objectivity of the data, which in
turn can affect the fitting and generalization effect of the
subsequent prediction model. The data in Table 1 were
processed using the isolated forest detection approach in this
study. This method mainly uses the characteristics of a high
isolation degree of outliers for data screening. It calculates the
isolation degree of data points by constructing a binary tree

Figure 4. Correlation analysis between impact factors.
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and determines whether they are outliers according to the
isolation degree. More remote data points are divided earlier in
the division process. Hence, their average depth is smaller.59

The outlier score for sample x can be calculated via the
following equation:

xScore( ) 2 E h x c N( ) / ( )= [ ] (16)

where E[h(x)] is the path length of sample x, which is
calculated as follows:

E h x
t

h x( )
1

( )
i

t

j
1

[ ] =
= (17)

where c(N) is the average path length of the tree given N data
samples and is used to normalize x:
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where H(X) is the harmonic number according to the
following equation and ϒ is Euler’s constant, approximately
0.577215:

H X X( ) ln= + (19)

According to the above steps, the larger the anomaly score
is, the greater the anomaly degree of the sample points. In this
study, 76 sets of outlier data were eliminated after detection
using isolated forests.
3.2. BO-RF Modeling. The flowchart for the BO-RF model

is shown in Figure 5. The data set in this study was divided

into an 8:1:1 ratio between a training set, a validation set, and a
test set. The main procedure is to use the training set for
model training and a hyperparameter search. A validation set
was used to achieve the predetermined goal of improving the
model performance. Then, a pertinent prediction of the test set
based on the optimized model was carried out. In this study, a
heuristic algorithm was developed to optimize the random
forest (RF) model for predicting the CO2−water/brine IFT
with high integrity. These heuristic algorithms include the
Sparrow Search Algorithm (SSA),60 the Particle Swarm
Optimization algorithm (PSO),61 and the Improved Gray

Wolf Optimization algorithm (IGWO),62 which are described
in detail below.
3.3. Iterative Optimization Process. The optimization

search procedure for each model is illustrated in Figure 6. The
heuristic approach iterates more slowly and virtually levels off
after the 15th step to find the ideal answer, as shown in Figure
6. On the other hand, the perfect solution is roughly reached
by the Bayesian optimization process in the eighth phase. The
superiority of the Bayesian optimization algorithm over the
heuristic method in identifying an optimal solution indicates its
inherent qualities. It is also demonstrated that the Bayesian
optimization method outperforms the heuristic approach in
terms of efficiency. Furthermore, the Bayesian optimization
algorithm yields the optimal hyperparameter for the tree as
300, the minimum leaf node for the tree as 1, and the number
of selected features as 4.

4. RESULTS AND DISCUSSION
4.1. Analysis of the Predictive Results of the Model.

The prediction results of each model are shown in Figure 7.
The closer the data point is to the 45° reference line, the
greater the fitting degree between the predicted and
experimental values. The figure shows that the BO-RF model
has the best fitting degree compared with the other three
models. Figure 8 more intuitively shows the prediction results
of the four models under the same conditions, and it can be
seen from the figure that the BO-RF model has a high
prediction accuracy. Figure 8’s experimental data is sourced
from Reference.37

The distributions of the differences between the exper-
imental and predicted values are displayed in Figure 9. The
results indicate that the machine learning prediction has a
better fit and accuracy, with the majority of the predicted data
falling within ±1.5 mN·m−1 and the remaining data being very
sparse. The primary comparison of the expected and
experimental values in Figure 9(B) demonstrates the
remarkable accuracy of the model suggested in this study.
4.2. Indicators for Model Evaluation. To validate the

accuracy of the model proposed in this study, several statistical
parameters were calculated. The equations for each evaluation
indicator are shown in Table 2.
The statistical parameters of each model were calculated,

and the results of each statistical parameter are shown in Table
3. Overall, each model tested had good predictive performance,
with the BO-RF model outperforming all other predictive
models, having the highest R2 (0.9729) and the lowest RMSE
(1.7705) and MAPE (2.0687%). The model predictions
exhibit a strong fit with the observed values.
4.3. Comparison with Other Models. This study

compared several high-performance models with the BO-RF
model to demonstrate its accuracy. It was compared with
prediction methods based on genetic programming (GP),33

the group method of data handling (GMDH),42 gene
expression programming (GEP),63 optimizing the WNN
model(I-WNN),41 and the correlation formula derived
through GPTIPS.54 The RMSE and R2 values were chosen
as the evaluation indices in this study, as shown in Table 4. It
can be concluded that the BO-RF model performs better than
the other methods, with an RMSE of 1.7705 and an R2 of
0.9729.
4.4. Correlation Validation. In this section, the relation-

ship between various influencing factors and IFT is depicted
using our model. The four panels in Figure 10 illustrate the

Figure 5. Flowchart of the BO-RF model.
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Figure 6. Iterative optimization process.

Figure 7. Comparison of results obtained from various types of models with actual data (A: BO-RF, B: SSA-RF, C: PSO-RF, D: IGWO-RF).
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trend of changes in IFT in relation to pressure, temperature,
ionic concentration, and impurity gases, respectively. The
predicted IFT by the model aligns with the trends of change in
various influencing factors as discussed previously, thereby
substantiating the accuracy of the model developed in this
study.

5. IMPLICATIONS FOR CARBON STORAGE
The primary goal of CO2-EWR technology is to achieve
enhanced water recovery and safe CO2 geological storage,
where site selection determines the flexibility of this scheme.
Considerable numbers of sedimentary basins can be found in

Figure 8. Comparison of four model predictions under isothermal conditions (A: T = 373.2 K, m = 1.98 mol/kg; B: T = 373.1 K, m = 4.9 mol/kg)

Figure 9. Data statistics of the BO-RF model. A: difference distribution between the experimental and predicted values, B: comparison between the
experimental and predicted values, C: frequency plot of the difference distribution, D: statistics of the number of difference distributions.

Table 2. Presentation of Evaluation Indicators

Evaluation indicators Expression
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China, both on land and on the continental shelf. These basins
have a wide distribution area and considerable sediment
thickness, with the widespread occurrence of brine layers
suitable for CO2 sequestration, especially in the Xinjiang
region.11 According to previous studies, there are four primary

forms of sequestration: structural, residual (capillary),
solubility, and mineralization trapping.16−19 The widespread
existence of saline aquifers is suitable for CO2-EWR projects,
and assessing the storage capacity of injection sites is crucial.
This study evaluated capillary trapping in the Tarim Basin in
Xinjiang.
During the geological storage of CO2, as mentioned in

introuduction section, leakage occurs when the pressure
difference between CO2 and the saline system exceeds the
breakthrough pressure. Due to the buoyancy effect of
supercritical CO2, buoyancy becomes the driving force for
CO2 leakage. As mentioned in eq 1, leakage occurs when the
pressure difference between CO2 and the saline system exceeds
the breakthrough pressure. Due to the buoyancy effect of
supercritical CO2, buoyancy becomes the driving force for CO2
leakage. To guarantee the airtightness and safety of the stored

Table 3. Statistical Table of the Evaluation Indicators for Each Type of Model

pure CO2−brine impure CO2−pure water total

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

PSO-RF 1.9555 2.6713 0.9651 1.6486 2.7187 0.9828 1.9160 2.6778 0.9674
IGWO-RF 1.9164 2.6676 0.9657 1.7937 2.9110 0.9786 1.9000 2.7012 0.9691
SSA-RF 1.9283 2.6625 0.9656 1.7149 2.7396 0.9792 1.9003 2.6731 0.9693
BO-RF 1.7666 1.9902 0.9709 1.7943 2.5584 0.9755 1.7705 2.0687 0.9729

Table 4. Comparison of the Prediction Performance of This
Model with That of Other Explicit Models

Model RMSE R2

Kamari et al. (2017)63 7.5016
Amooie et al. (2019)42 3.81
Amar et al. (2021)33 3.3 0.951
Liu et al. (2021)41 2.717 0.9560
Mouallem et al. (2024)54 4.28 0.886
This study 1.7705 0.9729

Figure 10. Prediction of IFT Influencing factors A: Salinity at T = 323.15 K with no impurities, B: Temperature by keeping salinity 0.98 mol/kg
with no impurities, C: Presence of Impurities at T = 333.15 K, and D: Salt type at T = 344.15 K with no impurities.
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CO2, its buoyancy must not exceed the capillary pressure of
the largest pore. Assuming that the height of the reservoir
occupied by CO2 stored in the sedimentary layer is h, the
magnitude of the buoyancy force acting on CO2 is
(ρwater−ρCO d2

)gh. If the variation in the contact angle with
temperature and pressure is ignored, the threshold capillary
pressure is Pce = 2σ/R. When the maximum height of CO2
storage is denoted as H, then:64

H
gR

2
( )water CO2

=
(20)

where σ is the IFT between CO2 and brine; ρ is the density,
with the subscripts water and CO2 being the density of brine
and carbon dioxide, respectively; g is the acceleration due to
gravity; and R is the size of the largest pore or small seam in
the cap layer. Here, due to the lack of contact angle data, we
assume that the brine is an excellent wetting fluid; therefore,
the contact angle is not considered in calculating the CO2
storage capacity in the saline aquifer.55,64,65

Thus, the mass of CO2 per unit of reservoir area can be
expressed as:42

M
S

R
CO

2 CO (1 )
( )g2

2 swirr

water CO2

=
(21)

where x is the porosity of the brine layer in the sedimentary
basin and y is the residual water saturation.
Recently, a number of approaches have been proposed for

evaluating CO2 sequestration capacity of the reservoir. The US
Department of Energy66 and CSLF have suggested evaluation
methods; however, these methods are assessed on a macro-
scopic level, and intermolecular interactions are not taken into
consideration. Thus, the Xinjiang region of China’s Tarim
Basin was selected as the injection site, and eq 21 was applied
to estimate the CO2 sequestration capacity of this basin at
various depths in this study. The BO-RF model presented in
this study was used to determine the IFT for the CO2−brine
system in eq 21, while the density of the fluids can be obtained
via the NIST Web site (http://www.ap1700.com/). The
values of the remaining parameters are detailed in Table 5.

Due to the variation in the concentration of saltwater in the
selected basin, concentrations of 0.98 mol/kg and 2.97 mol/kg
were used to simulate the influence of salinity on the
estimation of the CO2 storage capacity. In contrast to other
scholars,55,65,67 this study considered the seawater concen-
tration and assessed sequestration between depths of 800 and
5000 m. The basin has a greater CO2 storage capacity when
CO2 is injected approximately 1,000−2,000 m below the
surface. The same observation was made by Chiquet et al.64

The amount of sequestered CO2 increases, although at a
prolonged rate, until the depth of sequestration approaches
2500 m, as illustrated in Figure 11. R is a constant in this study.
However, with increasing injection depth, the CO2 sequestered
increases in total. It can also be seen from Figure 11 that the
higher the concentration in the brine layer is, the more CO2
can be sequestered in the reservoir. As illustrated in Figure

10(B), IFT between CO2 and brine increases with rising
temperature, resulting in the increase of the CO2 sequestered
capacity of the reservoir. The burial depth had a limited
influence on the CO2 storage capacity. This may be because at
deeper storage altitudes, the density differences between
reservoir brine and CO2, where it is in a supercritical state,
are lower, resulting in a smaller change in IFT, which
ultimately leads to a little change in CO2 sequestration
capacity of the reservoir. On the other hand, this is also related
to wettability. Although brine is assumed to be an excellent
wetting fluid in the calculation of CO2 storage capacity in
saline aquifers, thereby not considering the impact of the
wettability remains an important parameter for CO2 geological
sequestration. It determines the affinity between CO2 and the
reservoir rock fluids, affecting the distribution and migration of
CO2 within the reservoir. Under water-wet conditions, the rock
surface tends to bind more readily with water molecules, while
CO2 is more likely to form a continuous nonwetting phase,
which aids in capturing and storing CO2.

68 Temperature,
pressure, salinity, salt type, and impurities gases impact
wettability. Additionally, wettability influences the solubility
of CO2 in reservoir water, thereby affecting the efficiency of
dissolution trapping.69,70 IFT and wettability are significant
factors affecting the quantity and safety of CO2 storage in
saline aquifers and should be given considerable attention
during the estimation of the the CO2 sequestered capacity of
the reservoir.

6. CONCLUSIONS
In this study, a database of 1717 sets of experimental values
was established, covering the temperature range of 293.15 to
448.15 K, a pressure of up to 69 MPa, and a concentration of
salinities from 0 to 5.0 mol·kg−1, basically covering the
geological environment conditions of the storage of CO2 saline
aquifers. The database was divided into a training set, a
verification set, and a test set, accounting for 8:1:1,
respectively. In this study, three combined models, the SSA-
RF, PSO-RF, and IGWO-RF models, were established for
comparison with the BO-RF model. In addition, the IFT was
used as an input parameter to evaluate the carbon
sequestration potential of the Tarim Basin in China. On the
basis of results, the following conclusions can be drawn:
1. The precision of the BO-RF model made in this study is

nicer than other heuristic algorithms and displays good results
in foretelling the IFT of carbon dioxide in brine. The BO-RF
model shows the lowest RMSE (1.7705) and MAPE
(2.0687%), and the highest R2 value (0.9729). This study
also selected other excellent ML models for comparison. The
results revealed that the BO-RF model has the best
performance.
2. The model was statistically sound since the use of isolated

forests assisted in identifying outliers, which accounted for just
4% of the total data set. At the same time, the analysis in this
study shows the critical factors that have an influence on the
magnitude of the IFT in the CO2-brine system, and these
variables have been ranked in order of importance: pressure >
bivalent cation molality > mole fraction of CH4 > mole fraction
of N2 > temperature > monovalent cation molality. It was
found that pressure had the greatest effect, and the molar
concentration of monovalent cations had the least effect on the
IFT.
3. With increasing injection depth, the CO2 concentration

also decreases, and eventually, the CO2 sequestered capacity of

Table 5. Values of Relevant Parameters

Parameters R(m) g(N/kg) Sswirr φ
numerical value 10−7 9.8 0.1 0.15
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the reservoir CO2 concentration increases in total. However,
the burial depth had a limited influence on the CO2 storage
capacity due to the phase change of the CO2. It has also been
found that if the salt content of the water increases, the carbon
storage potential will also increase. However, the cost of CO2
storage in this project increased with increasing injection
depth, which led to a decrease in its feasibility. Therefore, the
storage depth should be comprehensively considered in the
site selection process, and the physical properties of reservoir
fluids, especially the salinity, should be sampled and analyzed
to obtain the injection site and storage depth that are most
suitable for carbon storage projects.
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Figure 11. Variation curve of CO2 sequestration with burial depth per unit basin area.
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