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Engaging the T cell receptor (TCR) with peptide:MHC complexes initiates a cascade
of signaling events that activates T cells in an antigen-specific manner. It is now clear
that multiple inputs, including the strength of TCR signaling, co-stimulation, and the
cytokine environment, impact T cell specialization decisions in the context of specific
pathogenic encounters. Additionally, it is now appreciated that these same stimuli direct
cellular metabolism programs. In this review, we will discuss how TCR-signaling events
coordinate cellular metabolism and specialization gene programs in T cells.
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The specialization of T cells is critical for controlling diverse pathogenic insults. Both CD4+ and
CD8+ T cells have the capacity to differentiate into specialized effector and memory cells (1–3).
Effector and memory T cells are responsible for fighting pathogens during an initial exposure or
after a reencounter with the pathogen. In addition to the effector versus memory cell decision,
CD4+ T cells also have the ability to differentiate into specialized effector subtypes such as T
helper type 1 (Th1), Th2, Th17, T follicular helper (Tfh), and regulatory T (Treg) cells (4). These
CD4+ T cell subtypes coordinate and regulate the immune response to deal with diverse types of
pathogens. The importance of generating specific T cell subtypes in a context-dependent manner
is highlighted by the pathogenic consequences that arise when there is an inappropriate balance
between the specialized populations in a given setting. In particular, dysregulation of this process
can cause autoimmune states or result in the inability to control an infectious agent (5, 6). Therefore,
the molecular programs that define functionally distinct T cell subtypes must be precisely regulated
in a context-specific manner to coordinate this intricate process.

Defining the series of molecular events that regulate T cell differentiation decisions has been
a highly active research topic over the past several decades. The current research indicates that
many diverse regulatory events contribute to the specialization decisions for T cells. These events
are initiated at the time of pathogen encounter by T cell receptor (TCR) signaling, the stimulation
of co-receptor complexes, and the cytokine environment (7–9). Precisely engaging these pathways
coordinately regulate the gene expression programs that are necessary for specialization decisions.
In this review, we will focus our discussion on how specific transcription factors translate TCR-
signaling events into distinct metabolic gene expression programs to coordinate T cell specialization
decisions.

TCR-Signaling and T Cell Specialization

Each T cell expresses a unique TCR that is randomly generated during the process of VDJ recom-
bination. This creates an expansive repertoire of antigen-specific T cells that are collectively capable
of responding to diverse pathogenic insults (7). To date, many studies have focused on defining the
signaling pathways induced by peptide–MHC interaction with the TCR (10). Importantly, these
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TCR-dependent signaling pathways modulate the expression and
activities of key transcription factors (11–13). The transcription
factors then effectively translate TCR signaling events into spe-
cialized gene expression programs.

Intriguingly, a series of studies suggest that an individual T
cell displays some preference for the type of specialization pro-
gram it initiates (e.g., effector versus memory; diverse CD4+ T
cell subtypes) based in part upon characteristics related to TCR-
signaling strength (14, 15). TCR signal strength encompasses both
the affinity of the TCR for the peptide–MHC complex and the
length of time that the peptide engages the TCR. This means
that a unique TCR inherently has some preference for the type
of specialization pathway that it selects (14, 15). However, the
sequence of the peptide derived from the pathogen and how long
the peptide–MHC complex engages the TCR will also influence
the differentiation decision as well (16, 17). A new challenge for
the field is now to define how graded TCR signal strength is
translated through key transcription factors into diverse cellular
specialization programs.

TCR-Signaling Regulates the Transcription
Factors that Influence T Cell Metabolism

It is becoming apparent that T cell specialization decisions are
closely linked with changes in the metabolic programing of the
cell. In particular, effector CD4+ and CD8+ T cells upregulate the
glycolysis program, while memory T cells downregulate this pro-
gram and instead rely on fatty acid oxidation (18, 19). Importantly,
the selection of the predominant cellular metabolism pathways
utilized in different T cell populations is in part controlled at the
gene expression level. That is, the genes that encode components
of the glycolysis, glutaminolysis, and lipid biosynthesis pathways
are highly expressed in effector T cells whereas these same gene
expression programs are inhibited in memory T cells (12, 13,
20, 21). In this context, it is striking to note that TCR-signaling
events induce Myc, AP4, HIF1α, IRF4, and sterol regulatory-
element binding protein (SREBP) family members (Figure 1), all
of which are key transcription factors that regulate the metabolic
gene expression program in T cells (11–13, 20, 22).

TCR-Signaling Induces the Factors that
Control Glycolysis and Glutaminolysis in
T Cells

T cell receptor-signaling rapidly induces the expression of the
transcription factorMyc (Figure 1). Myc expression rewires many
aspects of the T cell gene expression program to activate genes
encoding factors in metabolic pathways, such as glycolysis and
glutaminolysis, as well as the gene pathways important for cell
cycle progression (12). This Myc-dependent gene expression pro-
gram is required for the initial burst of cellular proliferation
that drives effector CD4+ and CD8+ T cell expansion. After the
initial Myc-dependent events occur, TCR-signaling reinforces the
effector cell program by inducing additional regulatory factors
including AP4, HIF1α, and IRF4 (12, 20, 22, 23). It is thought that
this second wave of TCR-inducible transcription factors take over
the regulation of critical cellular processes from Myc (Figure 1).

FIGURE 1 | T cell receptor-inducible transcription factors play
non-redundant roles in defining the metabolic gene programs
required for effector and memory cell potential. TCR stimulation induces
the expression of Myc to initiate a metabolic gene program that promotes
effector cell specialization. TCR- and IL-2-signaling also induce transcription
factors such as AP4, HIF1α, IRF4, and SREBP. These factors are required to
maintain the glycolysis, glutaminolysis, and lipid biosynthesis pathways for
maximum effector cell potential. By contrast, as TCR- and IL-2-signaling
diminishes, Bcl-6 expression is upregulated to repress the effector cell
metabolic program and transition the cell toward memory potential, possibly
maintaining the program as well. Although the discussion in this review
focused on the roles for these TCR- and IL-2-sensitive transcription factors in
regulating metabolic gene programs, these factors also regulate other gene
programs involved in cellular proliferation and survival as well.

HIF1α and AP4 regulate the expression of genes that encode
enzymes that are involved in glycolysis and glutaminolysis (20,
22, 24). Therefore, HIF1α and AP4 sustain the metabolic changes
necessary for the effector potential of CD4+ and CD8+ T cells as
Myc expression diminishes.

The transcription factor IRF4 appears to play a slightly different
role in translating TCR-signaling into a gene program tailored for
effector T cell specialization. In particular, several studies suggest
that IRF4 is sensitive to the overall strength of TCR-signaling
and gradations in IRF4 expression contribute to fine-tuning the
metabolic program of T cells (11, 25, 26). The absence of IRF4
prevents the sustained expression of the metabolic gene programs
that are required for effector cell specialization and IRF4-deficient
CD8+ T cells fail to maintain their proliferative potential causing
defective effector responses. Importantly, IRF4-dependent activ-
ities are more pronounced when the TCR is engaged by high-
affinity antigens (11). Taken together, the current data have led to
the speculation that IRF4-sensitive changes in the metabolic gene
expression program translate the strength of TCR-signaling into
functionally diverse effector T cell repertoires.

TCR-Signaling Regulates the Factors
Required for the Lipid Biosynthesis Gene
Program

T cell receptor-signaling also induces the SREBPs (13). A great
deal of the research, to date, regarding the programing of T cell
metabolism has focused on defining the mechanisms that regu-
late the expression of the glycolysis and glutaminolysis pathways
(18). However, other metabolic programing changes, including
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the activation of the lipid biosynthesis pathway, are required for
robust proliferation and effector T cell differentiation (12, 13). The
lipid biosynthesis or sterol pathway supports the rapid prolifera-
tion of T cells because lipids and cholesterol are required for the
formation of new cellular membranes, as well as for assembling
components of signal transduction pathways. Importantly, TCR-
signaling induces Srebf1 and Srebf2, the genes that encode SREBP1
and SREBP2, respectively (13). The SREBP family plays a role in
inducing genes that encode numerous required components of
the lipid biosynthesis pathway such as Hmgcr, Acaca, and Fasn.
In the absence of SREBP activity, the lipid biosynthesis gene pro-
gram is diminished in effector CD8+ T cells, resulting in severely
impaired proliferation (13). Phenotypically, this causes a defect in
effector CD8+ T cell responses and prevents the clearance of viral
infections. Together, these data suggest that the TCR-dependent
induction of SREBP activity is required for the activation of the
lipid biosynthesis gene program and the development of effector
T cell responses.

Metabolic Transitions Associated with
Memory T Cells

Many studies have defined the TCR-inducible regulatory factors
that control themetabolic gene expression programs that promote
effector T cell specialization. By contrast, the transcription factors
that regulate the metabolic gene programs that promote memory
T cell formation are much less defined (19, 27). Current data
suggest that at least part of the memory T cell pool is derived
from contracting effector T cells as antigen is cleared. There are at
least two scenarios that might contribute to the mechanisms that
regulate the metabolic gene program that promotes memory cell
formation as T cells transition from effector to memory potential
(Figure 1). The first possibility is that the glycolysis, glutaminol-
ysis, and lipid biosynthesis programs are actively repressed as
effector T cells transition into the memory phenotype. In support
of this possibility, a recent study demonstrated that Bcl-6 actively
represses the glycolysis pathway gene program when T cells are
maintained in low IL-2 conditions (28). This is especially interest-
ing to note because IL-2 becomes limitingwith pathogen clearance
at the time when the effector T cell population begins to contract
and some cells are transitioning into memory potential. Together,
these data suggest that Bcl-6 has the ability to actively repress the
glycolysis pathway gene program during the effector to memory
T cell transition to initiate a metabolic gene program compatible
with memory T cell formation (28, 29).

The loss of key transcriptional activators is another mechanism
that might contribute to changing the metabolic gene expression
program between effector and memory T cells. The clearance of
pathogen during the effector phase of the immune response will
remove the antigen-specific stimulation of the TCR, first dimin-
ishing, and then ending, TCR-signaling. Therefore, as antigen is
cleared and TCR-signaling wanes, the expression of Myc, HIF1α,
AP4, IRF4, and SREBP expression will diminish (Figure 1). From
a mechanistic perspective, the genes that encode components of
the glycolysis, glutaminolysis, and lipid biosynthesis pathways will
not be maintained at high-expression levels if the activators that
induce their expression in T cells are not present. This means

that the enhanced expression of the metabolic pathways that are
actively engaged in effector T cells will likely not occur in the
quiescent, long-lived memory cell population due to the absence
of the activators Myc, HIF1α, AP4, IRF4, and SREBP. Thus, in the
long-term steady state, continuous repression mechanisms will
likely not be necessary to maintain the low level expression of
the genes that encode components of these metabolic pathways
in resting memory T cells.

Integrating TCR- and Cytokine-Signaling in
T Cells

Cytokine-signaling regulates the expression and activities ofmany
transcription factors that are important in T cell metabolism and
specialization decisions (3). The early cytokine environment is
defined by the innate immune response to the pathogen. How-
ever, the predominant composition of the cytokine environment
changes over the duration of the response, with later contributions
originating from both innate and adaptive immune cells. The
cytokine environment can control the expression and activity of
the lineage-specifying transcription factors that influence cellular
specialization at the onset of the immune response, as well as
while the immune response develops andmatures (3, 4, 30, 31). In
CD4+ T cells, this translates into the development of specialized
subtypes, such as Th1, Th2, Th17, Tfh, and Treg cells (4, 30).

In some cases, cytokine signaling modulates a similar set of
regulatory factors to those induced by TCR. One cytokine that
fits into this category is IL-2. IL-2-signaling reciprocally regu-
lates the expression of HIF1α and Bcl-6 in CD4+ and CD8+ T
cells (20, 28, 32, 33). Specifically, high IL-2 conditions promote
HIF1α while inhibiting Bcl-6 expression, whereas by contrast,
weak IL-2-signaling promotes the induction of Bcl-6 expression
while inhibiting HIF1α (20, 28). Mechanistically, this sets up an
antagonistic relationship between HIF1α and Bcl-6 in the IL-
2-sensitive regulation of the glycolysis and glutaminolysis path-
way gene expression programs in the context of effector versus
memory cell formation (28).

Current research also suggests that many of the lineage-
specifying factors required for CD4+ T cell specialization are
also involved in regulating cellular metabolism. The Th1-lineage-
specifying transcription factor T-bet plays a required role in
Th1 specialization and also is important in the IL-2-dependent
induction of the glycolysis pathway gene expression program in
CD4+ Th1 and CD8+ T cells (28). In addition, Bcl-6, HIF1α,
and IRF4 also have roles in regulating both T cell specialization
and metabolism (11, 20, 24, 28). IRF4 plays a role in Th17 spe-
cialization and HIF1α is important for defining the specialization
decision betweenTh17 andTreg cells (34–36). Bcl-6 is required for
Tfh development and plays a role in memory cell specialization (3,
37). It will be interesting in future experiments to define whether
the activities of other transcription factors important in the spe-
cialization of CD4+ T cells coordinate cellularmetabolism as well.

Conclusion and Future Directions

The transcription factors that are induced by TCR- and cytokine-
signaling regulate both cellular specialization and metabolism,
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which suggest that these two processes are closely linked in
T cells. In particular, effector cell specialization is associated
with enhanced glycolysis, glutaminolysis, and lipid biosynthesis,
whereas these same pathways are held in check in memory cell
differentiation. Many elegant studies in CD8+ T cells have now
defined the TCR-inducible transcription factors that regulate key
metabolic pathways in effector T cell specialization, with the
factors involved in memory cell formation still emerging. The
current data suggest that both CD4+ and CD8+ T cells utilize
similar transcriptionalmechanisms to regulate themetabolic gene
programs important for effector and memory cell specialization
programs. Determining whether similar compositions of regula-
tory factors play roles in coupling characteristic metabolic path-
ways to states of specialization in different immune cell types is
an important area for future research. Intriguingly, many of the
transcription factors discussed in this review are also found in
diverse immune cell types and their expression patterns in these
populations appear to hint at similar functional roles related to
effector and memory cell specialization (38–40).

Related to this topic, it will now be important to determine
the identities of the TCR-independent signaling pathways that
precisely control the activities of the factors discussed in this
review in other cellular settings. Perhaps the responsiveness of
these pathways to specific cytokines, such as IL-2, will be con-
served in different cell populations. It is notable that many of
the transcription factors that regulate cellular metabolism pro-
grams in effector T cells are highly expressed in cancer cells
(41). Similarities between effector T cells and cancer cells have
long been recognized in regard to their utilization of aerobic
glycolysis and high rates of proliferation (19). Thus, it will be
interesting to determine whether other immune cells that display
similar proliferative characteristics utilize similar transcriptional
regulation mechanisms to couple metabolic programs with highly
proliferative cellular states.

Transcription factors are members of large families of proteins,
with family members displaying both conserved and factor spe-
cific functions (6). Therefore, another area of research exploration
will be to define the roles for related family members in differ-
ent cellular settings. Recently, an intriguing connection emerged
between the ZBTB transcription factor family and the repres-
sion of glycolysis. The ZBTB transcription factor Bcl-6 actively
represses genes that encode components of the glycolysis pathway
in T cells, while ZBTB7a represses a similar set of glycolytic target
genes in MEF cells (28, 42). Importantly, ZBTB transcription
factors are involved in cellular specialization decisions in diverse
immune cell types, possibly suggesting that different members of
this family might regulate similar gene expression pathways in
different cellular settings (6). It will now be interesting to explore
the role for other members of the transcription factor families
discussed here in regulating metabolism gene programs in the
context of diverse immune cell populations. In this regard, it
will be informative to determine whether the activities associ-
ated with the TCR-inducible transcription factors in T cells are
performed by the same or distinct family members in different
cellular settings. Taken together, a vast amount of information
has been uncovered to define how TCR-signaling is translated
into cellular specialization programs and this knowledge is pro-
viding a wealth of insight into how the transcriptional programs
that regulate metabolism are coupled to cellular specification
decisions.
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