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Abstract

Summary: Efficient sampling of conformational space is essential for elucidating functional/allosteric mechanisms
of proteins and generating ensembles of conformers for docking applications. However, unbiased sampling is still a
challenge especially for highly flexible and/or large systems. To address this challenge, we describe a new imple-
mentation of our computationally efficient algorithm ClustENMD that is integrated with ProDy and OpenMM soft-
wares. This hybrid method performs iterative cycles of conformer generation using elastic network model for defor-
mations along global modes, followed by clustering and short molecular dynamics simulations. ProDy framework
enables full automation and analysis of generated conformers and visualization of their distributions in the essential
subspace.

Availability and implementation: ClustENMD is open-source and freely available under MIT License from https://
github.com/prody/ProDy.

Contact: burak.kaynak@pitt.edu or doruker@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mapping the conformational space of proteins has been a challenge,
especially for large assemblies of complexes. Elastic network models
(ENMs) and normal mode analysis (NMA) have proven to predict
the global modes of motion of biomolecular systems, and particular-
ly supramolecular machines in the last two decades, as shown in nu-
merous comparisons with experimentally observed conformational
changes (Bahar et al., 2010; Bakan and Bahar, 2009; Tama and
Sanejouand, 2001). Thus, hybrid techniques combining ENM/NMA
with molecular dynamics (MD) have come forth as computationally
efficient means for elucidating transition pathways (Gur et al.,
2013; Orellana et al., 2019) and for conformational sampling for
large complexes (Costa et al., 2015; Kurkcuoglu et al., 2016), as we
recently reviewed (Krieger et al., 2020).

ClustENM hybrid algorithm (Kurkcuoglu et al., 2016) has been
introduced for unbiased sampling of the essential subspace spanned
by the softest ENM modes through integration with clustering and
energy minimization of conformers. Comparison with experimental
data has shown the efficiency and utility of ClustENM for investi-
gating highly flexible proteins like calmodulin (Kurkcuoglu and
Doruker, 2016; Kurkcuoglu et al., 2016) as well as large assemblies
such as the ribosome (Can et al., 2017; Guzel et al., 2020;
Kurkcuoglu et al., 2016). More recently, ClustENM conformers
have proven to facilitate protein–DNA and protein–protein

ensemble docking (Kurkcuoglu and Bonvin, 2020) and prediction of

cryptic allosteric pockets (Kaynak et al., 2020).
Such promising results have motivated us to further develop and

implement the ClustENMD version in the widely used ProDy
(Bakan et al., 2011; Zhang et al., 2021) application programming
interface (API) via integration with OpenMM (Eastman et al., 2017)

software. This version allows us to generate more realistic conform-
ers by performing short MD simulations even for large allosteric

complexes, together with high efficiency and full automation within
a Python environment.

2 Methods and features

The ClustENMD algorithm is explained schematically in Figure 1A.

In Step 1, the input structure is subjected to anisotropic network
model (ANM) analysis to produce atomistic conformers using ran-

dom deformations along linear combinations of a set of global
ENM modes. In Step 2, the conformers are clustered based on their
structural similarities, and a representative member is selected for

each cluster. In Step 3, the representatives from the previous step are
structurally relaxed by short MD simulations using OpenMM. The
new conformers are then fed back to Step 1, each being used as a

starting point for a new generation of conformers. This iterative
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procedure (Steps 1–3) is repeated for several generations to allow
for sufficiently large excursions from the original energy minimum.

ClustENMD has the following features (see Supplementary
Material including Tutorial for details):

• Implemented as a class in ProDy
• Integrated with OpenMM (Step 3)
• Applicable to multimeric complexes/assemblies, comprising pro-

tein, RNA and/or DNA chains
• Input structure either retrieved from the Protein Data Bank

(Berman et al., 2000) (PDB) or provided by the user in PDB file

format
• Addition of hydrogens and any missing heavy atoms in the resi-

dues of the input structure by PDBFixer/OpenMM
• MD simulations performed by OpenMM, either in implicit solv-

ent (Onufriev et al., 2004) [Amber99SB (Lindorff-Larsen et al.,

2010) forcefield] or explicit solvent [Amber14 (Maier et al.,

2015) with TIP3P-FB (Wang et al., 2014) forcefields]
• ANM (Atilgan et al., 2001) for conformer generation using a set

of global modes (ProDy)
• Pairwise root-mean-square deviation (RMSD)-based hierarchical

clustering
• Atomic coordinates of conformers saved as ProDy ensemble,

and/or in PDB/DCD format
• Analysis of output conformers using diverse ProDy modules, e.g.

ensemble analysis
• Fully automated pipeline, from input PDB file to the generated

ensemble of conformers
• High-computational efficiency on GPU-architecture

3 Illustration

ClustENMD results for two case studies are presented in Figure 1
using simulations in implicit solvent model and heating up (HU) the
system to 300 K. Figure 1B presents the population distribution for
adenylate kinase (AK). AK is known to undergo a large conform-
ational change (7 Å RMSD) between open (apo) and closed (sub-
strate/inhibitor-bound) states. The contour plot corresponding to
the population distribution of ClustENMD conformers is displayed
on the two-dimensional (2D) space spanned by the two inter-
domain angles, namely LID-Core and NMP-Core (Beckstein et al.,
2009). This plot is based on six independent runs, each comprising

five generations (see Supplementary Table S1 for details on all sys-
tems/runs). Homologous experimental structures retrieved from the
PDB using ProDy are shown on the same plot (black dots).
ClustENMD conformers sample the two states as well as the transi-
tion region between them. See Supplementary Figure S1 for runs
with more generations.

Figure 1C displays the 2D space for hetero-dimeric HIV-1 re-
verse transcriptase (RT), a large enzyme (N¼1000 residues). Here,
the population distribution (contour plot) is projected onto the es-
sential space of experimentally resolved structures. The axes
denoted by the first two principal components (PC1 and PC2) are
derived from the principal component analysis of 365 experimental
structures (black circles) resolved for RT under different conditions
(oligonucleotide/inhibitor-bound or -unbound). ClustENMD con-
formers (red circles) projected onto this space sample the close
neighborhoods of most experimental structures (see Supplementary
Fig. S2 for other runs including those in explicit solvent). We also
present in Supplementary Figure S3, the counterpart of Figure 1C
for AK, i.e. the generated conformers projected onto the subspaces
spanned by experimentally defined PCs. Supplementary Figures S4
and S5 further display the respective ensemble of RT conformers in
the space spanned by fingers-thumb versus fingers-RNase H distan-
ces, and that of HIV-1 protease conformers projected onto PC1–
PC2 subspace.

The high efficiency of ClustENMD is reflected by the average
computing time for a 5-generation run that generates 300 conform-
ers (presented in Fig. 1), which takes 8 min (AK, 214 residues) to
27 min (RT, 978 residues) on a single GPU platform with NVIDIAVR

GeForceVR RTX 2080 Ti graphics card. For a comparison of compu-
tational efficiency and required resources, we refer to a recent
enhanced sampling study on generating a detailed free energy land-
scape for AK using Gaussian accelerated replica-exchange umbrella
sampling (Oshima et al., 2019); each of the 32 replica (of
2�108 MD time steps) would require a couple of days on the same
platform, as opposed to a total run time of 8 min for ClustENMD.
We note that ClustENMD could be applied to the protein model re-
finement problem if the excursions/deformations from the initial
model are restricted, possibly by adding restraints (Heo et al.,
2021), in order to retain the initial model’s conformational charac-
teristics. It remains to be seen in future applications whether such an
approach might help to efficiently sample conformations closer to
the native structure.

4 Concluding remarks

The ClustENMD algorithm is implemented within ProDy (Bakan
et al., 2011; Zhang et al., 2021), an open-source Python API for pro-
tein structure, dynamics and sequence analysis, containing multiple
modules. The ProDy package (downloaded more than 2.1 million
times and visited by 140 000þ unique users worldwide) ensures
broad dissemination of ClustENMD to the research community in
addition to providing accessory tools for analyses and visualization.
The current version of ClustENMD is unique in performing un-
biased sampling with high-computational efficiency, augmented by
fully automated and user-friendly features upon integration with
ProDy and OpenMM.
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