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Abstract 

Background  The activation of macrophages or microglia in patients’ whole body or local eyes play significant roles 
in diabetic retinopathy (DR). Mitochondrial function regulates the inflammatory polarization of macrophages. There-
fore, the common mechanism of mitochondrial related genes (MRGs) and macrophage polarisation related genes 
(MPRGs) in DR is explored in our study to illustrate the pathophysiology of DR.

Methods  In this study, using common transcriptome data, differentially expressed genes (DEGs) were firstly ana-
lysed for GSE221521, while module genes related to MPRGs were obtained by weighted gene co-expression net-
work analysis (WGCNA), intersections of DEGs with MRGs were taken, intersections of DEGs with module genes 
of the MPRGs were taken. After that, correlation analyses were performed to obtain candidate genes. Key genes were 
obtained by Mendelian randomisation (MR) analysis, then biomarkers were obtained by machine learning combined 
with receiver operating characteristic (ROC) and expression validation between DR and control cohorts in GSE221521 
and GSE160306 to obtain biomarkers. Finally, biomarkers were subjected to immune infiltration analysis, gene set 
enrichment analysis (GSEA), and gene–gene interaction (GGI) analysis.

Results  A number of 784 of DEGs were taken to intersect with 1136 MRGs and 782 MPRGs, respectively, after which 
89 genes with correlation were taken as candidate genes. MR analysis yielded 13 key genes with clear causal links 
to DR. The expression trends of PTAR1 and SLC25A34 were consistent and notable between DR cohort and control 
cohort in GSE221521 and GSE160306. So PTAR1 and SLC25A34 were used as biomarkers. Immune infiltration analy-
sis showed that activated NK cell and Monocyte were notably different between DR cohort and control cohorts, 
and PTAR1 showed the strongest positive correlations with activated NK cell. Both biomarkers were enriched in lyso-
some and insulin signaling pathway. The GGI network showed that biomarkers associated with prenyltransferase 
activity and prenylation function.

Conclusion  This study identified two biomarkers (PTAR1 and SLC25A34) which explore the pathogenesis of DR 
and provide reference targets for drug development.
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Introduction
Diabetic Retinopathy (DR), a disorder that impairs the 
retina’s microvasculature and neurons, is a major cul-
prit of vision loss [1]. The primary pathological changes 
in DR include pericyte loss, increased vascular perme-
ability, neovascularization, retinal hemorrhage, and 
even macular edema [2]. DR comprises of an early non-
proliferative and proliferative DR, which is primarily 
related with hyperglycemia and glucose dyscontrol [3]. 
Vascular endothelial growth factor (VEGF) in the retina 
causes leakage from nearby capillaries and promotes 
the formation of neovascularization, leading to reti-
nal injury [4]. Therefore, the application of intravitreal 
anti-VEGF medicines like bevacizumab, ranibizumab, 
or aflibercept has been considered a first-line therapy 
in macular edema [5]. Although anti-VEGF represents 
a validated mechanism and demonstrates clinical effi-
cacy, the complexity inherent in the pathogenesis of DR 
precludes the resolution of numerous issues through 
anti-VEGF treatment alone [3]. Consequently, further 
exploration of the underlying mechanisms is warranted.

Macrophages play an important role in regulating 
inflammation and maintaining tissue homeostasis. 
In diabetic retinas, macrophage can express TNF-α 
and other proinflammatory molecules [6]. Growing 
evidence shows that retinal inflammation, driven by 
hyperglycemia, is a major risk factor for DR [7]. Inter-
leukin 1β (IL-1β), IL-18, and Tumor necrosis factor-α 
(TNF-α) as proinflammatory molecules has been found 
to be upregulated in DR [6]. A study conducted among 
African Americans with type 1 diabetes showed that 
serum pro-inflammatory factor TNFα is associated 
with the incidence of DR (p < 0.001) [8].

The regulation of macrophage adaptation and respon-
siveness to diverse environmental cues is attributed 
to cellular energy metabolism. The retina is one of the 
organs in the body with the highest energy consump-
tion. Mitochondria is crucial for maintaining retinal 
metabolism and homeostasis [9]. Macrophages primar-
ily produce ATP through mitochondria [10]. Under 
high glucose conditions, metabolic changes in retinal 
as well as epigenetic modifications in mitochondria-
related genes can cause mitochondrial dysfunction 
and induce apoptosis. Furthermore, mitophagy and 
mitochondrial dynamics undergo adaptive changes 
[11]. Certain molecules situated in the mitochondria 
of inflammatory macrophages play a significant role 
in modulating mitochondrial dynamics and oxidative 
respiration, thereby affecting macrophage polarization 
[12]. Therefore, investigating the role of mitochondria 
in macrophages during the development and progres-
sion of DR may offer new insights for preventing and 
treating DR.

This study, based on transcriptomics data from pub-
lic databases, employed DEGs and WGCNA analysis to 
identify macrophage polarization-related genes (MPRGs) 
and mitochondrial-related genes. Subsequently, MR 
analysis and machine learning were used to screen bio-
markers linked to both macrophage polarization and 
mitochondria in DR, and explored their causal relation-
ships. Systematic analyses, including PPI, GGI, GSEA, 
and immune cells analysis were conducted to uncover the 
biological mechanisms of these biomarkers involved in 
DR, confirming the accuracy and biological significance 
of the screening results. This provides valuable insights 
for further exploration of DR pathogenesis and offers 
potential reference targets for drug development.

Materials and methods
Data source
Two transcriptomic datasets of Diabetic Retinopathy 
(DR) from Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) were encompassed 
in this study. We employed GSE221521 as the training 
set and GSE160306 as the validation set. GSE221521 
(GPL24676 platform) consisted of blood from 69 DR 
samples and 50 control samples [13], which utilized high-
throughput sequencing. GSE160306 (GPL20301 plat-
form) included blood from 20 DR samples and 20 control 
samples, which utilized chip sequence.

A total of 1,136 mitochondrial related genes (MRGs) 
from MitoCarta3.0 database (http: //www.​broad​insti​tute.​
org/​mitoc​arta) [14]. A total of 35 macrophage polariza-
tion related genes (MPRGs) from literature [15].

The Genome-Wide Association Studies (GWAS) data 
of expression Quantitative Trait Loci (eQTL) of candi-
date genes was searched from Integrative Epidemiology 
Unit (IEU) open GWAS database (https://​gwas.​mrcieu.​
ac.​uk/). To see more details in Supplementary Table  8. 
Searching DR dataset using Diabetic Retinopathy as key-
word from IEU open GWAS database to obtain finn_b_
DM_RETINOPATHY dataset, which had 16,380,459 
single nucleotide polymorphisms (SNPs) from 216,666 
samples (DR: 14,584, Control: 202,082) were European.

Differential expression analysis
The DESeq2 package (v 1.42.0) [16] was utilized for dif-
ferential expressed analysis in GSE221521 dataset (|log-
2Fold Change (FC)|> 0.5 and adj.P < 0.05). The ggplot2 
package (v 3.5.1) [17] was employed to show the result of 
differentially expressed genes (DEGs) in the top 10.

Weighted gene co‑expression network analysis (WGCNA)
Firstly, the GSVA package (v 1.50.0) [18] was employed 
to analyze MPRGs single-sample gene set enrichment 
analysis (ssGSEA) scores between DR group and control 
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group in GSE221521 dataset (p < 0.05). MPRGs scores 
was used as traits for WGCNA. The WGCNA package (v 
1.72–5) [19] was employed to identify module genes that 
were highly correlated with Hierarchical clustering of all 
samples (height = 200), using the euclidean distance of 
the sample expression profiles was utilized to identify and 
exclude outliers. Subsequently, R2 = 0.8 and connectivity 
was close to 0 were utilized to screen for soft thresholds 
(β). Gene adjacency was then calculated, which led to 
computing gene similarity, from which a gene dissimilar-
ity coefficient was derived to create a hierarchical cluster-
ing tree of genes. The minimum gene count per module 
was set to 100 and shear height was 0.4 according to the 
standards of the dynamic tree cutting algorithm. Then, 
key modules were identified by calculating the correla-
tions between module and phenotypic traits (correlation 
(|cor|) > 0.3, p < 0.05). Further screening of module genes 
by Gene Significance (GS) and Module Membership 
(MM) metrics can be utilized to identify genes of high 
significance in the module (GS > 0.3, MM > 0.5).

Screening and enrichment analysis of candidate genes
The VennDiagram package (v 1.7.3) [20]was employed 
to take intersections for DEGs and MRGs, then obtained 
DE-MRGs. On the other hand, taking intersections for 
DEGs and modular genes, then obtained DE-MPRGs. 
Then the psych package (v 2.2.5) [20]was employed 
to analyze the Spearman between DE-MRGs and DE-
MPRGs. Candidate genes were selected based on their 
correlation with related genes (|r|> 0.3 and p < 0.05). 
Finally, the result was showed in heatmap. Functional 
enrichment of these candidate genes based on kyoto 
encyclopedia of genes and genomes (KEGG) and gene 
ontology (GO) databases using the clusterProfiler pack-
age (v 4.10.1) [21](p.adj < 0.05). The Search Tool for 
the Retrieval of Interacting Genes (STRING) database 
(https://​string-​db.​org) was employed to build the pro-
tein–protein interaction (PPI) network of candidate 
genes (confidence = 0.4), and Cytoscape software (v 3.7.1) 
[22] was employed to visualise the PPI network.

Mendelian randomization (MR) analysis
Candidate genes as exposure factors and DR as outcome 
event. Three basic premises underlie MR studies: (1) a 
robust and notable correlation existed between instru-
mental variables (IVs) and exposure; (2) IVs were unre-
lated to confounding factors; (3) It was only affected by 
exposure factors and not directly related to outcomes. 
The extract_instruments function of TwoSampleMR 
package (v 0.6.4) [23] was employed to obtain exposure 
factors and screen IVs. Looking for notably related IVs 
(p < 5 × 10–6) of exposure factors, IVs with Linkage Dis-
equilibrium (LD) were removed using the three metrics, 

clump = TRUE, R2 = 0.001, and kb = 10. Then extract_
outcome_data function was employed to perform ending 
readings and screen IVs, the screening indicators of IVs 
were proxies was TRUE and rsq was 0.8, this was followed 
by screening for instrumental variables that were associ-
ated with exposure factors but not with outcomes. Har-
monisation of effect alleles and effect sizes through the 
TwoSampleMR package function harmonise_data. Sub-
sequently, the IVs was calculated to be F statistic, F < 10 
for single nucleotide polymorphism (SNP) and eliminate 
weak IVs. Then, MR combined 5 algorithms for MR anal-
ysis, which were MR-Egger [24], Weighted median [25], 
Inverse variance weighted (IVW) [26], Simple mode [23] 
and Weighted mode [27]. The IVW method served as 
the primary measure for determining statistical signifi-
cance (p < 0.05), the odds ratio (OR) > 1 was considered 
as a risk factor, and OR < 1 was considered as a protec-
tive factor. Then correlation analysis was carried out with 
scatter plot, forest plot, and randomness analysis with 
funnel plot. Sensitivity analysis was performed to verify 
the results of MR. Initially, heterogeneity was assessed 
using the mr_heterogeneity function, and an innotable 
result (p > 0.05) indicating the absence of notable hetero-
geneity [28]. Furthermore, the mr_pleiotropy_test func-
tion and mr_presso function were employed to scrutinize 
the potential for horizontal pleiotropy (p > 0.05) [29]. The 
robustness of the results was additionally ascertained 
through Leave-One-Out (LOO) analysis. This approach 
iteratively omitted individual SNPs to verify the stability 
of the causal estimates in the absence of single variants 
[30], finally, the Steiger directional test was applied to 
eliminate the prospect of reverse causation. The evidence 
of a one-way causal association was strengthened when 
the correct causal direction outcome was confirmed as 
TRUE and the steiger (p < 0.05) [31]. Eventually, the can-
didate genes causally linked to DR were obtained through 
MR analysis, which were recorded as key genes.

Recognition of candidate feature genes by machine 
learning algorithm
In the GSE221521, the Boruta package (v 8.0.0) [32] was 
used to perform a Boruta analysis on key genes. In this 
analysis, the genes were ranked based on their impor-
tance, which were selected as feature gene 1. Key genes 
previously identified were used to construct a sup-
port vector machines-recursive feature elimination 
(SVM-RFE) model, the model was employed to rank 
the importance of each candidate biomarkers, identi-
fying the optimal combination with the lowest error 
rate. Subsequently, the caret package (v 6.0–94) [33] 
was employed to obtain feature genes 2 for SVM-RFE. 
Finally, the feature genes obtained from the above two 
machine learning methods were intersected using the 
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VennDiagram package (v 1.7.3) to obtain candidate can-
didate biomarkers.

Identification of biomarkers
The pROC package (v 1.18.5) [34] was utilized to plot 
receiver operating characteristic (ROC) curves in both 
GSE221521 and GSE160306 to assess the ability of can-
didate biomarkers to differentiate between DR group 
and control group, with area under curve (AUC) val-
ues being calculated. A gene demonstrating an AUC 
exceeding 0.7 indicated a strong capability to discrimi-
nate between sample types. Genes with AUC > 0.7 were 
used as candidate biomarkers for subsequent analysis 
in GSE221521 and GSE160306. In addition, the expres-
sion trends of these candidate biomarkers were evaluated 
between LPR and control cohorts within GSE221521 and 
GSE160306. Genes that exhibited consistent expression 
trends in GSE221521 and GSE160306 and notable differ-
ences between DR and control cohorts were defined as 
biomarkers. Box plots were used show the expression of 
these biomarkers (p < 0.05).

Construction of nomogram
In order to see the diagnostic value of biomarkers, build-
ing nomogram via rms package (v 6.5.0) [35] to verify the 
effectiveness of the model. In order to assess clinical pre-
dictive models, diagnostic tests and biomarkers, building 
decision curve. In order to estimate the clinical effect of 
the nomogram more visually, the AUC of ROC curve was 
calculated by pROC package (v 1.18.5).

Immune infiltration
The enrichment of 22 immune cell types in DR and con-
trol cohorts from GSE221521 dataset were assessed 
and the CIBERSORT algorithm was utilized (v 1.03) 
[36]. Additionally, the distinctions in the enrichment 
of immune cell infiltration in DR cohorts and control 
cohorts were analyzed (p < 0.05). Moreover, the relation-
ship between differential immune cells, and connection 
between biomarkers and differential immune cells in 
GSE221521 dataset samples were analyzed using psych 
package (v 2.2.5) [37].

The gene set enrichment analysis (GSEA) of key genes
The c2.cp.kegg.v7.4.symbols.gmt as the reference gene 
set, which was downloaded from molecular signatures 
database (MSigDB) (https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb) (p < 0.05). The clusterProfiler package (v 4.10.1) 
[21] was employed to calculate the relevance score 
between the biomarkers and the other genes in each 
sample separately, then followed by GSEA (p < 0.05), The 
pathway of biomarkers were shown in the top 5 and in 
descending order in line graph.

Chromosomal localisation and tissue expression analysis 
of biomarkers and RNA methylation modifications
In order to download gene location information from the 
ENSEMBL database (https://​grch37.​ensem​bl.​org/​index.​
html), RCircos package(v 1.2.2) [38] was used to analyze 
specific location of biomarkers on chromosomes. Subse-
quently, biomarkers were analysed in the Human Protein 
Atlas (HPA) database (https://​www.​prote​inatl​as.​org) for 
their specific expression in tissues and cells. To under-
stand RNA methylation modifications of biomarkers, 
sequence-based RNA adenosine methylation site predic-
tor (SRAMP) (http://​www.​cuilab.​cn/​sramp/) predicted 
m6A modification sites of biomarkers and their location 
in RNA secondary structure.

Gene–gene interaction (GGI) network construction 
and molecular regulatory network
GeneMANIA (http://​www.​genem​ania.​org) database was 
employed to search for interacting genes with the bio-
markers and construct a gene interaction GGI network. 
For molecular regulatory networks and the pathways 
involved, based on biomarkers, miRNAs obtained from 
miRDB database (https://​mirdb.​org/) and TargetScan 
database (https://​www.​targe​tscan.​org/​vert_​80/) were 
taken for intersection. The starbase database (https://​
starb​ase.​sysu.​edu.​cn/) was then employed to obtain key 
lncRNAs upstream of the targeted intersecting miR-
NAs and filter the targeted IncRNAs based on clipExp-
Num > 4. Then, the ChEA3 database (https://​maaya​nlab.​
cloud/​chea3/) was utilized to predict biomarker tran-
scription factors (TFs) and select the top 40 TFs in terms 
of scores, and Cytoscape software (v 3.7.1) was used to 
visualise TFs-biomarker network. Finally, the multiMiR 
package (v 0.98.0.2) [39] was employed to investigate the 
lncRNA-miRNA-mRNA network of the biomarkers and 
visualized them using the galluvial package (v 0.12.5) 
[40].

Statistical analysis
All analyses were executed in R language (v 4.2.2). Dif-
ferences between groups were analyzed by Wilcoxon test. 
p < 0.05 was considered statistically notable.

Results
Screening of DEGs and modular genes
The GSE221521 dataset obtained 784 DEGs (492 DEGs 
were up-regulated and 292 DEGs were down-regulated) 
between DR group and control group (Fig.  1A). On the 
other hand, the MPRGs score was notably higher in 
the DR group than in the control group in GSE221521 
(p < 0.05) (Fig.  1B). Analysed by WGCNA, Hierarchical 
clustering analysis revealed there was 1 outlier sample 
and excluded it (Fig. 1C). When a soft threshold β of 12 

https://www.gsea-msigdb.org/gsea/msigdb
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Fig. 1  Screening of DEGs and modular genes. A Volcano plot of 784 differentially expressed genes in DR. B Macrophage polarisation related genes 
score was notably higher in the DR group than in the control group in GSE221521 (p < 0.05) C Hierarchical clustering of DR samples revealed 1 
outlier sample and excluded it. D Determining the optimal soft threshold β of 12. E Construction of gene co-expression network, aggregated 7 
modules were. F Heatmap of the correlation between modules and MPRGs scores. G Scatter plot of gene-module membership in the blue-green 
module. H Scatter plot of gene-module membership in the yellow module
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was chosen, the network approximated a scale-free dis-
tribution (Fig.  1D). After determining the soft thresh-
old, the construction of the co-expression network was 
carried out, and 7 modules were aggregated (Fig.  1E). 
In the non-grey module, the p-value < 0.05 and corre-
lation with this a scores |cor|> 0.3. Identifying the key 
modules we obtained the MEturquoise and MEyellown 
modules. One of the modules most notably associated 
with MPRGs scores was the MEturquoise (cor = 0.7048, 
p = 5.24 × 10–18), which contained 7,423 genes. On the 
other hand, The highest negative correlation was for 
the MEyellown (cor = −  0.3491, p = 2.68 × 10–4), which 
contained 1,191 genes. (Fig.  1F). In total, 8,614 module 
genes were obtained. A total of 782 modular genes were 
obtained between GS and MM in highly notable correla-
tion (Fig. 1G, H).

The crucial biological pathways and PPI networks 
of candidate genes
A total of 26 DE-MRGs were obtained from the intersec-
tion of 784 DEGs and 1,136 MRGs and 63 DE-MPRGs 
were obtained from the intersection of 784 DEGs and 
782 modular genes (Fig.  2A, B). Finally, 88 genes were 
obtained as candidate genes by Spearman correlation 
analysis (|r|> 0.3 and p < 0.05) (Fig. 2C). GO pathway anal-
ysis of 88 candidate genes led to the identification of 211 
biological process (BP) entries. While 32 cellular com-
ponents (CC) entries, as well as 52 molecular functions 
(MF) entries were found. The GO pathway including 
mitochondrial inner membrane, ribosome, mitophagy, 
negative regulation of protein localization and regula-
tion of intracellular protein transport, unfolded protein 
binding (Fig.  2D, Supplementary Table  5). Furthermore, 
4 KEGG pathways were identified, which were ribo-
some, RNA polymerase, mitophagy animal and nucleo-
tide excision repair (Fig. 2E). PPI network which consists 
of 34 proteins and 45 edges, RPS11 and RSC1A1 had 
more connections and interactions with other proteins 
(Fig. 2F).

Acquisition of key genes
A two-sample MR analysis was performed with 88 can-
didate genes as exposure factors and DR as the outcome. 
A number of 13 genes were identified by IVW and were 
used as key genes (p < 0.05). As a result, 6 protective fac-
tors were obtained: RPL28, RPL36, ATP5F1E, PRPF31, 
PET100, SEPTIN4 (OR < 1, p < 0.05), while the PTAR1, 
CYP27A1, SLC4A8, SLC25A34, FGD6, LDHD, GAN 
genes were risk factors (OR > 1, p < 0.05) (Fig. 3A). Ana-
lyzing the correlation between exposure factors and 
outcomes in scatter plot, PTAR1, CYP27A1, SLC4A8, 
SLC25A34, FGD6, LDHD and GAN genes were positively 
correlated, while the RPL28, RPL36, ATP5F1E, PRPF31, 

PET100 and SEPTIN4 genes were negatively correlated 
(Supplementary Fig.  1). Forest plots showed that the 
effect value of RPL28, RPL36, ATP5F1E, PRPF31, PET100 
and SEPTIN4 were less than 0, the effect value of PTAR1, 
CYP27A1, SLC4A8, SLC25A34, FGD6, LDHD and GAN 
genes were great than 0 (Supplementary Fig.  2). SNP 
numbers were largely symmetrical on both sides of the 
IVW line and consistent with Mendel’s second law (Sup-
plementary Fig. 3). Sensitivity analyses of the 13 exposure 
factors and outcomes yielded 13 exposure factors for no 
heterogeneity (p > 0.05) (Supplementary Table  1), and 
there were no horizontal pleiotropy existed between 13 
exposure factors and outcome (p > 0.05) (Supplementary 
Table 2, 3). In LOO, there were no points of no serious 
bias, and the reliability of the results was illustrated (Sup-
plementary Fig. 4). At last, DR was used as exposure fac-
tor and the 13 genes as outcome in the steiger test for 
reverse causality, the directional relationship was judged 
to be "TRUE", and there was no reverse causality between 
the 13 exposure factors and the outcome (p < 0.05) (Sup-
plementary Table  4). Finally, RPL28, RPL36, ATP5F1E, 
PRPF31, PET100, SEPTIN4, PTAR1, CYP27A1, SLC4A8, 
SLC25A34, FGD6, LDHD, GAN were recorded as key 
genes.

Establishment of PTAR1 and SLC25A34 as biomarkers 
for DR
To further recognize biomarkers, 13 key genes were 
included in both SVM and Boruta analyses. In the Boruta 
algorithm, resulting in the identification of 11 candidate 
biomarkers (Fig.  3B). Within the SVM-RFE, screening 
of 13 genes yielded 11 candidate biomarkers (Fig.  3C). 
Then, by overlapping these two sets of candidate bio-
markers, SLC25A34、GAN、RPL36、FGD6、PTAR1
、PRPF31、SLC4A8、ATP5F1E、PET100、CYP27A1 
were identified as candidate biomarkers (Fig.  3D). Sub-
sequently, ROC curves were plotted for these 10 candi-
date biomarkers in both GSE221521 and GSE160306 to 
assess their ability to differentiate between DR and con-
trol cohorts. Then 2 candidate biomarkers were selected 
in the two groups (AUC ≥ 0.7), which were PTAR1 and 
SLC25A34 (Fig.  3E, F). In GSE221521 and GSE160306 
dataset, PTAR1, SLC25A34 expression trends were con-
sistent and notable, and both were notably up-regulated 
in DR (Fig.  3G, H). Therefore, PTAR1 and SLC25A34 
were recorded as biomarkers for subsequent analyses.

PTAR1 and SLC25A34 nomogram diagnostics in DR
In the GSE221521, PTAR1 and SLC25A34 were found 
to have better diagnostic ability for DR by nomogram 
(Fig. 4A). The net benefit of nomogram was higher than 
the other individual factor, indicating that nomogram 
had the best predictions (Fig.  4B). The area under the 
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curve AUC of the nomogram model were 0.745, indicat-
ing that it was a good reliability of prediction model for 
DR occurrence (Fig. 4C).

Analysis and correlation of immune cells
The results of the infiltration of 22 immune cells were 
displayed in the Fig. 4D. Immune cells were first filtered 
based on the 22 immune cells whose expression was 0 
in 75% of the samples, 13 of immune cells (naive B cell, 
memory B cell, CD8 + T cell, CD4 + memory resting T 
cell, CD4 + memory activated Tcell, follicular helper T 

cell, regulatory (Tregs) T cell, resting NK cell, activated 
NK cell, Monocyte, M2 Macrophage, activated Mast cell, 
and Neutrophil) were obtained, activated NK cell and 
Monocyte were notably different between DR cohort 
and control cohort (p < 0.05), and activated NK cell was 
notable upregulated in control cohort, but Monocyte was 
notable upregulated in DR cohort. (Fig.  4E). Thereafter, 
correlations between these immune cells and biomark-
ers revealed that PTAR1 (cor = −  0.41, p = 3.96 × 10–6) 
showed the strongest positive correlations with activated 
NK cell. (Fig. 4F).

Fig. 2  The crucial biological pathways and PPI networks for candidate genes. A 26 DE-MRGs were obtained from Venn diagram of 784 DEGs 
and 1,136 MRGs. B 63 DE-MPRGs were obtained from Venn diagram of 784 DEGs and 782 WGCNA module genes. C 88 genes were obtained 
as candidate genes by Spearman correlation analysis of DE-MRGs and DE-MPRGs. D Circular plot of GO enrichment for candidate genes. E KEGG 
pathway diagram for candidate genes. F PPI network for candidate genes
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The gene set enrichment analysis (GSEA) of key genes
We employed GSEA to explore the pathways which 
biomarkers influence DR development. In GSE221521 
dataset (p < 0.05), SLC25A34 was mainly enriched 
to 58 KEGG pathways. These pathways include 

protein synthesis processes like Ribosome, neurodegen-
erative diseases such as Parkinson’s disease, as well as the 
NOTCH, and Insulin signaling pathway (Fig. 4G). PTAR1 
was mainly enriched to 19 KEGG pathways. These path-
ways include Phosphatidylinositol, Neurotrophin, ERBB, 
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Toll-like receptor, Insulin signaling pathway. SLC25A34 
and PTAR1 are both involved in the Lysosomal path-
way and Insulin signaling pathway (Fig. 4H). PTAR1 and 
SLC25A34 are both engaged in the Lysosomal pathway 
and Insulin signaling pathways. (Supplementary tables 6, 
7).

The expression of SLC25A34 and PTAR1 in different tissues
Firstly, the chromosomal location analysis was performed 
for biomarkers, SLC25A34 gene on chromosome 9 and 
PTAR1 gene on chromosome 1 (Fig. 5A). To understand 
the expression of biomarkers in skin tissues and cells, 
PTAR1 was enriched in tissues, and the top five tissues 
that express it were bone marrow, thymus, parathyroid, 
kidney and liver (Fig. 5D). Moreover, SLC25A34 had the 

highest expression content in tongue, followed by skeletal 
muscle, duodenum, small intestine and so on (Fig.  5E). 
To further understand RNA methylation modification of 
biomarkers, the prediction of SLC25A34 m6A locus was 
performed at the position of highest confidence (1461) 
(Fig. 5F), while the prediction of PTAR1 m6A locus was 
performed at the position of highest confidence (824) 
(Fig.  5G). The predicted structures of SLC25A34 and 
PTAR1 secondary structure m6A loci were then shown 
in Fig. 5B, C.

The network construction analysis of SLC25A34 and PTAR1
The GGI network showed that biomarkers associated 
with prenyltransferase activity and prenylation function 
(Fig.  6A).The miRNAs obtained from miRDB database 

Fig. 4  Nomogram diagnostics, immune cells analysis and GSEA analysis of PTAR1 and SLC25A34. A Nomogram of PTAR1 and SLC25A34 found 
PTAR1 and SLC25A34 have better diagnostic ability for DR. B Decision Curve Analysis of the nomogram found nomogram had the best predictions. 
C ROC curve of the nomogram indicated that it was a good reliability of prediction model for DR occurrence. D Immune cell infiltration between DR 
and control groups obtained 13 immune cells. E Differences in immune cells between DR and control groups. F Correlation between biomarkers 
and different immune cells. G GSEA of SLC25A34. H GSEA of PTAR1
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and TargetScan database were taken to intersect to get 
23 upstream miRNAs related to biomarkers and 17 
lncRNA (Fig. 6B, C). After that, to understand the regu-
latory relationship between transcription factors (TFs) 
and biomarkers, in which there were 12 TFs regulating 
SLC25A34, while there were 28 TFs regulating PTAR1, 
including 42 nodes and 40 edges (Fig. 6D).

Discussion
Between 1990 and 2020, DR was the mainly cause of 
blindness with an increasing global age-standardized 
prevalence [41]. It is estimated that by 2040, the num-
ber of people with diabetes worldwide will exceed 640 
million [42], and as the lifespan of diabetic patients 

continues to increase, the number of people with DR 
and resulting vision impairment is expected to rise rap-
idly [41]. The activation of macrophages or microglia in 
patients’ whole body or local eyes play significant roles 
in DR [7]. Macrophages are responsible for homeostasis 
and host defense. They are present all over the eye, such 
as in the cornea, iris, ciliary body, retina, choroid and 
sclera [43]. Evidence shows that the activation, polariza-
tion, and function of macrophages are key points in the 
inflammatory reaction caused by diabetes [44]. Hypergly-
cemia triggers the aggregation of macrophages/microglia 
with the M1 phenotype [43]. A large number of studies 
have demonstrated that macrophage-mediated inflam-
mation is vital in DR and precedes the activation of 
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other glial cells and neuronal apoptosis [45]. Mitochon-
drial function regulates the inflammatory polarization of 
macrophages [12]. For examplethe translocator protein 
(18 kDa) (TSPO) is a transmembrane protein of the outer 
mitochondrial membrane and is essential for mitochon-
drial cholesterol translocation [43, 46]. Moreover, TSPO 
is highly expressed in macrophages and microglia [47]. 
Similarly, SIRT6 is crucial for macrophage activation [48] 
and mitochondrial function regulation [49]. Recently, 
SIRT6 has been found to be associated with the occur-
rence and development of DR. High blood glucose leads 
to increased VEGF, decreased BDNF, and reduced SIRT6 
protein level in the retina. Importantly, the retinal layers 

of specific Sirt6 knockout mice are thinner [50]. There-
fore, the common mechanism of mitochondrial related 
genes (MRGs) and macrophage polarisation related genes 
(MPRGs) in DR is explored in our study to illustrate the 
pathophysiology of DR.

In this study, differential expression gene (DEGs) 
analysis was first performed on the training set, iden-
tifying 784 differentially expressed genes. Simul-
taneously, WGCNA analysis was used to screen 
MPRGs-related candidate genes. The intersection of 
DEGs with MRGs and MPRGs was taken, and genes 
with a correlation coefficient (|r|> 0.3) and p < 0.05 in 
the intersecting gene set were selected as candidate 
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genes, resulting in 88 candidate genes. Functional 
analyses, such as GO and KEGG enrichment, were 
conducted on these candidate genes. We found that 
these genes are related to ribosomes, RNA polymer-
ase, nucleotide excision repair, protein localization 
and transport, the mitochondrial inner membrane, and 
mitophagy. This suggests that changes in energy sup-
ply, protein synthesis, localization, and transport may 
occur in DR, potentially affecting retinal structure and 
function and worsening pathological changes. And this 
change is influenced by both mitochondrial function 
and macrophage activity. Abnormal protein expression 
has already been detected in the tears and vitreous fluid 
of DR patients [51, 52]. Certain molecules situated in 
the mitochondria of inflammatory macrophages was 
found to play a significant role in modulating mito-
chondrial dynamics and oxidative respiration, thereby 
affecting macrophage polarization [12]. We also found 
that these genes are associated with unfolded pro-
tein binding. Vascular degeneration, a key pathologi-
cal change in DR, precedes proliferative retinopathy. 
This underscores the critical role of neovasculariza-
tion in DR progression. Many studies show that when 
endothelial cells encounter angiogenic stimuli, such as 
oxidative stress and inflammation, the unfolded protein 
response is activated and is crucial for endothelial cell 
survival and function [53]. Therefore, we hypothesis 
that mitochondrial dysfunction may lead to insufficient 
energy supply, affecting normal macrophage func-
tions such as phagocytosis and antigen presentation. 
It may also indirectly regulate macrophage inflamma-
tory responses and immune modulation by impacting 
processes like protein synthesis, folding, transport, and 
localization. However, elevated oxidative stress in the 
retina and its capillary cells during DR is detected prior 
to mitochondrial dysfunction and the acceleration of 
apoptosis [54]. Therefore, further research is required 
to substantiate this debate.

Mendelian randomization (MR) uses genetic variants 
as instrumental variables, minimizing confounding fac-
tors and reverse causality, which enables a more pre-
cise evaluation of the causal link between the candidate 
genes and DR. MR analysis identified 13 genes with sig-
nificant causal relationships for further analysis. Using 
machine learning algorithms, including Boruta and 
SVM-RFE analysis, 10 candidate feature genes were 
selected for subsequent analysis. ROC curve analy-
sis was performed on the training and validation sets, 
showing that the AUC values of PTAR1 and SLC25A34 
were both greater than 0.7, indicating strong diag-
nostic capabilities in distinguishing between disease 
and control samples. Expression validation confirmed 
consistent and significant trends for these two genes, 

leading to their selection as biomarkers for further 
investigation.

PTAR1 is the newly identified α-subunit of GGTase3, 
playing a critical role in protein prenylation [55]. Approx-
imately 300 proteins in the human proteome are modi-
fied by prenyltransferases, many of which are essential 
for cellular functions such as membrane transport, signal 
transduction, apoptosis, and cell cycle regulation. Nota-
bly, some oncogenic proteins rely on prenylation for acti-
vation, making the inhibition of prenylation a proposed 
strategy for cancer treatment [56]. GGTase3 geranylgera-
nylates FBXL2, directing it to the cell membrane, where 
it facilitates the polyubiquitination of anchored proteins 
[55]. FBXL2 is a pro-survival gene whose product, acti-
vated by mitogens, inhibits apoptosis by activating the 
PI3K-AKT pathway and preventing mitochondrial cal-
cium overload [57]. The binding of FBXL2 to GGTase3 
is entirely facilitated by PTAR1, which completely covers 
concave surface of the F-box protein [55].

SLC25A34 (Solute Carrier Family 25 Member 34) is 
part of the solute carrier family 25 (SLC25), whose pro-
teins are primarily responsible for transporting nutrients 
like ATP, ADP, and phosphate across the mitochondrial 
inner membrane [58]. This process is essential for energy 
conversion and maintaining cellular function. These pro-
teins undergo significant conformational changes, ena-
bling them to transport large biochemical compounds 
without substantial proton leakage [58]. The clinical 
manifestations of mitochondrial diseases vary across 
different tissues and cell types but often involve energy-
demanding organs such as the brain and retina. The 
SLC25 family plays a key role in various physiological 
processes, including cellular metabolism, energy supply, 
and apoptosis. Recent studies have shown that abnormal 
expression of SLC25 family members may be linked to 
the development and progression of tumors and meta-
bolic disturbance [59].

Immune cell infiltration characteristics were assessed 
to evaluate the impact of the systemic immune system 
on DR. We found that monocytes were significantly 
upregulated, while activated NK cells were significantly 
downregulated in the DR cohort. Thereafter, correlations 
between these immune cells and biomarkers revealed 
that PTAR1 (cor = −  0.41, p = 3.96 × 10−6) showed the 
strongest positive correlation with activated NK cells. 
Upregulation of monocytes and downregulation of NK 
cells were also observed in STZ-induced DR mouse 
models [60]. NK cells are a vital type of lymphocyte in 
the human immune system, playing a key role in innate 
immunity. Their cytotoxic activity is not restricted by 
MHC and does not depend on antibodies, making them 
crucial for antitumor, antiviral, and immune regulatory 
responses [61]. Monocytes, derived from hematopoietic 
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stem cells in the bone marrow, are the largest blood cells 
and the largest white blood cells by volume. They play a 
critical role in both acute and chronic inflammation, tis-
sue repair, and immune regulation [61]. However, the 
mechanisms by which these two cell types contribute to 
the development and progression of DR still require fur-
ther investigation.

Using GSEA, we investigated the pathways through 
which biomarkers impact DR progression. In GSE221521 
dataset, SLC25A34 was mainly enriched to 58 KEGG 
pathways. These pathways include protein synthesis pro-
cesses like Ribosome, neurodegenerative diseases such 
as Parkinson’s disease, as well as the NOTCH, and Insu-
lin signaling pathway. PTAR1 was mainly enriched to 
19 KEGG pathways. These pathways include Phosphati-
dylinositol, Neurotrophin, ERBB, Toll-like receptor, Insu-
lin signaling pathway. SLC25A34 and PTAR1 are both 
involved in the Lysosomal pathway and Insulin signaling 
pathway. Our findings are consistent with previous stud-
ies. First, lysosomal impairment and autophagy disrup-
tion are among the initial factors in DR development, 
driving neovascularization, endothelial damage. Elevated 
glucose induces autophagy, but lysosomal dysfunction 
results in p62/SQTSM1 buildup, which triggers excessive 
VEGF secretion and causes retinal Müller cell death [62]. 
Second, insulin stimulates the absorption, storage and 
convertion of carbohydrates, fatty acids, and amino acids. 
Both neuron vascular cells in the retina express insulin 
receptors, and are insulin-sensitive tissue. Dysfunction 
in Insulin signaling can lead to cellular dysfunction and 
death in retinal diseases [63]. Third, neovascularization 
is one of the main pathological features in DR. NOTCH/
VEGFR regulation leads to differential dynamics of VE-
cadherin junctions, driving functional rearrangements 
of vascular endothelial cells during sprouting [64], and 
abnormalities in the NOTCH/VEGFR signaling pathway 
may exacerbate DR. Then, phosphatidylinositol 3 kinase 
(PI3K)/AKT signaling pathway is activated by hypergly-
cemia, which induces the expression of fibronectin and 
laminin, leading to the formation of fibrotic membranes 
in DR progression [65]. In addition, neurotrophin recep-
tors may be engaged in the development of epiretinal 
membranes (ERM), potentially contributing to prolifera-
tive diabetic retinopathy [66]. Consistent with our find-
ings, the ErbB signaling pathway has also been found to 
be associated with DR [67]. Moreover, upregulation of 
TLR4 mRNA and protein expression was observed in 
the STZ-induced DR rat model. Additionally, the protein 
levels of downstream signaling molecules of TLR4 were 
significantly elevated [68]. In another study, researchers 
observed a significant increase in retinal tissue thick-
ness, a biomarker of retinal damage severity, in STZ-
induced TLR4 knockout diabetic mice [69]. Therefore, 

SLC25A34 and PTAR1 may involve in the development 
of DR through these pathways, but further experiments 
are needed to confirm this.

However, this study has some limitations. Firstly, this 
study should be further validated in well-powered stud-
ies. Future studies will incorporate more experimental 
data and different types of datasets to further verify and 
improve the current research results. In addition, pro-
spective studies should be carried out in combination 
with clinical data to further validate the mechanism in 
DR. Secondly, since all participants in our MR study were 
of European ancestry, the risk of false associations due to 
population stratification bias was minimized. However, 
this restricts the applicability of our findings to popula-
tions outside of European descent.

Conclusions
This study, based on general transcriptomic data, uti-
lized Mendelian randomization (MR) and bioinformatics 
methods to investigate the mechanisms of mitochon-
drial-related genes (MRGs) and macrophage polariza-
tion-related genes (MPRGs) in diabetic retinopathy (DR), 
focusing on their involvement in biological functions. It 
identified PTAR1 and SLC25A34 as biomarkers associ-
ated with both mitochondrial function and macrophage 
polarization in DR. It contributes to further exploration 
of the pathogenesis of DR and provides potential target 
references for drug development.
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