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After a century of constant failure to produce an in vitro culture of the most widespread
human malaria parasite Plasmodium vivax, recent advances have highlighted the
difficulties to provide this parasite with a healthy host cell to invade, develop, and
multiply under in vitro conditions. The actual level of understanding of the
heterogeneous populations of cells—framed under the name ‘reticulocytes’—and,
importantly, their adequate in vitro progression from very immature reticulocytes to
normocytes (mature erythrocytes) is far from complete. The volatility of its individual
stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable
culture purposes. Yet, the recent relevance gained by a specific subset of highly immature
reticulocytes has brought some hope. Very immature reticulocytes are characterized by a
peculiar membrane harboring a plethora of molecules potentially involved in P. vivax
invasion and by an intracellular complexity dynamically changing upon its quick maturation
into normocytes. We analyze the potentialities offered by this youngest reticulocyte
subsets as an ideal in vitro host cell for P. vivax.
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INTRODUCTION

Plasmodium vivax (P. vivax) is the reigning malaria-causing parasite outside the African continent
(Gallup and Sachs, 2001). The strong morbidity burden carried by populations living in areas
endemic for this understudied parasite rebounds in the chronic impoverishment and
underdevelopment of these communities (WHO, 2016). For a long time, P. vivax has been
considered as the causing agent of the historically—yet inaccurately—termed “benign malaria”.
This inappropriate stigma has disregarded P. vivax at the end of the row in terms of malaria research
priorities (Mueller et al., 2009). Happily, in the last decade, there have been remarkable efforts to
promote P. vivax research for its capacity to remain dormant in the liver in the form of hyponozites
for long periods of time and then relapse (Krotoski, 1985). Insights into intriguing biological
features of P. vivax, such as the real contribution of the hematopoietic niches in bone marrow and
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spleen (with extramedullary erythropoiesis potentially occurring
under adverse conditions, including malaria) as homes for a
significant proportion of parasite biomass, are also on the
increase (Silva-Filho et al., 2020). Advancment in this field is
very much warranted due to the potential of the reticulocyte’s
intracellular environment to trigger the sexual commitment of P.
vivax (Obaldia et al., 2018) and subsequent importance for
transmission and eradication efforts. For this and its very early
sexual commitment in transmissible-stage gametocytes (Adapa
et al., 2019), it seems plausible that P. vivax may become the last
human Plasmodium parasite standing before the goal of malaria
eradication is achieved (Tanner et al., 2015).

A much-needed tool is still missing to boost research into
P. vivax’s intrinsic biological and pathophysiological singularities
to the level that we have today for Plasmodium falciparum
(P. falciparum), for which an in vitro culture system for blood
stages has existed for more than 40 years (Trager and Jensen,
1976). This availability has allowed us to genetically unravel
P. falciparum’s genes functionalities through already in place
forward and reverse genetic approaches (Kirchner et al., 2016;
Zhang et al., 2018), proteomics (Bautista et al., 2014), or
immunomics (Doolan, 2011), which can ultimately lead to
more rational development of new antimalarial drugs and
promotion of vaccines candidates (Bourgard et al., 2018).

Several breakthroughs in the cultivation of P. knowlesi (Moon
et al., 2013; Grüring et al., 2014) and P. cynomolgi (Chua et al.,
2019) have been achieved in the last decade. As for P. vivax, we
are still missing a reliable method for its in vitro culture; the
major impediment has been our inability to efficiently handle it
under in vitro culture conditions its sole target cell for asexual
blood-stage replication: the reticulocyte (Thomson-Luque et al.,
2019). Improved methods for reticulocyte enrichment from
different sources have been provided (Vettore et al., 1980; Brun
et al., 1990; Kumar et al., 2015; Shaw-Saliba et al., 2016), as well
as the production of reticulocytes through better optimized
hematopoietic stem cell (HSC) cultures (Giarratana et al., 2005,
Noulin et al., 2013; Scully et al., 2019) and immortalized
lines (Satchwell et al., 2019; Heshusius et al., 2019;
Trakarnsanga et al., 2020). The lack of a more efficient
enucleation (Menon and Ghaffari, 2021) can be overcome by
genetic complementation (Scully et al., 2019). Humanized mouse
models, such as the human liver-chimeric FRG KO huHep to
recapitulate the liver, and blood-stage cycles of P. vivax
(Mikolajczak et al., 2015; Schäfer et al., 2020) are readily
available, although at a high cost and low efficiency in terms of
blood-stage breakthrough; the liver stage in vitro systems (Roth
et al., 2018) are currently being optimized to unravel the
mechanism of hypnozoite production, though again at a high
cost. Furthermore, non-human primate monkey models, such as
Aotus, Saimiri, and Rhesus, are also a possibility to study this
parasite in vivo (Shaw-Saliba et al., 2016; Pasini and Kocken,
2021), although rising ethics concerns makes this model only
available to certain facilities. Thus, all expectations are put on the
development of affordable in vitro cultures, and, for this, a
substantial leap in healthily handling in vitro reticulocytes to
offer P. vivax the right host cell capable of providing specific
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
receptors and an intracellular niche for the parasite to mature
and replicate, is still needed. This is the way forward.
THE RETICULOCYTE: NOT A SPECIFIC
CELL TYPE BUT A CONTINUUM IN
MATURATION DIFFICULT TO
REPRODUCE IN VITRO

The persisting and adverse scenario of the lack of an in vitro
culture system for P. vivax is indicative of the lack of
understanding of the reticulocyte biology in vitro. Far from a
homogeneous cluster of erythroid cells, reticulocytes are a
population in constant phenotypical change. The most
immature reticulocytes formed in the bone marrow’s
erythroblastic islands continuously develop, both internally in its
cytoplasm as well as in its external surface membrane, to finally
become, while in circulation, fully mature red blood cells (RBC)
called normocytes (Figure 1). Different approaches aimed at
characterizing these dynamic reticulocytes have (imperfectly)
attempted to establish a classification to by focusing on different
features of reticulocytes. The earliest, the Heilmeyer staging I-V
focused on their microscopical appearance after New Methylene
Blue (NMB) staining (Heilmeyer and Westha üser, 1932). Later,
they were classified as R1 vs R2 reticulocytes groups based on the
shape and movement of reticulocytes in live cell cytology studies
(Mel et al., 1977). More recently, the amount of transferrin
receptor 1 (TfR1 or CD71) expression in the membrane of
reticulocytes (Brun et al., 1990; Kono et al., 2009) has become
the current trending classification. Remarkably, all three
phenotypic viewpoints must be acknowledged and taken into
consideration when attempting to unravel keys to efficiently
sustain healthy reticulocyte populations in an in vitro
culture system.

Maintaining, under in vitro conditions, the correct fitness of
these heterogeneous cells at all steps throughout their
developmental continuum is thus paramount to advance in
establishing a P. vivax in vitro culture; but this turns out to not be
an easy task. Not enough importance has been given to the fact that
the widely accepted 2–3 days necessary for a correct in vivo
maturation of reticulocytes (Seip, 1953) takes place in between
two compartments with the divergent environment. For instance,
from the low oxygen concentration niche at the bone marrow,
reticulocytes depart to a highly oxygenated milieu into the
peripheral blood where they finally reach and transform into
normocytes (Tugba et al., 2010). This maturation when pursued
in vitro is very much inhibited (Malleret et al., 2013). Size and
morphological discrepancies are also observed between ex vivo
(Malleret et al., 2013) and in vitro maturation (Griffiths et al.,
2012). Further exploration into adjusting the in vitro development
of reticulocytes under hypoxic culture conditions, at least partially
during the first steps of maturation, is desirable to satisfactorily
provide reticulocytes with an ideal environment from the very first
moments of its maturation to finally obtain the healthiest cell that
could support efficient parasite invasion and correct development.
May 2021 | Volume 11 | Article 675156
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CD71HIGH RETICULOCYTES: A
PROMISING RETICULOCYTE SUBTYPE
TO IDENTIFY MISSING RECEPTORS/CO-
RECEPTORS
Our limited knowledge of reticulocyte molecular mediators of
invasion by P. vivax contrasts with the vast repertoire reported
for P. falciparum invasion (Beeson et al., 2016). The clear role of
the Duffy antigen receptor for chemokines (DARC/CD234) in
red blood cells (RBCs) as a receptor for the DBL domain in
Region II of P. vivax (DBPII) is clearly established (Adams et al.,
1992). However, DARC is present in both reticulocytes and
normocytes and its protein expression does not change during
reticulocyte maturation. The use of monoclonal antibodies to
specific epitopes within DARC has pointed at an increased
DARC-DBP binding site accessibility in reticulocytes and,
importantly, in very immature reticulocytes (Ovchynnikova
et al., 2017). Yet, the strict tropism of P. vivax for reticulocytes
(Kitchen, 1939; Mons, 1990) cannot be totally explained by this
well-described molecular interaction. Several receptors/co-
receptors-ligand interactions have been envisioned to unravel
P. vivax invasion pathway/s (Ménard et al., 2013; Ntumngia
et al., 2016). Recently, CD71 present in younger reticulocytes
(CD71+ reticulocytes) has been promoted as the receptor for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
P. vivax ligand reticulocyte-binding protein 2b (RBP2b),
shedding stronger insight into the strict reticulocyte attraction
by P. vivax (Gruszczyk et al., 2018a and Gruszczyk et al., 2018b).
The suggested dependency on CD71 for invasion has
furthermore re-fueled the idea that a great proportion of P.
vivax biomass resides in hematopoietic organs, such as the bone
marrow (Baird, 2013) (and potentially the spleen, contributing to
the final steps of reticulocyte maturation) (Rhodes et al., 2016;
Toda et al., 2020). These are environments full of the younger
CD71+ reticulocytes and, particularly, the homes of a subset of
reticulocytes whose surfaces are extremely enriched in CD71: the
CD71high reticulocytes. These most immature reticulocytes are
nowadays considered as the key reticulocyte subset to unlock the
way for obtaining an in vitro culture system for P. vivax.

Although an attractive proposal, there is currently no
definitive in vivo evidence on a clear tropism of P. vivax to
invade the youngest reticulocytes when infecting humans. Since
the first report on the presence of P. vivax in bone marrow
aspirates in humans (Marchiafava and Bignami, 1984), the
following findings of this parasite in hematopoietic organs till
present have been merely incidental (Lacerda et al., 2008; Baro
et al., 2017). Histological analysis in a nonhuman primate model
has just reflected a moderate enrichment of asexual stages in the
parenchyma (Obaldia et al., 2018). These data cannot firmly
FIGURE 1 | Erythroid cell maturation occurs in different compartments. Reticulocytes emerge in the hypoxic bone marrow compartment upon their predecessor cell
in the erythroid lineage, the orthochromatic erythroblasts, expelling its nucleus, in the form of a pyrenocyte, which will be thereafter engulfed by the key scaffold cell of
the erythroblastic islands, the central macrophage. These macrophages also play an important role in secreting cytokines that will contribute to the maturation of the
whole erythroid lineage from erythroid committed stem cells to CFU/BFU and all the way to reticulocytes. Some recently-enucleated reticulocytes may leave the bone
marrow to start maturation in peripheral blood (A), But mostly they start maturing within the bone marrow compartment (B) to ultimately progress to fully mature
RBCs in the peripheral blood compartment with higher oxygen concentration. Immature reticulocytes, sometimes referred to as CD71high reticulocytes are thus
preferentially enriched in the bone marrow but can also be found in peripheral circulation. The spleen represents a hematopoietic organ with potential for
erythropoiesis under stress circumstances and where reticulocyte maturation is postulated to happen.
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support that the subset of reticulocytes being invaded in vivo are
only bone marrow-residing CD71high. Yet, in an in vitro
experimental setting, an immature CD71high reticulocyte
subpopulation as preferentially chosen for invasion by P. vivax
(Malleret et al., 2015). This has likewise been demonstrated for
the reticulocyte-prone rodent malaria parasite Plasmodium yoelii
17X NL (Martıń-Jaular et al., 2013). This finding has promoted
investigating molecules present in the membrane of CD71high

that may act as yet-unreported receptors involved in
P. vivax invasion.

Phenotypical characterization of reticulocytes in cord blood
samples has tightly measured the abundance of many different
RBC surface markers among different subsets showing that
reticulocyte maturation is concomitant with decreasing CD71
expression (Malleret et al., 2013; Wilson et al., 2016; Chu et al.,
2018). This has been later expanded to peripheral blood and
bone marrow samples to study a broader set of markers
(Thomson-Luque et al., 2018), and corroborating that,
although at low levels compared to bone marrow, reticulocytes
with very high CD71 loads can be released very rapidly to
peripheral blood (even during the first 30 minutes after
detaching from erythroblastic islands when assuming a linear
age distribution) (Ovchynnikova et al., 2017) (Figure 1).
Therefore, if P. vivax invasion is specifically restricted to
reticulocytes with the highest CD71 expression, replication
could also occur in peripheral circulation. Other surface
molecules such as CD49d (a4b1integrin), which is drastically
lost at the very early hours of reticulocyte maturation, CD44
(Indian blood group), and CD98 are enriched in the most
immature CD71high reticulocytes (Griffiths et al., 2012).
Consequently, wide cell-surface screenings are particularly
relevant if some of these molecules are ever promoted as a
potential receptor to explore.
YOUNG RETICULOCYTES: THE
KEYSTONE FOR P. VIVAX INFECTION OF
THE DUFFY NEGATIVE AFRICAN
POPULATION?

P. vivax infections have long been considered to be inexistent in
the African continent (Miller et al., 1976). The clear contrast in
the geographic distribution among P. vivax and the deadliest
species in Africa P. falciparum has been historically based on the
imperative of P. vivax to invade human populations positive for
DARC, which presence is very limited in Africa (Howes et al.,
2011). Yet, initial reports have put on the table the potential
ability of P. vivax to cause disease all the way from East
(Bray, 1958; Ryan et al., 2006; Ménard et al., 2010;
Woldearegai et al., 2013; Lover, 2014) to Central (Culleton
et al., 2009; Wurtz et al., 2011) and West Africa (Fru-Cho
et al., 2014; Niangaly et al., 2017; and extensively reviewed in
Popovici et al., 2020). The question of how P. vivax merozoites
invade reticulocytes from African populations not carrying
DARC (Gunalan et al., 2018) can be answered through in vitro
dissections of invasion ligand/host receptor interactions.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Studies of various culture conditions in red cells have revealed
switching mechanisms in mature RBCs invasion by P. falciparum
(Dolan et al., 1990). Recently, by blocking reticulocytes’ DARC
and TfR1 receptors in short-term cultures of P. vivax isolates, a
significant variation in receptor usage was observed, suggesting
that P. vivax may use alternative invasion pathways (Kanjee
et al., 2020). Immature reticulocytes clearly represent the right
cell to search for these alternative pathways’ mediators.

Moreover, the leaky expression of DARC on Duffy negative
(Duffy-) RBCs has been previously suggested (Gunalan et al.,
2020) as a potential explanation for P. vivax invasion into Duffy-

reticulocytes. Some DARC- individuals may not be fully Duffy-
null, as residual RNA transcription may still happen marginally
(Popovici et al., 2020). This phenomenon has recently been
described in bone marrow-derived DARC- RBC progenitors
(Dechavanne et al., 2018). The possibility that some very
immature DARC- reticulocytes in the bone marrow, but also in
peripheral blood (Thomson-Luque et al., 2018), harbor marginal
expression of DARC tempts us to speculate that they may be the
explanation behind the possibility of transmission between
Duffy- individuals infected with P. vivax. This is further
supported if the molecules characteristic of reticulocyte
immaturity that they carry have indeed a role as alternative
receptors/co-receptors. However, aside from receptor molecules,
other players constitutive of the immature reticulocyte
membrane may need to be looked into and taken care of
under in vitro conditions.
A CONSTANT REMODELING OF THE
RETICULOCYTE MEMBRANE IN VITRO IS
NEEDED

A healthy reticulocyte membrane is not just needed as a
cytoskeletal platform [composed of networking molecules
spectrin, actin, tubulin, ankyrin, adducin, tropomyosin, and
tropomodulin, linking the major structural elements protein
4.1 and band 3 (Liu et al., 2010)] to anchor receptor molecules.
Such a structured membrane is also requested to support the
biophysical requirements for invasion, establishing the correct
tension for the DBP-DARC tight junction and, potentially, of
unidentified receptor/ligand interactions, to efficiently interact
(Kariuki et al., 2020). DARC expression dependency on the
junctional complex with protein 4.1 supports this fact, as
protein 4.1 deficiency reduces the expression of DARC
(Salomao et al., 2008; Azouzi et al., 2015). The gradual
remodeling of the reticulocyte membrane’s nanostructure (Li et
al., 2018), involving the loss of up to one-third of its surface area
(Griffiths et al., 2012), has been widely studied with the use of a
variety of approaches, such as SEM, TEM, micropipette
aspiration, and atomic force microscopy (Malleret et al., 2013;
Malleret et al., 2015). Yet again, very little is known of the correct
cytoskeleton maturation of reticulocytes in vitro, with membrane
dismembering being common under standard P. vivax culture
settings (Thomson-Luque et al., 2017). A decrease in osmotic
stability has been shown to be a major cause for the loss of
May 2021 | Volume 11 | Article 675156
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structural integrity of reticulocytes undergoing in vitro
maturation in HSC cultures (Clark et al., 2021). This suggests
that immature reticulocytes are more osmotically stable, pointing
to an advantage for P. vivax to develop when invading these cell
subtypes (Figure 2). Yet, a relevant uncertainty remains as to
whether reticulocyte’s membrane maturation is modified as a
consequence of the P. vivax infection itself.

A reported acceleration in the maturation of cord blood-
derived reticulocytes triggered by P. vivax right after merozoite
invasion in vitro has described a fast decline of CD71 from the
surface of P. vivax-infected CD71+ reticulocytes (Malleret et al.,
2015). This is accompanied by rapid loss of the inner reticulae (a
conglomerate of polyribosomes, RNA, endothelium reticulum,
and sometimes mitochondria) 3 hours post-invasion. These
events are found to go hand to hand with a concomitant shift
in membrane nanostructure components, from clathrin pit-
enriched towards caveolae-enriched infected reticulocyte
membrane, as the parasite matures in an in vitro environment.
In the context of these findings we need to consider the
following: (i) the accelerated disappearance of CD71 is not
homogeneous, and some P. vivax late stages are inside some
CD71+ reticulocytes; and (ii) the discrepancy with findings of P.
vivax late stages inside NMB+ reticulocytes (Lim et al., 2016) as
well as inside CD71+ reticulocytes (Clark et al., 2021) in patients’
field isolates. In the Aotus lemurinus lemurinus monkey malaria
model (Shaw-Saliba et al., 2016), co-staining of in vivo samples
containing P. vivax infected reticulocytes with both Giemsa and
supravital New Methylene blue revealed that in Aotus monkeys
in vivo P. vivax Sal-1 of different developmental stage can be
found inside reticulocytes of different maturity (from Heilmeyer
I to IV). In addition, the second generation of these parasites in
vitro cultured for 20 hours right after bleeding an infected
monkey were also found inside Heilmeyer II to III
reticulocytes [a subtype described as part of a CD71+
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
subpopulation of reticulocytes sorted by flow cytometry
(Malleret et al., 2013)]. Yet, different P. vivax strains may vary
largely in their reticulocyte preference (Lim et al., 2016) and
infection variability regarding DARC polymorphisms (Fyb and
Fya) should not be looked aside. Whether the fast remodeling is
indeed triggered by the parasite or it is just an in vitro effect
warrants further exploration; and furthermore, to answer as to
what extent we need to experimentally pursue these fast dynamic
changes in order to achieve the fittest in vitro culture possible for
P. vivax.
THE INNER INTRACELLULAR
ENVIRONMENT OF IMMATURE
RETICULOCYTES AND ITS REMODELING
PACE

Fast events occurring in the membrane of reticulocytes upon
maturation are highly intertwined with the massive inner
remodeling. Understanding the intra-host cell environment and
its corresponding changes upon the different maturity states of
reticulocytes, and especially in the initial steps of CD71high

maturation, is crucial as these singular cells may provide
metabolic reservoirs for P. vivax to take advantage upon
developmental advancement (Srivastava et al., 2015) (Figure 2).
In cord blood, for example, differing levels of amino acids,
nucleotides, and sugars, among others, have been found in the
different age-related subsets of reticulocytes, with decreasing
concentrations as the reticulocyte matures (Darghouth et al.,
2011; Malleret et al., 2013). Active metabolic pathways have been
shown to remain in reticulocytes, whilst they tend to disappear in
normocytes (Srivastava et al., 2017). Thus, the correct metabolite
content and redox balance need to be mimicked in an in vitro
FIGURE 2 | Potential advantages and disadvantages of immature reticulocytes. Surface and intracellular phenotypic features at the very initial steps of very immature
reticulocyte maturation that may confer/impede the P. vivax parasite’s subsequent physiological progression throughout their intra-reticulocytic developmental cycle.
(i) Griffiths et al., 2012, (ii) Thomson-Luque et al., 2018, (iii) Malleret et al., 2013, (iv) Kariuki et al., 2020, (v) Clark et al., 2021, (vi) Srivastava et al., 2015, (vii) Starkov, 2008.
May 2021 | Volume 11 | Article 675156

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Thomson-Luque and Bautista Very Immature Reticulocytes: The Key?
setting as well, especially at the first steps of maturation, as slight
differences may alter a wide range of fast processes occurring both in
the membrane as well as in the cytoplasm.

Deleterious metabolic conditions in cultured reticulocytes may
have a consequence in the clathrin pits-originated endocytosis
mechanism for the sorting of disposable membrane proteins, such
as CD71. Consequently, not leading to the ideal formation of
multi-vesicular bodies due to the malfunction of the endosomal
sorting complex required for transport, or even their correct
fusion to the membrane, can have an effect on P. vivax invasion
and development (Rieu et al., 2000). An altered redox regulation
may also affect the ubiquitin-proteasome degradation pathway
required for degrading cytosolic actin and tubulin (Liu et al.,
2010). A functional tricarboxylic acid cycle (TCA cycle) is present
in reticulocytes, consistent with the presence of residual
mitochondria in the most immature subsets but lost thereafter
(Srivastava et al., 2017) through a process of mitophagy (Lee et al.,
2012). Whether the presence of mitochondria in the younger
subset of reticulocytes is beneficial or detrimental for P. vivax to
progress in the asexual cycle is also unknown. In favor of
immature reticulocytes, mitochondrial by-products may be
scavenged by the parasite for its own benefit, while the loss of
mitochondrial observed in older reticulocytes could lead to the
lack of enough buffering capacity against reactive oxygen species
excess (Starkov, 2008) during parasite development, and therefore
triggering host cell and parasite damage.
DISCUSSION: THE NEED FOR A MORE IN-
DEPTH UNDERSTANDING OF IMMATURE
RETICULOCYTE FITNESS IN VITRO

The advantage of using the youngest of the reticulocytes for
facilitating P. vivax in vitro invasion seems sound, as its densely
populated surface carries molecules potentially functioning as
receptors. Due to the longer time to progress to normocytes,
young reticulocytes can contribute to ameliorate the technical
challenge of parasitemia dilution at every sub-culturing cycle
resulting from the addition of new reticulocytes to the system
characteristic of P. vivax cultures. The youngest reticulocytes can
also provide the parasite with an extra supply of metabolites and
a specific environment that is progressively lost as the
reticulocytes mature to a low synthesizing cell. Some
uncertainty may arise regarding the extent to which the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
hemoglobin provided by very young reticulocytes is enough for
P. vivax as a source of amino acids. Yet, this would not seem a
problem as P. vivax development inside even more immature
nucleated erythroid cells, such as polychromatic erythroblasts,
has been proven (Panichakul et al., 2007).

There have been a plethora of studies aiming at determining
optimal culture media components to be used for P. vivax in vitro
cultures to sustain not only parasite development but correct host
cell survival (Roobsoong et al., 2015; Rangel et al., 2018; Thomson-
Luque et al., 2019; Clark et al., 2021). A specific culture media
recipe may as well need to be rationally designed and tested to
specifically keep physiological reticulocyte remodeling (extensively
reviewed in Thomson-Luque et al., 2019). Promoting this
subpopulation of reticulocytes for its use for in vitro culture will
require investing in an expensive and still inefficient large-scale
isolation and storage, which is not available in every laboratory.
More experimentation is clearly deserved on sustaining a parallel
and healthy reticulocyte maturation of both its surface as well as
internal components under in vitro conditions. Are both of these
cytoplasmic and membrane maturations needed for P. vivax to
develop inside? Is there a certain rate for a fine-tuned progression
of P. vivax inside this delusory host cell? These are the key
questions to be addressed; in order to gain more confidence in
immature reticulocytes for achieving P. vivax culture in vitro, we
must first discard that some of the described observations on the
parasite’s biology are not just an artifact of non-viable reticulocytes
in a non-optimized in vitro environment.
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