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Abstract: Background: Gait is often impaired in people after stroke, restricting personal indepen-
dence and affecting quality of life. During stroke rehabilitation, walking capacity is conventionally
assessed by measuring walking distance and speed. Gait features, such as asymmetry and variability,
are not routinely determined, but may provide more specific insights into the patient’s walking
capacity. Inertial measurement units offer a feasible and promising tool to determine these gait
features. Objective: We examined the test–retest reliability of inertial measurement units-based gait
features measured in a two-minute walking assessment in people after stroke and while in clinical
rehabilitation. Method: Thirty-one people after stroke performed two assessments with a test–retest
interval of 24 h. Each assessment consisted of a two-minute walking test on a 14-m walking path.
Participants were equipped with three inertial measurement units, placed at both feet and at the low
back. In total, 166 gait features were calculated for each assessment, consisting of spatio-temporal (56),
frequency (26), complexity (63), and asymmetry (14) features. The reliability was determined using
the intraclass correlation coefficient. Additionally, the minimal detectable change and the relative
minimal detectable change were computed. Results: Overall, 107 gait features had good–excellent
reliability, consisting of 50 spatio-temporal, 8 frequency, 36 complexity, and 13 symmetry features. The
relative minimal detectable change of these features ranged between 0.5 and 1.5 standard deviations.
Conclusion: Gait can reliably be assessed in people after stroke in clinical stroke rehabilitation using
three inertial measurement units.

Keywords: cerebral vascular accident; sensors; walking; recovery; accelerometer; gait quality;
neurological disorder; functional gait assessment

1. Introduction

Walking dysfunction is a common problem in people after stroke, restricting personal
independence and affecting quality of life [1,2]. Walking dysfunction in people after stroke
is characterised by decreased walking speed, shorter stride length, and gait asymmetry [3,4].
These changes in gait patterns are related to a higher fall risk among the elderly and people
after stroke [5–9]. Falling can result in physical injury, emotional dysfunction, and is the
number one cause of unexpected death [10]. Thus, to promote quality of life and reduce
fall risk, improving gait is one of the main goals during stroke rehabilitation [11].

To monitor progression and to support clinical decision-making, reliable gait assess-
ments during rehabilitation are essential. In current practice, gait is assessed using several
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walking tests, e.g., the ‘6-minute Walking Test’ or ‘10-metre walk test’ [12,13]. These walk-
ing tests have a high clinical relevance since they reflect functional capacity, and because the
outcomes are associated with fall risk [14,15]. However, gait features during the assessment,
e.g., asymmetry and variability, are not routinely recorded. These features may provide
additional insights in the individual walking dysfunction of people after stroke, lead-
ing to more accurate fall-prediction models, and presumably improving clinical decision
making [7,16,17].

In recent years, several studies have demonstrated that portable devices, such as
electromygraphy, insole foot pressure sensors, motion capture systems, and inertial measure-
ment units (IMUS), can objectively measure gait and be used to compute gait features [18–23].
Of all of these devices, IMUs might be the most feasible for clinical use because measuring
with IMUs requires no expensive equipment, and they are easy to operate. Numerous stud-
ies showed that gait features can be accurately determined using IMUs among the elderly,
people with Parkinson’s disease, and people in the chronic phase after a stroke [24–26].
Moreover, IMU-derived gait features can be used to discriminate between fallers and non-
fallers and different types of dementia [17,27]. In addition, several studies demonstrated
that changes in gait features during rehabilitation, such as improved dorsi-flexion and
symmetry, can be registered using IMUs [23,28]. This indicates that IMUs can be used
to monitor gait recovery; hence, they function as a clinical evaluation tool. Despite the
advantages of using IMUs to assess gait, regular IMU-based measurements have yet to be
adopted by clinicians [21,29]. This is because IMU data needs to be collected, processed,
and converted to clinically relevant information, requiring time, processing tools, and
expertise. As a result, there is a sizable gap between research and clinical practice.

We aim to explore the potential of measuring gait using IMUs to closely monitor
gait recovery in people after stroke. Therefore, as a first step, we determined whether
gait features can reliably be obtained by clinicians in clinical rehabilitation. In the present
study, we determined the test–retest reliability of IMU-based gait features during a two-
minute walk test in people after stroke who were in clinical rehabilitation. Additionally, we
examined whether these features are sufficiently reliable to be used to monitor individual
progression. The key contributions of this study can be summarised as follows: firstly, we
investigated if numerous gait features can reliably be measured using IMUs by clinicians
in people after stroke; secondly, a stride-detection algorithm was developed to detect
strides in the majority of people after stroke, including slow and asymmetric gaits; thirdly,
a platform was created in which clinicians could upload measurement data that was
then automatically stored, processed, and returned gait features; lastly, the protocol was
designed in collaboration with clinicians to promote feasibility of assessing gait using IMUs
in stroke rehabilitation.

2. Materials and Methods
2.1. Participants

Thirty-one people after stroke were recruited in two rehabilitation centres in the
Netherlands. Participants signed a written informed consent prior to participating. All
participants were diagnosed with stroke, according to the definition of the World Health
Organisation [30], and had been hospitalised for four to fourteen days before admission.
Eligible participants were above the age of 18, in the sub-acute or chronic phase after stroke,
able to comprehend and sign the informed consent, and capable of understanding and
performing simple tasks. The ability to understand and perform simple tasks was estimated
by clinicians prior to inclusion. Participants were excluded if they were unable to walk at
least 0.05 metres per second (≈seven metres in two minutes) or when they had experienced
a recent (<4 weeks) thrombolysis or re-perfusion. The medical ethical review committee of
Utrecht (METC number: 20-462/C) approved this study.
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2.2. Protocol

Demographic- and stroke-specific characteristics were collected, including gender,
age, time since stroke, type of stroke, and hemiparetic side. Additionally, outcomes of the
following tests were obtained prior to the assessment: Berg Balance Scale, Trunk Control
Test, Motricity Index, Modified ranking scale at admission, Barthel index at admission, and
the functional ambulation classification with and without a walking aid [13,31–35]. In the
assessment, participants walked at a self-selected speed for two minutes on a 14-m walking
path with cones at both ends. Participants started on the left side of the starting cone
and took right turns around the cones. The assessment was performed with a test–retest
interval of 24 h. The use of a walking aid was optional. The assessments were administered
by one trained physiotherapist per rehabilitation centre. A measurement was excluded
if the subject stopped walking, was visibly distracted, or in case of an observable clonus.
Participants were allowed to retry the assessment in case of a faulty measurement.

2.3. Equipment

Prior to the assessments, the gyroscope bias of each IMU was estimated using a
fifteen-minute stationary measurement. Participants were equipped with three inertial
measurement units (manufactured by Aemics b.v. Oldenzaal, The Netherlands). The
inertial measurement units (IMUs) consisted of an accelerometer and gyroscope, and were
measured with a sampling rate of 104 samples per second. The first IMU was placed on the
lower back at a height of L5/S1. Its range was set to±4 m/s2 and±500◦/s. The second and
third IMUs were placed on top of the left and right foot, with the range set to ±8 m/s2 and
±500◦/s. The IMUs were aligned with the anatomical axis during sensor placement. Elastic
bands were used to hold the IMUs in place. Before and after the assessment, participants
stood still for five seconds to enable an accurate assessment of the start and end of the
assessment. The path and equipment are depicted in Figure A2 in Appendix D.

2.4. Data Processing

The data were imported and calculations were completed using Python (version
3.7.3). Firstly, the signal was down-sampled to 100 samples per second. Secondly, the
gyroscope was corrected by subtracting the gyroscope bias. Thirdly, the first and last two
seconds were excluded from further analysis to account for movement during transitional
phases. Fourthly, the prior- and post-assessment stationary periods were estimated using
a threshold based on the mean magnitude of the acceleration and gyroscope. Lastly, the
length of the residual signals of all three IMUs were compared to the expected signal length.
If the residual signal length deviated more than ten seconds from the expected signal length,
the measurement was excluded from further analysis. These data-processing steps are
visualised in Figure 1.
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Figure 1. Visualisation of the data-processing steps prior to calculating the gait features. In the
figure, the acceleration magnitude (blue) and gyroscope magnitude (orange) of a two-minute walking
assessment is depicted. Firstly, the first and last two seconds (red planes) were excluded from
analysis. The remaining signal was then used to calculate the threshold to determine the prior- and
post-walking stationary periods (yellow planes). The residual signal was included in further analysis.
For demonstrative purposes, the magnitude of acceleration and gyroscope were normalised using a
min–max normalisation.

2.5. Stride Detection

To determine gait events in the left and right foot, a custom-made stride-detection al-
gorithm was created, since existing stride-detection algorithms, such as continuous wavelet
transform [36] and template matching [37,38], were inadequate for accurately detecting
strides in very slow, poor, or asymmetric gait. To detect the strides, firstly, the average
time per stride was estimated based on the dominant frequency found in the medio-lateral
acceleration, using the Fast Fourier Transform [39]. Secondly, a peak-detection algorithm
was used to identify foot-contact in the vertical acceleration (scipy.signal.find_peaks with
a minimal distance of 0.75 * average time per stride and minimal height of mean vertical
acceleration + standard deviation vertical acceleration). Subsequently, a false-negative peak
detection was applied to minimise errors by comparing the sample difference between
peaks to the expected between-peak difference (average time per stride). In the negative
peak detection, the between-peak sample difference was evaluated; if the difference ex-
ceeded more than 1.5 times the expected difference, then the previously described peak
detection was applied with 0.75 * the minimal peak height. After the false-negative peak
detection, the stance phases were determined based on the stationary periods between
foot-touches (peaks), where a stationary period was defined minimally as 0.2 consecutive
seconds below a gyroscope- and acceleration-threshold (mean acceleration magnitude +
standard deviation acceleration magnitude and mean gyroscope magnitude). In case no
stance phase between foot-touches could be identified, a false-positive peak detection was
applied to remove the lowest peak before determination of the stance phase. Swing phases
were defined as the periods between stance phases. These processing steps are visualised
in Figure 2. To compute spatial gait features, the accelerometer and gyroscope data were
aligned with the vertical (VT) (upward: positive), medial–lateral (ML) (right: positive), and
anterior–posterior (AP) axes (anterior: positive), and corrected for the effects of gravity
using a sensorfusion algorithm [40]. Lastly, a zero-velocity update (ZUPT) was applied to
determine spatial gait features [41].

For the determination of gait events in the low back, a similar algorithm was used
as for the feet. First, the accelerometer and gyroscope data were aligned with the vertical
(upward: positive), medio-lateral (right: positive) and anterior–posterior (forward: positive)
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axes, and corrected for the effects of gravity. Second, the anterior–posterior acceleration
(AP) of the low back was integrated and filtered twice, with a second-order Butterworth
bandpass filter between 0.25 and 15 Hz. Third, the first foot contact was detected using a
peak-detection algorithm (scipy.signal.find_peaks with a minimal distance of 0.75 * average
time per stride and minimal height of mean anterior–posterior acceleration + standard
deviation anterior–posterior acceleration). Based on the mean outcome of the medio-lateral
acceleration during the first step, the corresponding foot was determined [42]. Fourth, the
time periods between foot contacts, found in the stride detection of the foot, were used
as a template to detect all strides of the corresponding foot in the signal. Last, the first
foot contact of the other foot was found using a peak-detection algorithm with a window
between the first and second foot contact. The time periods between foot contacts, found in
the step-detection algorithm of the foot, were used as a template to detect all strides of the
corresponding foot in the signal.

Figure 2. Visualisation of the custom-made stride-detection algorithm during 10 s of walking by a
person after stroke. The vertical acceleration is depicted as a blue line. First, the strides were detected
using a peak-detection algorithm; the threshold is depicted as the orange line and the search window
is depicted as the black line above the peaks. The found peaks are marked with an orange circle. Then,
a false-negative peak detection was applied, and the stance phases were identified as the stationary
periods between peaks (green planes). Lastly, a false-positive peak detection was applied in case no
stationary period between peaks could be identified. The signal that was not marked as part of the
stance phase was considered to be the swing phase (yellow planes).

2.6. Calculations

A total of 166 gait features were calculated, consisting of 56 spatio-temporal, 26 fre-
quency, 63 complexity, and 14 symmetry features. A detailed description of all sway
features is given in Tables A3 and A4 in Appendix C. The spatio-temporal features were
computed as the mean outcome per 10 strides. The paretic side and height were used for
normalisation. If the paretic side was undefined (unknown or both sides affected), the left
foot was used. The algorithm to process the data, detect strides and calculate gait features
is available on GitHub: https://github.com/RichardFel/Reliability-of-Gait (accessed on
10 December 2021).

2.7. Statistics

The intraclass correlation coefficients and their 95% confidence interval for the between-
day reliability were calculated using the intraclass correlation coefficient (ICC 2.1). An
ICC of 0.5–0.75 was seen as moderate reliability, 0.75–0.9 as good, and 0.9 as excellent [43].
Additionally, the confidence interval (CI), standard error of measurement (SEM), and the
minimal detectable change (MDC) were calculated. The MDC represents the threshold in

https://github.com/RichardFel/Reliability-of-Gait
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which changes in score exceed measurement errors [44]. To determine the MDC indepen-
dent of the unit of measurement, thus as a relative minimal detectable change, the MDC
was divided by the standard deviation of the observed values of pooled test and retest
measurements. This allows for comparison between features [45].

3. Results
3.1. Descriptives

Thirty-one people after stroke participated in the study. Participant characteristics are
described in Table 1. Two participants were excluded, one because the required gait speed
of 0.05 m per second was not met, and a second because of a clonus during the assessment.

Table 1. Characteristics.

Description Outcome

Gender Male/Female 15/15
Stroke type Hemorrhagic/Ischimic 6/24
Hemiparetic Side Left/Right/Both/Unknown 12/14/2/2
Walking aid With/Without/Both 23/4/2

Age (years) Mean (SD) (min, max) 69.2 (±10.3) [52, 85]
Time post stroke (weeks) Mean (SD) (min, max) 10.4 ± 7.5 (3, 37)
Berg Balance Scale Mean (SD) (min, max) 41 ± 11.7 (14, 56)
Motricity Index Mean (SD) (min, max) 63.9 ± 32.3 (0, 100)
Trunk Control Test Mean (SD) (min, max) 94.4 ± 16.2 (25, 100)
Barthel Index (at admission) Mean (SD) (min, max) 10.3 ± 4.6 (1, 20)
Modified ranking scale (at admission) Mean (SD) (min, max) 4.0 ± 0.7 (3, 5)
Functional ambulation classification Mean (SD) (min, max) 2.1 ± 1.6 (0, 5)
Functional ambulation classification (walking aid) Mean (SD) (min, max) 3.7 ± 0.8 (3, 5)

Abbreviations: SD = Standard deviation; Min = Minimum; Max = Maximum.

3.2. Reliability

The ICC values of the test–retest measurements are visualised in Figures 3 and 4. The
mean, standard deviation, and ICC values are described in Table A1 in Appendix A. In total,
107 out of 166 gait features were measured with good–excellent reliability (ICC ≥ 0.75).
These consisted of 50 out of 56 spatio-temporal, 8 out of 26 frequency, 36 out of 63 complexity,
and 13 out of 14 asymmetry features. In total, 31 out of 46 gait features measured with
the left foot IMU demonstrated good–excellent reliability. These consisted of 19 spatio-
temporal and 12 complexity features. In total, 34 out of 46 gait features measured with
the left foot IMU demonstrated good–excellent reliability. These consisted of 19 spatio-
temporal, 3 frequency, and 12 complexity features. In total, 29 out of 54 gait features
measured with the low back IMU demonstrated good–excellent reliability. These consisted
of 12 spatio-temporal, 5 frequency, and 12 complexity features.

3.3. Clinical Monitoring

The relative minimal detectable change is visualised in the bottom panels of
Figures 3 and 4. The vast majority of relative minimal detectable change-values fell within
approximately 0.5 and 1.5 standard deviations, indicating that a change of 0.5–1.5 standard
deviations is minimally required to detect a change that exceeds the measurement error.
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Figure 3. The ICC values (top panels) and rMDC values (bottom panels) of the spatio-temporal and
frequency features for the left foot (blue triangle), the right foot (orange triangle), and the low back
(green triangle). All outcomes above the horizontal black line were measured with good–excellent
reliability. The exact outcomes of all gait features are provided in Table A1 in the Appendix A.

0.5

0.6

0.7

0.8

0.9

1.0

IC
C

Complexity

Left foot
Right foot
Low Back

Asymmetry

Combined

ACOV ac
c A

P

ACOV ac
c M

L

ACOV ac
c V

T

ACOV gy
r A

P

ACOV gy
r M

L

ACOV gy
r V

T

ACOR ac
c A

P

ACOR ac
c M

L

ACOR ac
c V

T

ACOR gy
r A

P

ACOR gy
r M

L

ACOR gy
r V

T

LD
E A

P

LD
E M

L

LD
E V

T

ApE
n A

P

ApE
n M

L

ApE
n V

T

Sam
pE

N A
P

Sam
pE

N M
L

Sam
pE

N V
T

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

rM
D

C

SR S
wing

/st
an

d

SR st
an

dp
ha

se
ss

SR sw
ing

ph
as

es

SI S
wing

/st
an

d

SI s
tan

dp
ha

se
s

SI s
wing

ph
as

es

GA S
wing

/st
an

d

GA st
an

dp
ha

se
s

GA sw
ing

ph
as

es

SA S
wing

/st
an

d

SA st
an

dp
ha

se
s

SA sw
ing

ph
as

es

Pea
k a

mp m
ea

n B
: L

/R

Pea
k a

mp s
td 

B: L
/R

Pea
k a

mp m
ea

n L
/R

Pea
k a

mp s
td 

L/R

Tota
l D

ist
 no

rm

Cad
en

ce
 no

rm

Strid
e d

ist
 m

ea
n n

orm

Strid
e t

im
e m

ea
n n

orm

Figure 4. The ICC values (top panels) and rMDC values (bottom panels) of the complexity and
asymmetry features for the left foot (blue triangle), the right foot (orange triangle), the low back
(green triangle), and combined (red triangle). All outcomes above the horizontal black line were
measured with good–excellent reliability. The exact outcomes of all gait features are provided in
Table A1 in the Appendix A.

4. Discussion

We examined the test–retest reliability of various gait features using three inertial
measurement units in people after stroke during clinical stroke rehabilitation. Additionally,
the potential of these gait features to monitor progression was assessed. In summary, we
found that the majority of the computed gait features were reliable and could potentially
be used to monitor progression.

The gait features in four domains were computed, namely: spatio-temporal, frequency,
complexity, and asymmetry. In line with the achieved results of [46], we found that the
majority of the spatio-temporal features of the feet IMUs (stride time, stride distance,
cadence) could be measured with high reliability. The achieved ICC values in our study
were slightly higher, presumably because of the great between-subject differences. For
example, some participants were able to walk only ten metres, where others walked more
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than one-hundred metres. Overall, the frequency features were less reliable than expected,
with only 8 out of 26 features having a good–excellent reliability. This might be explained by
the fact that the majority of frequency features, such as the dominant frequency width and
density, are, in essence, measures of variability. Since only 2 min of walking were recorded,
likely too few data points were collected to estimate these features with sufficient precision.
Of all complexity features, only the autocorrelation and autocovariance demonstrated
good–excellent reliability, whereas the Lyapunov exponent, sample, and approximate
entropy demonstrated a poor–moderate reliability in both feet and the lower back. The low
reliability of the Lyapunov exponent (LDE) in the lower back was particularly unexpected,
since previous studies found this feature to be reliable [47,48]. The difference in reliability is
presumably a result of the low number of strides included (25) in the computation of these
features in our study. Increasing the number of strides in the analysis would have resulted
in the exclusion of some slow and poor walkers; thus, these features seem unsuitable for
measuring people after stroke in rehabilitation. The majority of the features regarding the
swing-time and stance-time asymmetry demonstrated good–excellent reliability. These
results are in line with the outcomes of the studies of Moore et al. [49] and Lewek and
Randall [50].

The ICC values of the lower back features were considerably lower than the ICC values
of the feet features. Most likely, this is caused by the low back sensor being subjected to
significantly more noise than the feet sensors (e.g., clothing, trunk movement), and because
the ground contact forces are damped before reaching the sensor, making the detection
of gait events more difficult. This was especially true when measuring participants with
severe gait impairments. Nevertheless, only a few of the computed gait features relied
on the detection of gait events; thus, this did not affect the majority of the computed
gait features.

To indicate the ability of gait features to register changes during clinical rehabilitation,
the relative minimal detectable change was computed. Generally, a change of approxi-
mately 0.5–1.5 standard deviations is considered a difference that exceeds the measurement
error and are thus related to a significant improvement or decline. Considering the fact
that significant changes can be found in the walking ability, such as the walking speed,
balance, and physical functioning during clinical rehabilitation, it is imaginable that some
described gait features will be responsive to rehabilitation as well [51–53]. Nevertheless,
A longitudinal study is imperative to determine if people after stroke are able to show
significant improvements, reflected by these features during clinical rehabilitation.

Despite the good–excellent reliability of the majority of the features, this study has
some limitations. First, only a relatively small number of people after stroke were included
in the study. This may have caused the ICC values and MDC to lack precision. Nevertheless,
if we evaluate the consistency of the ICC outcomes between features per sensor and between
sensors, the outcomes appear to be robust. Secondly, participants that were not able to walk
at least seven metres in two minutes (0.2 km per hour) could not be measured. Therefore,
the conclusions may not generalise to all people after stroke in rehabilitation that are able
to walk. Lastly, the custom-made step-detection algorithm, despite being extensively tested
(Appendix B), was not validated for people after stroke in rehabilitation. However, the
outcomes of the tests prior to this study and the consistency and reliability of the gait
features calculated using the stride-detection algorithm provide an indication that stride
detection is a valid method of detecting strides in people after stroke during rehabilitation.

Our ultimate objective is to develop an instrumented test that clinicians can use in
daily practice to monitor individual progression during clinical stroke rehabilitation. For
this reason, we tried to design a feasible protocol in which the majority of people after
stroke can be measured, and by which sufficient information is collected, that is also easy to
follow and time-efficient. Therefore, clinicians played an important role in the development
of this protocol. Additionally, an online platform was created where clinicians could upload
the IMU data, which was then automatically stored, processed, and converted into gait
features. This platform allowed for direct feedback about the performance of the participant
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in comparison to other stroke participants. Presumably, the protocol and the platform
improve the adaptation of clinicians to routinely measure gait using IMUs. Future work is
in progress to determine if the computed gait features are sensitive to changes over time,
and if these changes are of clinical importance. Eventually, the predictive value of IMU
measurements during stroke rehabilitation on the levels of independence at discharge and
fall risk will be examined.

5. Conclusions

This study examined the reliability of gait assessment using three inertial measurement
units in people after stroke in clinical rehabilitation. In summary, we found that spatio-
temporal, frequency, complexity, and asymmetry of gait features can reliably be measured
during a two-minute walking test using a single measurement. Based on the relative
minimal detectable change, it is likely that the proposed method can be used to monitor
progression during stroke rehabilitation.
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The following abbreviations are used in this manuscript:

IMU Inertial measurement Unit
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ML Medio-lateral
AP Anterior–posterior
ICC Intraclass correlation coefficient
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Appendix A

Table A1. Test–retest results of IMU-based gait assessment in people after stroke.

Reliability Test Retest

ICC (−CI, CI) MDC (SEM) rMDC Mean (STD) Mean (STD)

Le
ft

Fo
ot

Sp
at

io
-T

em
po

ra
l

1. Stride time mean L 0.965 (0.92,0.98) 0.355 (0.128) 0.52 1.767 (0.72) 1.701 (0.64)
2. Stride time std L 0.823 (0.65,0.92) 0.144 (0.052) 1.17 0.168 (0.121) 0.162 (0.126)
3. Stride time norm L 0.798 (0.6,0.9) 0.087 (0.031) 1.26 0.092 (0.06) 0.097 (0.078)
4. Stride dist mean L 0.963 (0.92,0.98) 0.142 (0.051) 0.53 0.71 (0.258) 0.706 (0.271)
5. Stride dist std L 0.835 (0.67,0.92) 0.038 (0.014) 1.12 0.087 (0.034) 0.089 (0.034)
6. KMPH L 0.97 (0.94,0.99) 0.482 (0.174) 0.48 1.659 (0.991) 1.715 (1.016)
7. Cadence L 0.969 (0.93,0.99) 5.829 (2.103) 0.49 38.556 (11.967) 39.37 (11.864)
8. Stride vel mean L 0.952 (0.9,0.98) 0.389 (0.14) 0.61 1.367 (0.638) 1.358 (0.637)
9. Stride vel std L 0.779 (0.56,0.89) 0.312 (0.112) 1.36 0.286 (0.168) 0.347 (0.291)
10. Range acc AP L 0.862 (0.72,0.93) 17.733 (6.398) 1.03 49.86 (16.244) 50.769 (18.121)
11. RMS acc AP L 0.907 (0.81,0.96) 2.323 (0.838) 0.85 5.014 (2.716) 5.201 (2.781)
12. Range acc ML L 0.672 (0.4,0.84) 45.144 (12.288) 44.367 (12.724)
13. RMS acc ML L 0.761 (0.54,0.88) 2.66 (0.96) 1.36 4.024 (1.884) 4.074 (2.041)
14. Range acc VT L 0.758 (0.53,0.88) 22.779 (8.218) 1.37 48.206 (16.406) 47.376 (16.964)
15. RMS acc VT L 0.96 (0.91,0.98) 1.241 (0.448) 0.56 3.652 (2.101) 3.769 (2.342)
16. Range gyr AP L 0.882 (0.76,0.94) 2.98 (1.075) 0.95 7.724 (3.058) 7.982 (3.188)
17. RMS gyr AP L 0.748 (0.52,0.88) 1.15 (0.637) 1.176 (0.658)
18. Range gyr ML L 0.918 (0.83,0.96) 3.114 (1.123) 0.79 9.338 (3.827) 9.423 (4.031)
19. RMS gyr ML L 0.923 (0.84,0.96) 0.688 (0.248) 0.77 1.558 (0.861) 1.605 (0.929)
20. Range gyr VT L 0.928 (0.85,0.97) 1.597 (0.576) 0.74 6.666 (2.183) 6.898 (2.117)
21. RMS gyr VT L 0.94 (0.87,0.97) 0.198 (0.071) 0.68 0.774 (0.28) 0.81 (0.3)

Fr
eq

ue
nc

y 22. Dominant peak freq L 0.638 (0.34,0.82) 0.061 (0.035) 0.061 (0.033)
23. Dominant peak width L −0.001 (−0.36,0.36) −3.105 (13.092) 0.575 (0.096)
24. Dominant peak slope L 0.599 (0.29,0.8) 0.001 (0.001) 0.001 (0.001)
25. Dominant peak density L 0.655 (0.37,0.83) 0.189 (0.104) 0.183 (0.093)

C
om

pl
ex

it
y

26. ACOV acc AP L 0.979 (0.94,0.99) 0.074 (0.027) 0.41 0.123 (0.174) 0.141 (0.19)
27. ACOV acc ML L 0.962 (0.92,0.98) 0.026 (0.009) 0.54 0.031 (0.045) 0.035 (0.05)
28. ACOV acc VT L 0.967 (0.92,0.99) 0.07 (0.025) 0.5 0.081 (0.13) 0.096 (0.147)
29. ACOV gyr AP L 0.881 (0.74,0.95) 0.261 (0.094) 0.97 0.219 (0.245) 0.271 (0.297)
30. ACOV gyr ML L 0.977 (0.93,0.99) 1.588 (0.573) 0.42 3.093 (3.592) 3.534 (3.978)
31. ACOV gyr VT L 0.884 (0.76,0.95) 0.612 (0.221) 0.96 0.478 (0.743) 0.435 (0.533)
32. ACOR acc AP L 0.979 (0.94,0.99) 0.074 (0.027) 0.41 0.123 (0.174) 0.141 (0.19)
33. ACOR acc ML L 0.962 (0.92,0.98) 0.026 (0.009) 0.54 0.031 (0.045) 0.035 (0.05)
34. ACOR acc VT L 0.967 (0.92,0.99) 0.07 (0.025) 0.5 0.081 (0.13) 0.096 (0.147)
35. ACOR gyr AP L 0.881 (0.74,0.95) 0.261 (0.094) 0.97 0.219 (0.245) 0.271 (0.297)
36. ACOR gyr ML L 0.977 (0.93,0.99) 1.588 (0.573) 0.42 3.093 (3.592) 3.534 (3.978)
37. ACOR gyr VT L 0.884 (0.76,0.95) 0.612 (0.221) 0.96 0.478 (0.743) 0.435 (0.533)
38. LDE AP L 0.322 (−0.06,0.62) 0.009 (0.002) 0.009 (0.002)
39. LDE ML L 0.587 (0.27,0.79) 0.007 (0.001) 0.007 (0.002)
40. LDE VT L 0.208 (−0.19,0.54) 0.009 (0.002) 0.009 (0.002)
41. ApproxE AP L 0.549 (0.22,0.77) 0.388 (0.118) 0.377 (0.134)
42. ApproxE ML L 0.69 (0.43,0.85) 0.514 (0.151) 0.495 (0.167)
43. ApproxE VT L 0.688 (0.43,0.84) 0.369 (0.11) 0.352 (0.119)
44. SampE AP L 0.698 (0.44,0.85) 0.08 (0.037) 0.077 (0.039)
45. SampE ML L 0.731 (0.49,0.87) 0.15 (0.068) 0.145 (0.083)
46. SampE VT L 0.716 (0.47,0.86) 0.091 (0.041) 0.087 (0.048)
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Table A1. Cont.

Reliability Test Retest

ICC (−CI, CI) MDC (SEM) rMDC Mean (STD) Mean (STD)

R
ig

ht
Fo

ot

Sp
at

io
-T

em
po

ra
l

47. Stride time mean R 0.938 (0.86,0.97) 0.469 (0.169) 0.69 1.775 (0.73) 1.69 (0.623)
48. Stride time std R 0.636 (0.35,0.82) 0.184 (0.18) 0.164 (0.108)
49. Stride time norm R 0.686 (0.42,0.84) 0.099 (0.061) 0.099 (0.062)
50. Stride dist mean R 0.956 (0.91,0.98) 0.144 (0.052) 0.58 0.671 (0.233) 0.676 (0.262)
51. Stride dist std R 0.781 (0.57,0.89) 0.073 (0.026) 1.3 0.121 (0.061) 0.119 (0.051)
52. KMPH R 0.963 (0.92,0.98) 0.494 (0.178) 0.53 1.56 (0.881) 1.642 (0.974)
53. Cadence R 0.977 (0.95,0.99) 4.992 (1.801) 0.42 38.407 (11.849) 39.37 (11.833)
54. Stride vel mean R 0.967 (0.93,0.98) 0.289 (0.104) 0.51 1.267 (0.555) 1.28 (0.588)
55. Stride vel std R 0.939 (0.87,0.97) 0.17 (0.061) 0.69 0.327 (0.23) 0.347 (0.264)
56. Range acc AP R 0.9 (0.8,0.95) 17.789 (6.418) 0.88 53.188 (18.792) 54.961 (21.676)
57. RMS acc AP R 0.905 (0.8,0.96) 2.14 (0.772) 0.85 5.061 (2.446) 5.067 (2.562)
58. Range acc MR R 0.8 (0.61,0.9) 20.705 (7.47) 1.24 47.718 (17.953) 49.285 (15.333)
59. RMS acc MR R 0.826 (0.64,0.92) 2.351 (0.848) 1.17 3.692 (1.838) 4.16 (2.19)
60. Range acc VT R 0.936 (0.87,0.97) 18.685 (6.741) 0.7 51.447 (25.79) 51.871 (27.648)
61. RMS acc VT R 0.971 (0.94,0.99) 1.131 (0.408) 0.47 3.78 (2.313) 3.952 (2.487)
62. Range gyr AP R 0.825 (0.65,0.92) 3.707 (1.337) 1.16 7.847 (3.024) 8.398 (3.341)
63. RMS gyr AP R 0.797 (0.61,0.9) 0.812 (0.293) 1.26 1.093 (0.593) 1.21 (0.698)
64. Range gyr MR R 0.907 (0.81,0.96) 3.318 (1.197) 0.85 9.94 (3.742) 9.852 (4.097)
65. RMS gyr MR R 0.863 (0.72,0.94) 0.826 (0.298) 1.03 1.695 (0.774) 1.648 (0.834)
66. Range gyr VT R 0.931 (0.86,0.97) 1.52 (0.548) 0.73 6.285 (2.079) 6.46 (2.079)

Fr
eq

ue
nc

y 68. Dominant peak freq R 0.828 (0.65,0.92) 0.053 (0.019) 1.16 0.074 (0.048) 0.065 (0.044)
69. Dominant peak width R −0.006 (−0.32,0.34) 0.609 (0.004) 0.564 (0.108)
70. Dominant peak slope R 0.823 (0.65,0.92) 0.001 (0.0) 1.17 0.001 (0.001) 0.001 (0.001)
71. Dominant peak density R 0.889 (0.77,0.95) 0.117 (0.042) 0.92 0.204 (0.126) 0.193 (0.127)

C
om

pl
ex

it
y

72. ACOV acc AP R 0.98 (0.95,0.99) 0.077 (0.028) 0.39 0.126 (0.187) 0.145 (0.208)
73. ACOV acc MR R 0.933 (0.85,0.97) 0.035 (0.013) 0.72 0.027 (0.045) 0.034 (0.051)
74. ACOV acc VT R 0.985 (0.97,0.99) 0.047 (0.017) 0.34 0.083 (0.133) 0.09 (0.143)
75. ACOV gyr AP R 0.95 (0.89,0.98) 0.234 (0.084) 0.62 0.235 (0.379) 0.279 (0.375)
76. ACOV gyr MR R 0.988 (0.97,0.99) 1.102 (0.398) 0.3 3.081 (3.572) 3.318 (3.703)
77. ACOV gyr VT R 0.916 (0.82,0.96) 0.554 (0.2) 0.8 0.415 (0.663) 0.51 (0.715)
78. ACOR acc AP R 0.98 (0.95,0.99) 0.077 (0.028) 0.39 0.126 (0.187) 0.145 (0.208)
79. ACOR acc MR R 0.933 (0.85,0.97) 0.035 (0.013) 0.72 0.027 (0.045) 0.034 (0.051)
80. ACOR acc VT R 0.985 (0.97,0.99) 0.047 (0.017) 0.34 0.083 (0.133) 0.09 (0.143)
81. ACOR gyr AP R 0.95 (0.89,0.98) 0.234 (0.084) 0.62 0.235 (0.379) 0.279 (0.375)
82. ACOR gyr MR R 0.988 (0.97,0.99) 1.102 (0.398) 0.3 3.081 (3.572) 3.318 (3.703)
83. ACOR gyr VT R 0.916 (0.82,0.96) 0.554 (0.2) 0.8 0.415 (0.663) 0.51 (0.715)
84. LDE AP R 0.487 (0.13,0.73) 0.01 (0.002) 0.01 (0.002)
85. LDE MR R 0.516 (0.19,0.74) 0.007 (0.001) 0.007 (0.002)
86. LDE VT R 0.056 (−0.34,0.43) 0.009 (0.002) 0.009 (0.001)
87. ApproxE AP R 0.441 (0.07,0.7) 0.388 (0.123) 0.389 (0.136)
88. ApproxE MR R 0.344 (−0.04,0.64) 0.53 (0.14) 0.514 (0.159)
89. ApproxE VT R 0.527 (0.19,0.75) 0.366 (0.103) 0.38 (0.114)
90. SampE AP R 0.731 (0.49,0.87) 0.08 (0.042) 0.084 (0.043)
91. SampE MR R 0.611 (0.3,0.8) 0.156 (0.066) 0.154 (0.062)
92. SampE VT R 0.55 (0.22,0.77) 0.095 (0.046) 0.101 (0.044)



Sensors 2022, 22, 908 12 of 19

Table A1. Cont.

Reliability Test Retest

ICC (−CI, CI) MDC (SEM) rMDC Mean (STD) Mean (STD)

Lo
w

Ba
ck

Sp
at

io
-T

em
po

ra
l

93. Step time mean B 0.955 (0.9,0.98) 0.197 (0.071) 0.59 0.877 (0.354) 0.846 (0.317)
94. Step time std B 0.698 (0.44,0.85) 0.3 (0.172) 0.257 (0.135)
95. Step time norm B 0.686 (0.42,0.84) 0.395 (0.157) 0.352 (0.161)
96. Range acc AP B 0.922 (0.84,0.96) 0.191 (0.069) 0.78 0.572 (0.245) 0.579 (0.249)
97. Rms acc AP B 0.949 (0.88,0.98) 0.022 (0.008) 0.63 0.093 (0.036) 0.097 (0.035)
98. Range acc ML B 0.845 (0.69,0.93) 0.374 (0.135) 1.11 0.657 (0.283) 0.709 (0.392)
99. Rms acc ML B 0.511 (0.17,0.74) 0.114 (0.026) 0.117 (0.041)
100. Range acc VT B 0.945 (0.88,0.97) 0.253 (0.091) 0.65 0.755 (0.362) 0.763 (0.416)
101. Rms acc VT B 0.804 (0.61,0.91) 0.023 (0.008) 1.24 0.998 (0.019) 1.002 (0.018)
102. Range gyr AP B 0.972 (0.94,0.99) 0.313 (0.113) 0.46 1.199 (0.646) 1.228 (0.707)
103. Rms gyr AP B 0.972 (0.94,0.99) 0.049 (0.018) 0.46 0.184 (0.1) 0.193 (0.111)
104. Range gyr ML B 0.76 (0.54,0.88) 0.907 (0.327) 1.38 1.527 (0.762) 1.434 (0.556)
105. Rms gyr ML B 0.849 (0.7,0.93) 0.092 (0.033) 1.08 0.227 (0.086) 0.224 (0.085)
106. Range gyr VT B 0.93 (0.85,0.97) 0.629 (0.227) 0.74 1.861 (0.782) 1.929 (0.926)
107. Rms gyr VT B 0.962 (0.92,0.98) 0.087 (0.031) 0.54 0.342 (0.151) 0.356 (0.168)

Fr
eq

ue
nc

y

108. Dominant peak freq AP B 0.713 (0.46,0.86) 0.123 (0.055) 0.117 (0.054)
109. Dominant peak width AP B −0.011 (−0.35,0.35) 0.609 (0.005) 0.576 (0.096)
110. Dominant peak slope AP B 0.735 (0.5,0.87) 0.002 (0.001) 0.002 (0.001)
111. Dominant peak density AP B 0.715 (0.46,0.86) 0.356 (0.152) 0.356 (0.173)
112. HR AP B 0.847 (0.69,0.93) 1.162 (0.419) 1.09 1.418 (1.034) 1.497 (1.105)
113. IH AP B 0.456 (0.09,0.71) 0.586 (0.089) 0.588 (0.125)
114. Dominant peak freq ML B 0.657 (0.26,0.85) 0.125 (0.052) 0.101 (0.043)
115. Dominant peak width ML B −0.0 (−0.37,0.37) 0.608 (0.008) −1.276 (9.436)
116. Dominant peak slope ML B 0.657 (0.23,0.85) 0.002 (0.001) 0.002 (0.001)
117. Dominant peak density ML B 0.771 (0.56,0.89) 0.192 (0.069) 1.34 0.344 (0.139) 0.311 (0.148)
118. HR ML B 0.86 (0.66,0.94) 0.63 (0.227) 1.06 1.824 (0.678) 1.662 (0.515)
119. IH ML B 0.809 (0.61,0.91) 0.16 (0.058) 1.22 0.474 (0.136) 0.442 (0.126)
120. Dominant peak freq VT B 0.584 (0.27,0.79) 0.104 (0.053) 0.097 (0.052)
121. Dominant peak width VT B 0.004 (−0.33,0.36) 0.609 (0.004) 0.575 (0.096)
122. Dominant peak slope VT B 0.614 (0.31,0.8) 0.002 (0.001) 0.002 (0.001)
123. Dominant peak density VT B 0.616 (0.31,0.81) 0.306 (0.156) 0.301 (0.167)
124. HR VT B 0.931 (0.86,0.97) 0.732 (0.264) 0.73 1.768 (0.999) 1.794 (1.018)

C
om

pl
ex

it
y

126. ACOV acc AP B 0.986 (0.97,0.99) 0.004 (0.002) 0.33 0.007 (0.013) 0.008 (0.014)
127. ACOV acc ML B 0.963 (0.91,0.98) 0.001 (0.001) 0.53 0.003 (0.003) 0.004 (0.003)
128. ACOV acc VT B 0.952 (0.9,0.98) 0.004 (0.001) 0.61 0.007 (0.006) 0.007 (0.007)
129. ACOV gyr AP B 0.978 (0.95,0.99) 0.043 (0.016) 0.42 0.091 (0.098) 0.099 (0.109)
130. ACOV gyr ML B 0.901 (0.8,0.95) 0.026 (0.009) 0.87 0.034 (0.028) 0.037 (0.031)
131. ACOV gyr VT B 0.948 (0.87,0.98) 0.03 (0.011) 0.63 0.031 (0.043) 0.038 (0.051)
132. ACOR acc AP B 0.986 (0.97,0.99) 0.004 (0.002) 0.33 0.007 (0.013) 0.008 (0.014)
133. ACOR acc ML B 0.963 (0.91,0.98) 0.001 (0.001) 0.53 0.003 (0.003) 0.004 (0.003)
134. ACOR acc VT B 0.952 (0.9,0.98) 0.004 (0.001) 0.61 0.007 (0.006) 0.007 (0.007)
135. ACOR gyr AP B 0.978 (0.95,0.99) 0.043 (0.016) 0.42 0.091 (0.098) 0.099 (0.109)
136. ACOR gyr ML B 0.901 (0.8,0.95) 0.026 (0.009) 0.87 0.034 (0.028) 0.037 (0.031)
137. ACOR gyr VT B 0.948 (0.87,0.98) 0.03 (0.011) 0.63 0.031 (0.043) 0.038 (0.051)
138. LDE AP B 0.612 (0.3,0.8) 0.014 (0.001) 0.014 (0.001)
139. LDE ML B 0.589 (0.28,0.79) 0.014 (0.001) 0.014 (0.001)
140. LDE VT B 0.205 (−0.2,0.54) 0.014 (0.001) 0.014 (0.001)
141. ApproxE AP B 0.124 (−0.24,0.47) 0.61 (0.146) 0.554 (0.148)
142. ApproxE ML B 0.716 (0.46,0.86) 0.606 (0.137) 0.563 (0.16)
143. ApproxE VT B 0.373 (0.02,0.65) 0.51 (0.155) 0.458 (0.156)
144. SampE AP B 0.118 (−0.25,0.46) 0.474 (0.179) 0.41 (0.165)
145. SampE ML B 0.692 (0.41,0.85) 0.488 (0.158) 0.431 (0.181)
146. SampE VT B 0.208 (−0.16,0.53) 0.363 (0.157) 0.308 (0.131)
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Table A1. Cont.

Reliability Test Retest

ICC (−CI, CI) MDC (SEM) rMDC Mean (STD) Mean (STD)

A
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l

147. SR Swing/stand 0.982 (0.96,0.99) 1.217 (0.439) 0.37 2.234 (3.429) 2.173 (3.116)
148. SR standphasess 0.753 (0.53,0.88) 0.278 (0.1) 1.39 0.902 (0.224) 0.904 (0.178)
149. SR swingphases 0.54 (0.21,0.76) 1.278 (0.725) 1.166 (0.291)
150. SI Swing/stand 0.967 (0.93,0.98) 92.302 (33.3) 0.5 169.709 (179.456) 164.206 (186.235)
151. SI standphases 0.948 (0.89,0.98) 0.435 (0.157) 0.63 1.351 (0.677) 1.395 (0.703)
152. SI swingphases 0.866 (0.73,0.94) 0.422 (0.152) 1.02 1.402 (0.454) 1.405 (0.373)
153. GA Swing/stand 0.939 (0.87,0.97) 51.278 (18.499) 0.69 35.903 (73.448) 34.233 (75.94)
154. GA standphases 0.644 (0.36,0.82) −14.808 (33.798) −12.298 (21.988)
155. GA swingphases 0.756 (0.54,0.88) 40.972 (14.781) 1.4 16.052 (35.568) 12.617 (22.82)
156. SA Swing/stand 0.897 (0.79,0.95) 0.002 (0.001) 0.89 0.49 (0.003) 0.49 (0.003)
157. SA standphases 0.719 (0.47,0.86) 0.492 (0.002) 0.492 (0.001)
158. SA swingphases 0.819 (0.64,0.91) 0.002 (0.001) 1.19 0.49 (0.002) 0.491 (0.001)
159. Peak amp mean B: L/R 0.684 (0.42,0.84) 0.141 (0.084) 0.13 (0.068)
160. Peak amp std B: L/R 0.244 (−0.14,0.57) 0.989 (0.096) 1.012 (0.108)
161. Peak amp mean L/R 0.478 (0.14,0.72) 0.536 (1.786) −0.194 (2.005)
162. Peak amp std L/R 0.654 (0.38,0.83) 0.577 (0.249) 0.653 (0.305)
163. Total Dist norm 0.967 (0.93,0.98) 0.093 (0.033) 0.51 0.311 (0.178) 0.323 (0.189)
164. Cadence norm 0.976 (0.95,0.99) 0.031 (0.011) 0.43 0.224 (0.071) 0.229 (0.07)
165. Stride dist mean norm 0.964 (0.92,0.98) 0.133 (0.048) 0.52 0.69 (0.244) 0.691 (0.266)
166. Stride time mean norm 0.956 (0.9,0.98) 0.047 (0.017) 0.59 0.209 (0.084) 0.202 (0.075)

The MDC and rMDC are only reported for variables with an ICC > 0.75. Abbreviations: L = Left foot;
R = Right foot; B = low back; Gyr = Gyroscope; Acc = Acceleration; Dist = Distance; KMPH = kilometres per
hour; Vel = Velocity; DF = Dominant Frequency; LDE = local divergence exponent; ApproxE = Approximate
entropy; SampleE = Sample entropy; std = Standard deviation; rms = Root Mean Square; AP = Anterior–posterior;
ML = Medio-lateral; VT = Vertical; ACOV = Autocovariance; ACOR = Autocorrelation; HR = Harmonic ratio;
IH = Index of harmonicity; SR = Symmetry ratio; SI = Symmetry index; GA = Gait asymmetry; SA= Symmetry
Angle; Amp = Amplitude; Norm = Normalised.

Appendix B. Testing of the Stride Detection Algorithm

Prior to the reliability study, the custom-made stride-detection algorithm was tested
by measuring healthy participants and comparing the outcomes to a golden standard. In
the test, we tried to imitate different gait patterns by creating different walking paths and
instructing participants to walk symmetrically or asymmetrically at normal or slow speeds.

Appendix B.1. Protocol

In total, eight healthy participants walked a total of three to six times on three different
walking paths. On every walking path, markings with ascending numbers were drawn on
the ground to indicate where the participants should place their feet. On the walking paths,
the markings were placed at a distance 20 cm, 40 cm, and 60 cm. Participants were instructed
to place their feet in the markings. Additionally, participants were instructed to walk
symmetrically or asymmetrically at a low frequency (1 step every 2 s) or high frequency
(1 step every second). Extensive descriptions of the equipment and data-processing steps
are provided in the Materials and Methods section. The walking paths are illustrated in
Figure A1.
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Figure A1. Participants walked on three 14-m walking paths with numbered markings at a distance
of 20 cm, 40 cm, and 60 cm. Participants took right turns. The three inertial measurement units
were placed at the low back and on top of the left and right feet. Elastic bands were used to hold
the sensors in place. The depicted walking paths have fewer markings than the walking paths used
for testing.

Appendix B.2. Outcomes

In total, 37 measurements were collected. After the assessment, the number of strides
was counted based on the number in the marking on which the participants ended, plus
the number of completed rounds, times the markings on the walking path. The covered
distance was calculated by multiplying the number of strides by the distance between
strides on the walking path. The number of strides and total distance were considered
the golden standard and compared to the outcomes of the custom-made stride-detection
algorithm. Nine measurements were excluded from analysis, six because of missing data
and three as a result of faulty measurements. The results are reported in Table A2. Based
on the results, we concluded that there are no remarkable differences between the step-
detection algorithm and the golden standard.

Table A2. Comparison between the outcomes of the golden standard and stride-detection algorithm.

Measurement Mean (SD) (min, max) Pearson’s r Root Mean Square Error Absolute Average Difference

Strides left foot GS 49.3 (15.5) (27, 88) r(28) = 0.97, p < 0.01 3.90 1.96
SDA 48.4 (16.1) (24, 88)

Strides right foot GS 49.3 (15.5) (27, 88) r(28) = 0.98, p < 0.01 3.36 1.60
SDA 47.8 (16.2) (23, 88)

Steps low back GS 98.5 (31.0) (53, 176) r(28) = 0.98, p < 0.01 6.51 2.46
SDA 97.2 (32.7) (47, 178)

Distance left foot GS 29.9 (22,6) (7.6, 105.6) r(28) = 0.97, p < 0.01 5.93 4.11
SDA 30.9 (21.0) (8.1, 97.8)

Distance right foot GS 29.9 (22.6) (7.6, 105.6) r(28) = 0.97, p < 0.01 5.69 3.90
SDA 32.3 (22.1 (8.1, 109.6)

Abbreviations: GS = Golden standard; SDA = Step-Detection Algorithm; SD = Standard deviation; Min = Minimum; Max = Maximum.
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Appendix C. Formulas

Table A3. Formulas: Spatio-Temporal and Frequency Features.

Abbreviation Description Formulas: Spatio-Temporal and Frequency

Spatio-Temporal Features

Range
Range (m/s2, rad/s) (Features: 10, 12, 14, 16,

18, 20, 56, 58, 60, 62, 64 , 66, 96, 98, 100, 102, 104,
106)

max x−min x

STD Standard deviation (m/s2, rad/s) (Features: 2,
5, 9, 48, 51, 55, 94, 160, 162)

√
Σ(xt − x̄)2

N − 1

RMS
Root mean square (m/s2, rad/s) (Features: 11,

13, 15, 17, 19, 21, 57, 59, 61, 63, 65, 67, 97, 99,
101, 103, 105, 107)

√
Σx2

t
N

Velocity Velocity per stride [41] (m/s) (Features: 8, 9, 54,
55) v(t) :

∫
a(t)dt + C1

Distance Distance per stride (m) (Features: 4, 5, 50, 51) x(t) :
∫

v(t)dt + C2

KMPH Kilometres per hour (km/h) (Features: 6, 52) ((ΣDisplacement ∗ 30)/1000)

Cadence Number of steps per minute (Features: 7, 53) number of steps
2

Frequency features

FFT Fast Fourier Transform of acceleration [39] ΣN−1
t=0 ate−i2π∗ tk

N k = 0, ..., N − 1

Dominant peak freq
Dominant frequency in the signal indicating

step or stride frequency (Hz) (Features: 22, 68,
108)

max(FFT)

Dominant peak width Width of the peak of the dominant frequency
(Hz) (Features: 23, 69, 109, 115,121)

Distance between the left and right base of the
dominant peak frequency.

Dominant peak slope Slope the dominant frequency (Hz) (Features:
24, 70, 110, 116, 122)

Slope from the base to the top of the dominant
frequency.

Dominant peak density Density of the peak of the dominant frequency Density from the base to the top of the
dominant frequency

HR
Harmonic ratio: Measure to quantify

smoothness of walking (Features: 112, 118,
124) [54]

Ratio of the sum of the amplitudes of the even
harmonic to the sum of the amplitudes of the

odd harmonics.

IH
Index of harmonicity: Measure to quantify

symmetry of walking (Features: 113, 119, 125)
[55]

Ratio of the aplitude of the dominant
frequency to the sum of the first five

superharmonics.

Abbreviations: x = Input; t = 1 observation; N = Total number of observations; a = Acceleration; AP = Anterior–
posterior; ML = Medio-lateral; All code is available on Github: https://github.com/RichardFel/Reliability-of-Gait
(accessed on 10 December 2021).

https://github.com/RichardFel/Reliability-of-Gait
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Table A4. Formulas: Complexity and Asymmetry Features and Statistics.

Abbreviation Description Formulas

Complexity features

ACOV Autocovariance (Features: 26–31, 72–77,
126–131)

Σ(xi − x̄)(xt−1 − x̄)
n− 1

ACOR Autocorrelation (Features: 32–37, 78–83,
132–137)

1
n− 1

Σ(xi − x̄)(xt−1 − x̄)
σxi ∗ σxt−1

ApEn Approximate entropy, adjusted from [56]
(Features: 41–43, 87–89, 141–143)

Embedding dimensions = 2; Tolerance = 0.2 *
SD.

SampEn Sample entropy, adjusted from [56] (Features:
44–46, 90–92, 144–146)

Embedding dimensions = 2; Tolerance = 0.2 *
SD.

LDE
Maximum finite time lyapunov exponent

using Rosenstein’s algorithm, djusted from
[57] (Features: 38–40, 84–86, 138–140)

Statespace: (delay = 10, dimensions= 5).
Rosenstein’s algorithm: period = 1;

windowsize = 5 s; nearest neighbours = 5.
Asymmetry features

SR Symmetry ratio (Features: 147–149) [58] Vparetic

Vnon−paretic

SI Symmetry index (Features: 150–152) [58] Vparetic −Vnon−paretic

0.5(Vparetic + Vnon−paretic)
∗ 100%

GA Gait asymmetry (Features: 153–155) Adjusted
from [58]

∣∣∣∣∣100 ∗
[

ln
Vparetic

Vnon−paretic

]∣∣∣∣∣

SA Symmetry angle (Features: 156–158) Adjusted
from [58]

[(
45◦ − arctan

( Vparetic
Vnon−paretic

))
∗ 100%

]
90

Statistics

ICC Two-way random effects, absolute agreement,
single rater/measurement [43]

MSR −MSE

MSR + (k− 1)MSE + k
n MSC −MSE

SEM Standard error of measurement SD
√

1− ICC

MDC Minimal detectable change SEM ∗ 1.96 ∗
√

2

rMDC Minimal detectable change expressed in
standard deviations

MDC
(STDtest + STDretest) ∗ 0.5

Abbreviations: SD = Standard deviation; MSR = mean square for rows; MSE = mean square for error; MSC = mean
square for columns; n = number of subjects; k = number of raters/measurements; All code is available on Github::
https://github.com/RichardFel/Reliability-of-Gait (accessed on 10 December 2021).

https://github.com/RichardFel/Reliability-of-Gait
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Appendix D. Setting and Equipment

Figure A2. Participants walked on a 14-m path and took right turns around the cones (1,2). The use of
a walking aid was optional. The three inertial measurement units were placed at the low back and on
top of the left and right feet. Elastic bands were used to hold the sensors in place (3). A measurement
was started and stopped by pressing the white start/stop button on the IMUs. After a measurement,
the data was stored on the IMU and accessed by connecting the IMU to a computer. The person in
the images did not participate in the study.
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