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3Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
4Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand

The evolution of RNA viruses, such as human immunodeficiency virus

(HIV), hepatitis C virus and influenza virus, occurs so rapidly that the

viruses’ genomes contain information on past ecological dynamics.

Hence, we develop a phylodynamic method that enables the joint esti-

mation of epidemiological parameters and phylogenetic history. Based on

a compartmental susceptible–infected–removed (SIR) model, this method

provides separate information on incidence and prevalence of infections.

Detailed information on the interaction of host population dynamics and

evolutionary history can inform decisions on how to contain or entirely

avoid disease outbreaks. We apply our birth–death SIR method to two

viral datasets. First, five HIV type 1 clusters sampled in the UK between

1999 and 2003 are analysed. The estimated basic reproduction ratios

range from 1.9 to 3.2 among the clusters. All clusters show a decline in

the growth rate of the local epidemic in the middle or end of the 1990s.

The analysis of a hepatitis C virus genotype 2c dataset shows that the

local epidemic in the Córdoban city Cruz del Eje originated around 1906

(median), coinciding with an immigration wave from Europe to central

Argentina that dates from 1880 to 1920. The estimated time of epidemic

peak is around 1970.
1. Introduction
The fast evolution of RNA viruses poses a challenge: their evolutionary pro-

cesses are subjected to ecological dynamics that occur on the same timescale

[1,2]. Therefore, a credible model of virus evolution has to take time-dependent

ecological processes into account. In this work, we present a method for Baye-

sian inference under a phylodynamic model that simultaneously estimates

epidemiological parameters and reconstructs phylogenetic history.

Recent developments have provided us with extensive amounts of genomic

data. In the case of human immunodeficiency virus (HIV), a number of

countries, such as Switzerland [3] and the UK [4], have sampled a large fraction

of HIV-infected residents. Analysis of such datasets requires careful validation

of methods. For example, standard coalescent models require the population

size to be constant or to vary deterministically. To accommodate stochastic

population size changes within phylogenetic reconstruction, a tree prior

based on the birth–death process [5,6] has been developed by [7].

An extension of Stadler’s birth–death–sampling model, the birth–death sky-

line plot (BDSKY) [8] allows for serially sampled data and rate changes over time.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.1106&domain=pdf&date_stamp=2014-02-26
mailto:denise.kuehnert@env.ethz.ch
http://dx.doi.org/10.1098/rsif.2013.1106
http://dx.doi.org/10.1098/rsif.2013.1106
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131106

2
These rate changes through time may reflect environmental

changes, for example, new treatment strategies or behaviour

changes at different points in time.

Host population dynamics can strongly affect viral transmis-

sion and evolution [1]. Therefore, modelling the underlying host

population through compartmental models not only provides

additional information on the viral outbreak, but also informs

the estimates for evolutionary reconstruction. We show here

that the BDSKY plot can be parametrized to enable the

underlying population dynamics to be modelled as a compart-

mental susceptible–infected–removed (SIR) model, a classic

epidemiological model, which accounts for changing host

population composition [9].

In the birth–death SIR (BDSIR) model presented in

this paper, we assume that a gene genealogy, i.e. the phylogeny

connecting the sampled sequences, represents the past trans-

mission history of the hosts (note that of course this

transmission history is incomplete as many infected hosts

may not be sampled). That is, an infected host corresponds to

a portion of a single lineage in the phylogeny, and of the two

child branches produced at a branching node, one represents

the continuation of the donor infection, whereas the other

represents the new recipient.

We introduce the BDSIR model for estimating epidemiolo-

gical parameters, for example the basic reproductive number

based on sequence data. The model approximates a classic sto-

chastic SIR model. In summary, our method works as follows.

Trajectories of the number of susceptible, infected and

removed individuals are provided by the SIR model. Based

on the trajectory of infected individuals, the average trans-

mission rate in short time intervals throughout the epidemic

is determined. The likelihood of the proposed sampled tree

connecting the sequence data is then obtained based on

these piecewise constant transmission rates using the birth–

death skyline model. This BDSIR model is implemented into

the Bayesian software framework BEAST2 (http://beast2.cs.

auckland.ac.nz).

We then perform a simulation study showing the accu-

racy of the BDSIR model. Applied to HIV-1 type B

sequences sampled in the UK, the method gives insight

into the epidemic features of five local epidemics. Although

it is common to model the infection dynamics of HIV with

non-recovery (SI) models, here we model it as an SIR

model. In countries like the UK, behaviour changes and com-

mencement of treatment are expected to coincide with the

sampling of HIV-positive individuals, which can imply the

removal of the individual from the infectious pool [10].

Finally, we apply the method to a set of hepatitis C virus

(HCV) type 2c sequences from the city of Cruz del Eje

(CdE) in the Argentinian province Córdoba. European immi-

gration likely caused the outbreak of this local epidemic.

Many of the immigrants came from Italy, where HCV sub-

type 2c is also common [11]. The epidemic appears to have

peaked around 1970 and to be in its decline now.
2. Material and methods
2.1. Stochastic epidemiological models
Infectious disease epidemics are classically modelled through

compartmentalization into a number of host compartments,

such as susceptible, infected and removed individuals (SIR

model), where a susceptible individual moves to the infected
compartment upon infection, and an infected individual moves

to the removed compartment upon removal/recovery. Such a

model may be extended by assuming an exposed class (SEIR

model), altered by assuming no removal/recovery (SI model)

or no immunity of recovered individuals (SIS model) [12].

In the following, we formalize a stochastic epidemiological

SIR model, which we will use for phylogenetic inference assum-

ing an unstructured population. It is relatively straightforward

for other unstructured compartmental epidemiological models

to be placed into a stochastic framework for phylogenetic

analysis in the same way.

In terms of its reaction kinetics, a stochastic SIR model has

the following scheme:

I þ S !b 2I

I!g R:
(2:1)

An individual in the infected compartment I infects a susceptible

individual S at a mass-action infection rate of b. An infected indi-

vidual I recovers at recovery rate g.

Typically, such SIR models are formalized through a system

of ordinary differential equations, which represent a mean field

approximation of the expected number of susceptible, infected

and removed individuals through time, of a stochastic model,

with nS(0) susceptible individuals, nI(0) ¼ 1 infected and

nR(0) ¼ 0 removed individuals as initial conditions at time 0:

d

dt
nS(t) ¼ �bnS(t)nI(t),

d

dt
nI(t) ¼ bnS(t)nI(t)� gnI(t)

and
d

dt
nR(t) ¼ gnI(t):

Stochasticity plays a significant role in viral epidemics,

especially at the very beginning of an epidemic. Although

large epidemics can be described by deterministic models once

they are established, these deterministic models must condition

on the time at which the exponential growth phase of the epi-

demic begins, as this starting time impacts the timing of every

event thereafter.

Hence, we employ stochastic epidemiological models here.

Under the stochastic SIR model, an infected individual infects a

susceptible individual with rate b and recovers with rate g.

In most epidemics, we only observe a proportion s of the

recoveries. We can include this by adding another reaction to

equation (2.1)

I þ S!b 2I,

I !(1�s)g
Rh

and I !sg Rs,

(2:2)

where we distinguish between hidden or unobserved recoveries

Rh and sampled or observed recoveries Rs. The sampling proportion
s with 0 � s � 1 is the probability of a recovery being observed,

and thus the expected proportion of recoveries observed. This

infection process, where only some recoveries are observed, is

the basis for connecting nonlinear epidemiological models to

phylogenetic data.

Molecular sequence data from infected hosts, which are used to

infer the phylogenetic tree, are often sampled sequentially through

time. In our model, we account directly for this sequential sampling

as an infected individual is sampled with rate c ¼ sg, and upon

sampling the individual moves to the removed class (owing to

e.g. successful treatment or behaviour change).

The stochastic SIR model with transmission rate b, recovery

rate g, sampling proportion s, population size nS(0) and timespan

of the epidemic being T induces a distribution of full

http://beast2.cs.auckland.ac.nz
http://beast2.cs.auckland.ac.nz
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Figure 1. Sequentially sampled birth – death – sampling tree. (a) Full trans-
mission tree with birth (internal nodes, purple), sampling (leaves meeting
dotted lines, blue) and death (remaining leaves, green) events. (b) Full tree
pruned to include only observed, i.e. sampled individuals. (Online version in colour.) 0 T
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Figure 2. An epidemic starts at time 0, giving rise to the genealogy rooted
at time x1, and trajectories for the number of susceptible (nS), infected (nI)
and removed (nR) individuals. The last sampled tip determines the end of the
observed epidemic at time T.
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transmission chains through time (i.e. who infected whom). The

sampled tree (or sampled transmission chain) results from the

full transmission chain by pruning all non-sampled lineages,

i.e. the tips of the sampled tree are the sampled individuals

(figure 1). The trajectories of the SIR model are the time series

of the number of susceptible, infected and removed individuals

through time.

Note that we assume the host population size N ¼ nS(i) þ
nI(i) þ nR(i) to be constant over time, in which case our popu-

lation-dependent model (transmission term bnSnI) is equivalent

to a frequency-dependent model (transmission term (b/N)nSnI).

2.2. Incorporating stochastic epidemiological models
into phylogenetics

We do not have information about unobserved individuals, i.e.

we cannot expect to infer the full transmission chain. However,

based on sequenced data D from a sample of infected individ-

uals, we aim at inferring the sampled transmission tree T , the

evolutionary parameters u, the SIR trajectories

Y ¼ {Yt ¼ {nS(t), nI(t), nR(t)}, 0 � t � T},

(where Y0 ¼ {nS(0), 1, 0}, i.e. initially all individuals are susceptible,

apart from one individual, which is infected) and the epidemiologi-

cal parameters h ¼ (l, m, c, nS(0), T), where l ¼ bnS(0), m ¼

(12s)g and c ¼ sg, in a Bayesian framework (figure 2). In particu-

lar, we want to infer the posterior distribution of trees, trajectories

and parameters,

f (T , u, Y, hjD) ¼ P(DjT , u)f(T , Yjh)f (u)f (h),

with P(DjT , u) being the likelihood of the sequences given a tree

(which can be calculated efficiently with Felsenstein’s pruning

algorithm [13]) and f(u), f(h) being the prior distributions on the

parameters. Furthermore, the inference requires the expression for

the joint probability of the sampled tree and the trajectories given

the epidemiological parameters, f (T , Yjh). We rewrite

f (T , Yjh) ¼ f (T jY, h)f (Yjh):

The right-hand side of the equation is the probability den-

sity of a sampled transmission tree given the trajectories and

epidemiological parameters, multiplied by the probability den-

sity of the trajectories given the epidemiological parameters.

Both terms must be determined so that we can do Bayesian

phylogenetic inference under the stochastic SIR model.

Instead of calculating f (Yjh), we can simulate a trajectory given

the epidemiological parameters h in each Markov chain Monte

Carlo (MCMC) step (for details see electronic supplementary

material, text S2). Given the simulated trajectory, it remains to

calculate f (T jY, h):

For calculating the probability density of a sampled tree, we

note that when conditioning on the full trajectories, we have
f (T jY, h) ¼ f (T jY), and the probability of a sampled tree

given the trajectories, f (T jY), is a product where at each event

in the trajectories we multiply by the probability of the

event having happened in the sampled tree if it coincided with

a tree event, and multiply by the probability of the event

having not happened in the sampled tree if it did not coincide

with a tree event. Thus, theoretically we can both simulate tra-

jectories and evaluate the tree probability f (T jY): For large

population sizes (i.e. large nS(0)), the number of events

will grow very large, thus both trajectory simulations and tree

likelihood calculation will become very slow. Therefore, we do

not substitute f(T jY, h) by f (T jY). Instead, we approximate

both the simulation and likelihood calculation by discretizing

time. With the simulation techniques described in the electro-

nic supplementary material, text S2 we simulate at discrete

time points t1, t2, . . . , tm where ti ¼ iT/m, the number

of susceptible, infected and removed individuals, i.e. we have

trajectories ~Y ¼ {{nS(0), nI(0), nR(0)}, . . . , {nS(m), nI(m), nR(m)}},

with the initial value at time 0 being fnS(0), 1, 0g. Then, we

need to calculate f (T j~Y, h):

We note that so far, for m!1, convergence to the exact

probability densities holds. However, we did not find an efficient

way to calculate the required probability density f (T j~Y, h), thus

we introduce an approximation below, yielding the BDSIR

model, which does not converge to the exact probability density,

but turns out to be efficient and accurate.

We sample trajectories ~Y from f (~Yjh) with a t-leaping algorithm

(see the electronic supplementary material, text S2).
2.3. The birth – death SIR model
The BDSIR model is an approximate stochastic epidemiological

model in phylogenetics. We approximate the stochastic SIR

model by the BDSIR model, leading to an efficient way to

calculate approximately the likelihood of the phylogeny given

the epidemiological time series and parameters f (T j~Y, h):

In the BDSIR model, the epidemiological trajectories are

defined stochastically by the SIR model with constant population

size (nS(i) þ nI(i) þ nR(i)) and simulated using the t-leaping

approach described in the electronic supplementary material,

text S2. Simulations are started with an initial number of sus-

ceptibles, nS(0), and last for time T. At equally spaced time

points t1, . . . , tm, the values of the trajectories nS(i), nI(i), nR(i)
are recorded, yielding f(~Yjl, m, c, nS(0), T). The trajectories

converge to SIR trajectories Y for m!1.
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Under the BDSIR model, a sampled tree is induced by a so-

called BDSKY plot [8] given the discrete time trajectories ~Y as

follows. The transmission rate li during time interval [ti, ti þ 1) is

parametrized by li ¼ bnS(i), where b is the epidemiological

transmission rate and nS(i) is the number of susceptibles at time

ti. The recovery rate g and sampling fraction s are constant through

time. Piecewise constant transmission rates in the BDSIR model

allow the calculation of the likelihood of a sampled tree

f̂ (T j{li ¼ bnS(i)ji ¼ 0 . . . m}, m, c, nS(0), T): This likelihood is

given by the probability density of the BDSKY plot (for a deri-

vation of the probability density see ([8], Theorem 1)) with

piecewise constant transmission rate li ¼ bnS(i) and constant

death and sampling rate m and c, respectively. The equation for

the probability density of a sampled tree is stated in the electronic

supplementary material, text S1.

In the BDSIR model, we approximate the calculation of the

posterior distribution under the stochastic SIR model,

f (T , ~Y, hjD)/ P(DjT )f (T j~Y, h)f (~Yjh)f (h), (2:3)

by using

f(T j ~Y, h) � f̂(T j{li ¼ bnS(i)ji ¼ 0 . . . m}, m, c, nS(0), T): (2:4)

While f(T j~Y, h) converges to f(T j~Y) as m!1, the approxi-

mation (equation (2.4), right-hand side) does not: under the

skyline plot, we only specify the transmission rates based on ~Y.

Based on these time-varying transmission rates, we calculate

the likelihood of the tree by integrating over all possible trajec-

tories Y yielding the given tree (instead of conditioning on ~Y).
2.4. Markov chain Monte Carlo implementation of the
birth – death SIR model

We implemented equations (2.3) and (2.4) into BEAST for joint

phylogenetic tree and epidemiological parameter inference

(code and examples can be downloaded from http://code.

google.com/p/phylodynamics). The prior distribution f(~Yjh) in

equation (2.3) is subsumed in the proposal kernel of an MCMC

implementation, so that a new trajectory ~Y0 is proposed by simu-

lation, whenever a new h’ is proposed giving a joint proposal

kernel of

q(h0, ~Y0jh, ~Y) ¼ q(h0jh)f ( ~Y0jh0):

Therefore, BDSIR uses an independence Metropolis–

Hastings (MH) sampler, as introduced by Stephens et al. [14]

and subsequently studied by many others, e.g. [15,16]. This

leads to the Metropolis–Hastings acceptance ratio [17]

a ¼ min 1, P(DjT 0 )f(T 0 j~Y 0 , h0)f(~Y0 jh0)f(h0)
P(DjT )f (T j~Y, h)f (~Yjh)f(h)

� q(h, ~Yjh0 , ~Y0)
q(h0 , ~Y0 jh, ~Y)

� �

¼ min 1, P(DjT 0)f(T 0 j~Y0 , h0)f(h0)
P(DjT )f(T j~Y, h)f(h)

� q(hjh0)
q(h0 jh)

� �
,

where h0 denotes the new proposal of parameters h, etc. The factor

f (~Yjh) is implicitly included in the posterior through independence

sampling of the time series ~Y. The proposal is rejected if at any of

the times ti, i ¼ 0 . . . m, the number of infected individuals in the

proposed trajectory is less than the corresponding number of

lineages in the phylogenetic tree.

In our simulation study, we show that the approximation for

the tree likelihood (equation (2.4)) is suitable, by illustrating that

we can infer parameters from simulated phylogenies with high

accuracy. Thus, by applying our BDSIR model to virus sequence

data from different infected individuals throughout an epidemic,

the phylogenetic tree can be estimated jointly with the epidemio-

logical parameters h. The choice of Bayesian parameter prior

distributions is facilitated by the parametrization of the epidemio-

logical parameters as the basic reproduction ratio R0 ¼ nS(0)b/g,

the rate at which infected individuals become non-infectious g, the
sampling proportion s, the initial susceptible population size nS(0)

and the length of the epidemic T.
2.5. Simulation study
Using simulations, we explore how well the BDSIR model performs

when inferring parameters based on simulated trees. In Stage 1, we

simulate 100 SIR trees based on the reaction scheme (2.2) with

nS(0) ¼ 999, b ¼ 0.00075, g ¼ 0.30 and s ¼ 1/6 (i.e. R0 ¼ 2:5).

Each simulated tree has 100 tips. Then, we set up an analysis to

re-estimate the simulation parameters for each of the simulated

trees. In this second stage, the tree and the duration T of the epi-

demic are fixed; they represent the data from which we estimate

the epidemiological parameters.

Stage 2 comprises two � two sets of analyses: in the first two

sets, we fixed the sampling proportion s as we showed in [8] that

l, g and s correlate; in the second two sets, we estimated s. In each

set of two, the initial number of susceptible individuals nS(0) is

firstly fixed to the true value and secondly all parameters includ-

ing nS(0) are estimated. We chose m ¼ 100 equidistant time points

t1, t2, . . . , tm to discretize the epidemic trajectories. For comparison,

we also estimate the rates of the second two sets (i.e. estimating s)

with (i) the BDSKY model [8] with piecewise constant effective

reproduction ratio and (ii) the birth–death–sampling model

with constant effective reproduction ratio [18].

While the birth–death–sampling model characterizes the tree-

generating process through constant birth, death and sampling

rates, these rates can change in a piecewise fashion in the

BDSKY model. Both methods differ from the BDSIR model in

that they do not explicitly parametrize the underlying host popu-

lation dynamics. We compare the estimated parameters to the true

parameter values. In particular, we focus on the basic reproduction
ratio R0 (the average number of secondary infections in a comple-

tely susceptible population) and the effective reproduction ratio (the

average number of secondary infections in the current

population).

The BDSIR method estimates the basic reproduction ratio as

R0 ¼ bnS(0)/g. BDSKY estimates the effective reproduction ratio

Ri for each time interval [t0i, t0iþ1). We chose 10 intervals for the

BDSKY analysis such that t0i ¼ iT/10. We obtained the ‘true’

effective reproduction ratio from the Stage 1 simulations of the

SIR trees (as well as the estimates for BDSIR) by computing the

averaged effective reproduction ratios Ri ¼ b � nS(i)/g, i ¼ 1..10,

(where nS(i) is the mean number of susceptible individuals,

given by true trajectory ~Y in time interval [t0i, t0iþ1)).

Relative error, bias and highest posterior density (HPD)

width served as measures of precision and accuracy. We define

the relative error as

error ¼ jĥmedian � hj
h

,

the relative bias as

bias ¼ ĥmedian � h

h
,

and finally the 95% relative HPD width is defined as

95% HPD upper bound� 95% HPD lower bound

h
,

where h is the true parameter and ĥmedian is the posterior median

value of the parameter.

The Bayesian prior distributions used in Stage 2 are given in

table 1.
2.6. HIV-1 type B in the UK
A set of molecular sequences sampled from HIV-1 type B

infected individuals in the UK have been grouped into five

http://code.google.com/p/phylodynamics
http://code.google.com/p/phylodynamics
http://code.google.com/p/phylodynamics


Table 1. Prior distributions for the re-estimation of SIR parameters from simulated trees (equal priors applied in BDSIR and birth – death – sampling analyses)
and for data analyses.

analysis R0 g s nS(0) T r

simulated SIR LogN(1,1) LogN(20.5,1) Beta(2,10) LogN(7,1) — —

HIV data UK LogN(0.5,0.5) LogN(21,0.75) Beta(1,1) LogN(7,1.25) Unif(0,1000) —

HCV data CdE LogN(0,2) LogN(20.5,1.25) — Unif(0,30000) Unif(0,1000) Unif(0,1)

Table 2. BDSIR simulation results (nS(0) fixed). Posterior parameter estimates and accuracy obtained from 100 simulated trees with 100 tips sampled
sequentially through time. nS(0) is fixed to the true simulation value. For each parameter, the median over the 100 medians/errors/biases/HPD widths/HPD
accuracies is provided.

truth median error bias relative HPD width 95% HPD accuracy (%)

R0 2.50 2.74 0.13 0.10 0.81 100.00

g 0.30 0.26 0.16 – 0.14 0.90 99.00

s 0.17 0.22 0.34 0.32 1.90 100.00
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phylogenetic clusters [19]. Sampled between 1999 and 2003,

these clusters represent a suitable example dataset for the analy-

sis under the BDSIR model. The clusters comprise 41, 62, 29, 26

and 35 sequences, respectively, and correspond to clusters 1–4

and 6 in the original analysis. Each cluster is considered as a

sample from a local sub-epidemic. Our model explicitly accounts

for the incomplete sampling of the local epidemics. These clusters

have been identified based on a phylogenetic neighbour-

joining tree that was constructed from 3429 HIV-1 subtype B

pol gene sequences from the UK and throughout the world.

Note that the clusters are therefore not randomly sampled, and

we also cannot guarantee that the sample sets are truly isolated

transmission clusters. Although this identification of trans-

mission clusters is common practice, we point out that it may

introduce a bias.

Note that we use an SIR model, although true recovery in the

literal sense does not (yet) occur in HIV-infected individuals.

This is reasonable in countries like the UK, owing to changes

in behaviour as well as the effects of combination drug therapy,

which can reduce viral load to undetectable levels, severely

diminishing the risk of further transmissions and, hence, imply-

ing removal of the individual from the infectious pool. However,

during the earlier part of the study period, i.e. before the intro-

duction of HAART, this does not hold. Furthermore, modelling

the HIV host population dynamics as a closed SIR compart-

mental model requires assuming that the times at which

individuals move between compartments are exponentially dis-

tributed and that the host population size remains constant

over time. Another implicit simplifying assumption is that

infected individuals are constantly infectious.

The phylodynamic analysis employed a general time reversible

substitution model with gamma distributed rate heterogeneity and

a proportion of invariant sites (GTRþ G þ I), and all parameters

were estimated jointly apart from the substitution rate, which was

fixed to 2.55 � 1023, as in [19]. Before 1999, we assume the

sampling proportion s to be zero, as all samples were collected

between 1999 and 2003.

2.7. HCV type 2c in Argentina
We analyse a set of 44 HCV type 2c sequences (NS5B region) that

were sampled in 2004 during a survey in the city of CdE, in

Córdoba province, Argentina. According to the survey, the 44

sequences included here represent roughly 2.8% of the HCV-2c

infected individuals in CdE, which has a population size of

about 35 000 and a proportion of 90% genotype 2c infections
out of all HCV-positive patients encountered during the survey

[20]. Genotype 2c was probably introduced to Argentina

during a European immigration wave between 1880 and 1920

[11]. A superset of these data (with additional samples from

Córdoba province) were recently analysed by Dearlove &

Wilson [21], and in their model comparison they found that

the SIR model is most suitable for these data. The analysis

employed a GTR þ G þ I substitution model and a strict clock

model with the substitution rate fixed to 0.58 � 1023 [22]. As

all sequences were sampled at one time point (i.e. homochro-

nously), we model the sampling process through a sampling

probability r [8]. This means that at the end of the tree (e.g. in

2004) each infected individual was sampled with probability r.

In all analyses, SIR trajectories were sampled at m ¼ 100

intervals. Table 1 gives the choice of Bayesian prior distributions

for the analyses.
3. Results
3.1. Simulation study
We investigated the accuracy of our method through a simu-

lation study. Based on reaction scheme (2.2), 100 serially

sampled trees were simulated and then used for re-esti-

mation of the simulation parameters. All four sets of

analyses, (1) BDSIR with fixed nS(0), (2) BDSIR, (3) BDSKY

with m ¼ 10 intervals (i.e. 9 rate changes) and (4) birth–

death–sampling, resulted in accurate estimates of the

corresponding simulation parameters or their time-averages

(tables 2–7). Figure 3 shows trajectories of the reconstructed

reproduction ratio for three simulations (randomly chosen

from the set of 100 simulations). As one would expect, esti-

mating the initial number of susceptible individuals nS(0)

rather than fixing it to the true value results in broader

95% HPD intervals.

The epidemic dynamics were recovered well for all three

analysis sets (1)2(3). A slight positive bias in the estimates of

the reproduction ratios is observed, which we speculate is

owing to the approximation employed by this method. This

bias is small for low reproduction ratios (R0 , 5), where

demographic stochastic effects are relevant, and the coverage

properties of the estimator show that the uncertainty in the

estimates is accurate. This bias increases with higher R0



Table 3. BDSIR simulation results (nS(0) fixed). Computed averages for the effective reproduction number from 100 simulated trees with 100 tips sampled
sequentially through time. nS(0) is fixed to the true simulation value. For each parameter, the median over the 100 medians/errors/biases/HPD widths/HPD
accuracies is provided. The averages Ri for i ¼ 1. . .10 were computed from the estimated trajectories, R0, g and s.

truth median error bias relative HPD width 95% HPD accuracy (%)

R1 2.49 2.76 0.15 0.12 0.81 100.00

R2 2.48 2.73 0.15 0.12 0.81 100.00

R3 2.45 2.69 0.16 0.13 0.80 100.00

R4 2.39 2.58 0.18 0.16 0.80 99.00

R5 2.25 2.42 0.24 0.24 0.79 98.70

R6 2.00 2.12 0.39 0.39 0.77 97.20

R7 1.63 1.72 0.72 0.72 0.77 94.70

R8 1.23 1.32 1.27 1.27 0.77 87.50

R9 0.89 0.98 2.17 2.17 0.81 83.90

R10 0.65 0.76 3.33 3.33 0.86 80.67

Table 4. BDSIR simulation results (nS(0) estimated). Posterior parameter estimates and accuracy obtained from 100 simulated trees with 100 tips sampled sequentially
through time. nS(0)is estimated in each analysis. For each parameter, the median over the 100 medians/errors/biases/HPD widths/HPD accuracies is provided.

truth median error bias relative HPD width 95% HPD accuracy (%)

R0 2.50 2.63 0.12 0.05 0.87 100.00

g 0.30 0.29 0.13 20.05 1.21 100.00

s 0.17 0.18 0.19 0.11 1.95 100.00

nS(0) 999.00 1900.68 0.90 0.90 5.44 100.00

Table 5. BDSIR simulation results (nS(0) estimated). Computed averages for the effective reproduction number from 100 simulated trees with 100 tips sampled
sequentially through time. nS(0) is estimated in each analysis. For each parameter, the median over the 100 medians/errors/biases/HPD widths/HPD accuracies is
provided. The averages Ri for i ¼ 1. . .10 were computed from the estimated trajectories, R0, g and s.

truth median error bias relative HPD width 95% HPD accuracy (%)

R1 2.49 2.64 0.13 0.07 3.10 100.00

R2 2.48 2.62 0.13 0.08 3.10 100.00

R3 2.45 2.58 0.14 0.09 3.10 100.00

R4 2.39 2.47 0.15 0.12 3.08 100.00

R5 2.25 2.33 0.20 0.19 3.07 100.00

R6 2.00 2.07 0.34 0.34 3.04 100.00

R7 1.63 1.70 0.65 0.65 3.06 100.00

R8 1.23 1.31 1.19 1.19 3.11 100.00

R9 0.89 0.97 2.05 2.05 3.26 100.00

R10 0.65 0.75 3.16 3.16 3.47 100.00
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(data not shown), suggesting that the BDSIR method is the

most appropriate one for modelling epidemics with low to

moderate reproduction ratios (R0 , 10). The effective repro-

duction ratio R1 near the origin of the epidemic is

estimated with the smallest bias among all Ri, i ¼ 1. . .10,

respectively. Analysis under BDSKY results in the broadest

relative HPD for R1. Moving towards the present, the HPD

interval widths for BDSKY mainly decrease. The uncertainty

in the epidemic dynamics suppresses this effect in the BDSIR

analyses: the relative HPD widths of the computed averages
�Ri vary only slightly among the time intervals. Overall, the
BDSIR analyses with nS(0) fixed to the true value obtains

the narrowest HPD intervals, yet error rates and HPD

accuracy are best when nS(0) is estimated.

The birth–death–sampling model, which is equivalent to

a one-dimensional BDSKY model, estimates the time aver-

aged reproduction ratio accurately with quite narrow HPD

intervals, suggesting it may be a reasonable method for infer-

ence in scenarios where the epidemic dynamics over time are

not important.

As shown by [8], the parameters R0, g and s of a birth–

death–sampling tree prior are correlated. Therefore, we



Table 6. Birth – death skyline simulation results. Birth – death skyline posterior parameter estimates and accuracy obtained from 100 simulated trees with 100
tips sampled sequentially through time. Rate changes are allowed among 10 equidistant intervals. For each parameter, the median over the 100 medians/errors/
biases/HPD widths/HPD accuracies is provided.

truth median error bias relative HPD width 95% HPD accuracy (%)

g 0.30 0.23 0.24 – 0.23 0.28 99

s 0:16 0.24 0.46 0.44 0.40 100

R1 2.49 2.49 0.33 – 0.003 5.81 100

R2 2.48 2.53 0.32 0.02 4.88 99

R3 2.45 2.72 0.30 0.11 4.13 99

R4 2.39 2.73 0.27 0.14 3.33 98

R5 2.25 2.65 0.24 0.17 2.77 97

R6 2.00 2.31 0.23 0.14 2.24 95

R7 1.63 1.85 0.27 0.11 1.90 92

R8 1.23 1.42 0.32 0.12 1.69 91

R9 0.89 1.01 0.32 0.11 1.58 98

R10 0.65 1.16 0.77 0.77 2.26 97

0
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4

5
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0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 10
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8
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Figure 3. Reconstructed effective reproduction ratio from simulated SIR trees. True trajectory (green/dark) versus estimated trajectory (orange/light) with 95% HPD
(dashed lines). Random sample of the 100 reconstruction results shown with nS(0) fixed to the true value (1 – 3) and estimated (4 – 6). Estimation of nS(0) throughout
the phylodynamic reconstruction results in broader HPD intervals. (Online version in colour.)

Table 7. Birth – death – sampling simulation results. Birth – death – sampling posterior parameter estimates and accuracy obtained from 100 simulated trees with
100 tips sampled sequentially through time. Rates are assumed constant over time. For each parameter, the median over the 100 medians/errors/biases/HPD
widths/HPD accuracies is provided.

truth median error bias relative HPD width 95% HPD accuracy (%)

R 1.86 1.63 0.13 – 0.12 1.17 92

g 0.30 0.30 0.08 – 0.002 0.52 100

s 0:16 0.17 0.04 0.02 0.38 100
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performed an additional set of simulations in which the

sampling proportion s is fixed to the true value. As expected,

this results in narrower HPD intervals with accurate estimates

of R0 and g. The HPD for the initial number of susceptible

individuals nS(0) contains the true value, but is fairly wide

as before (electronic supplementary material, tables S1–S4).

These simulation results suggest that additional information

about the pathogen under investigation can improve the par-

ameter estimates of the BDSIR analysis. In the case of HIV,

for example, many countries have good estimates of how

much of the infected population has been sampled.

3.2. HIV-1 type B in the UK
We apply the BDSIR method to five HIV-1 clusters sampled

between 1999 and 2003, mainly (85%) from men having sex

with men around London [19]. Bayesian estimates for the

epidemiological parameters and time to the most recent

common ancestors of the clusters are summarized in table 8.

Our results suggest that the local epidemics corresponding

to each of the five genetic clusters have been sampled at vary-

ing epidemic stages. Figure 4 shows the posterior medians of

the epidemic time series and suggests that cluster 1 is the

only cluster that has gone through the largest part of its

local epidemic. A single sampled trajectory for each cluster

demonstrates the stochastic noise in the epidemics (electronic

supplementary material, figure S1). At the end of the sampled

interval, the pool of susceptible individuals of this cluster has

been depleted nearly completely. On the other hand, the other

four clusters are just before or at the peak of the local epidemic.

The estimated depletion of susceptible individuals especially

in cluster 2 indicates that those epidemics have progressed

fairly far and one would expect a decline in the number of

infected individuals soon after the end of the sampled interval.

These dynamics can also be seen in the plots of the average

effective reproduction ratio Ri over time (figure 5).

The basic reproduction ratio R0 estimated from these clus-

ters ranges from 1.90 (95% HPD: 1.22–2.78) in cluster 3 to

3.22 (95% HPD 2.18–4.27) in cluster 1. There are significant

differences in the estimated R0 values across the five clusters,

despite them all sharing the same prior, which demonstrates

that the sequence data contain substantial information about

the basic reproduction ratio. These results are robust to a

change of the R0 prior distribution (data not shown). Median

estimates of the rate to become non-infectious range from 0.15

to 0.30, indicating an average infectious period of about 327

years in these clusters.

In all clusters the estimates of the sampling proportion s
and the initial number of susceptible individuals nS(0) come

with broad 95% HPD intervals. The median nS(0) is between

880 and 2900 among the clusters. Cluster 1 turns out to be the

most informative here, with its 95% HPD ranging from 140 to

3600 (median 880). The least informative is cluster 5 (95%

HPD 180216900, median 2900), which appears to be (a)

sampled from the largest epidemic among the five clusters

and (b) an epidemic for which all samples included in this

analysis have been sampled before the epidemic reached its

peak. Hence, one should aim to acquire samples covering

as much of the duration of an epidemic as possible.

3.3. HCV type 2c in Argentina
Applied to a contemporaneously sampled HCV-2c dataset

from CdE, a city in Argentina, the methods reveal that the
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Figure 4. SIR trajectories and incidence of HIV-1 clusters from the UK. Bayesian posterior mean trajectories for clusters (1 – 5): the overall SIR dynamics (a) show at
what stage in the epidemic each cluster was sampled. Zooming into the number of infecteds, i.e. the prevalence over time in (b) enables comparison to the
incidence. (Online version in colour.)
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virus caused a large local epidemic (figures 6 and 7). Despite

an uninformative prior distribution on the sampling

probability r, we obtain a median r ¼ 2.6% (95% HPD:

2.3%–7.6%), which agrees very well with direct calculations

based on previous estimates [20]. We estimate R0 ¼ 3:6

(95% HPD: 1.6–7.7), nS(0) ¼ 14 800 (3200–29 600) and g ¼

0.056 (95% HPD: 0.014–0.134), the latter indicating an infec-

tious period of 17.7 years. The time of origin of the local

epidemic in CdE is estimated to be 1906, with the root of

the tree being placed in 1914.

For the sake of comparability, we also analysed the larger

dataset (including another 29 sequences from places within

Córdoba province) that was investigated by Dearlove &

Wilson [21]. Initially, we employed uninformative prior dis-

tributions for the epidemiological parameters resulting in

an estimate of the epidemic population size of N ¼ 5200

(400–37 000) and a sampling proportion of s ¼ 68%
(27–100%). These results neither match the large popu-

lation of Córdoba province (1.3 million) nor the small

sampling proportion (2.8%) encountered by Mengarelli

et al. [20]. This suggests a model misspecification. Given the

large size of Córdoba province (165 km2), it appears that

this dataset requires either the analysis of subsampled local

epidemics (as we did for CdE) or the incorporation of

population structure into the model. In fact, repeating the

same analysis with a prior distribution that forces

the sampling proportion to be small, we obtain results that

are very similar to the estimates obtained by Dearlove &

Wilson [21] under a coalescent SIR model (electronic sup-

plementary material, figure S3). These results might explain

why the analysis of the larger set resulted in unrealisti-

cally small estimates of the duration for the infectious

period (average 1/g ¼ 1.47 years (coalescent SIR), 1/g ¼ 8.3

years (BDSIR)).
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4. Discussion
Phylodynamic methods play an important role in under-

standing virus dynamics. Awareness of the interaction of

evolutionary and ecological dynamics is essential for the

development of containment strategies for virus outbreaks

over short and long timescales. We have presented a model

that couples evolutionary processes with the underlying sto-

chastic host dynamics in order to obtain realistic estimates of

the evolutionary as well as epidemiological history. Existing

phylodynamic approaches often infer a phylogeny that is

then assumed to be fixed for epidemiological inference

[23,24] (see [2] for a review of further methods).

Our approach couples a birth–death tree prior with a

compartmental epidemiological SIR model such that the epide-

miological parameters are estimated simultaneously with the

reconstruction of the phylogeny. This way the uncertainty of

the tree is integrated into the inference of the epidemiological

dynamics. The choice of the BDSKY model as a kernel for

the prior on the phylogeny is natural: epidemiological par-

ameters, for example, the basic reproduction ratio R0, are

readily computed from an appropriate parametrization and

limitations of the coalescent process, for example, the
deterministic population size assumption, are avoided. Note

that the assumption of the BDSKY plot [8], stating that infected

individuals become non-infectious upon sampling, also applies

here. This is a somewhat artificial assumption made for com-

putational convenience. To avoid such an assumption would

require allowing phylogenetic trees containing ‘direct ances-

tors’. The first steps towards the relaxation of this assumption

have recently been taken [25].

Recently, Leventhal et al. [26] developed a similar phylo-

dynamic model that couples a birth–death process with a

compartmental SI model and showed that negligence of the

stochastic epidemiological dynamics can introduce bias into

phylogenetic reconstruction.

Traditional coalescent-based approaches often suffer from

difficulties interpreting the effective population size [27]. Expli-

cit simulation of the stochastic SIR trajectories in the BDSIR

model yields separate estimates of incidence and prevalence.

This explicit separation of incidence and prevalence facilitates

correct interpretation of results, although one must still take

quantities, such as offspring distribution, population struc-

ture and selection pressures, into account. Nevertheless, the

resulting trajectories provide information about features, for

example, the time of the epidemic peak. Alternatives to the

independence MH sampler used to sample the stochastic SIR

trajectories, such as particle filtering [23] or pure Monte Carlo

methods, might yield some computational benefit, but at the

expense of the inference of the marginal posterior distribution

of the compartment trajectories.

A promising coalescent-based phylodynamic model that

incorporates complex population dynamics was developed

by Volz [24]. However, it still assumes a deterministically

changing population size. In fact, when applied in [28], it is

based on a fixed phylogeny that has presumably been recon-

structed based on a standard coalescent tree prior. However,

note that Volz [24] could be extended to take into account

stochastic epidemiological dynamics in a similar manner to

that employed for the BDSIR model. If stochastic trajectories

were used for the coalescent rates and implemented in a

Bayesian framework it would enable direct comparison

between birth–death methods and the coalescent-based

methods described in [24].

In our simulation study, we have shown that the BDSIR

model accurately estimates epidemiological parameters from

simulated SIR trees. We have applied the model to five genetic

clusters of HIV-1 type B from the UK. The data analysis

revealed the epidemic stages in which the clusters were

sampled. Only cluster 1 appears to be at the end of the epi-

demic, while the other four clusters were sampled around

the time of their peak. Surprisingly, there is considerable vari-

ation in the estimates of the basic reproduction ratio R0 among

the clusters. In cluster 3, the estimated median is 1.9, in clusters

1 and 5 it is slightly above 3. These differences in the estimated

R0 values across the five clusters, and their deviation from the

common prior distribution, confirm that the sequence data

contain information about the epidemiological parameters.

Although we did not model variation of the underlying trans-

mission rate among individuals, the variation of estimated

epidemiological parameters among the clusters might point

us towards the existence of super-spreaders.

Comparing the results of the analysis of cluster 2 to those

using the BDSKY plot, published by Stadler et al. [8], the esti-

mates of the sampling proportion in both analyses agree (47%

here versus 50% BDSKY). Expectedly, the estimated basic
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reproduction ratio R0 ¼ 2:45 is slightly larger than the effec-

tive reproduction ratio R1 ¼ 2:37 near the origin that resulted

from the BDSKY analysis. Overall, analysis under the para-

metric BDSIR method resulted in narrower HPD intervals

than that under the non-parametric BDSKY method, with

the BDSIR intervals being contained in the BDSKY intervals.

The analysis of 44 HCV-2c sequences from the city of CdE

supports the theory that this genotype has been introduced to

Argentina during a European immigration wave between 1880

and 1920, as the most recent common ancestor of the sample

analysed here is placed in this period. From the CdE subset,

we have estimated an average duration of infectiousness of

17.7 years, which agrees with the 10–30 year range that has

previously been supposed [29].

In conclusion, the BDSIR model provides the ability to sim-

ultaneously reconstruct evolutionary processes with their

underlying host population dynamics from viral sequence

data, and in particular the inferred parameters allow us to

make statements about the future fate of the epidemic.

Although we have used strong simplifications concerning the
epidemiological dynamics of viruses like HIV (e.g. [30]), this

work is the first step towards more sophisticated methods,

and future work shall relax the simplifying assumptions

made here. We emphasize that this general technique is appli-

cable not only to viruses but also to any rapidly evolving

organism for which the evolutionary dynamics act on the

same timescale as the population processes of their hosts.

Future work will aim at extensions that incorporate temporal

and spatial structuring of the host and/or viral population.
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